Journal articles on the topic 'SUPERCONDUCTING NANOSTRUCTURE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SUPERCONDUCTING NANOSTRUCTURE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
LYUKSYUTOV, I. F. "CONTROLLING SUPERCONDUCTIVITY WITH MAGNETIC NANOSTRUCTURES." International Journal of Modern Physics B 27, no. 15 (June 4, 2013): 1362004. http://dx.doi.org/10.1142/s021797921362004x.
Full textShlyakhova, G. V., S. A. Barannikova, and L. B. Zuev. "Nanostructure of superconducting Nb-Ti cable." Steel in Translation 43, no. 10 (October 2013): 640–43. http://dx.doi.org/10.3103/s0967091213100124.
Full textLazarev, B. G., V. A. Ksenofontov, I. M. Mikhailovskii, and O. A. Velikodnaya. "Nanostructure of superconducting Nb–Ti alloys." Low Temperature Physics 24, no. 3 (March 1998): 205–9. http://dx.doi.org/10.1063/1.593572.
Full textHoride, Tomoya, Hiromu Katagiri, Ataru Ichinose, and Kaname Matsumoto. "Fabrication of Fe(Te,Se) films added with oxide or chalcogenide: Influence of added material on phase formation and superconducting properties." Journal of Applied Physics 131, no. 10 (March 14, 2022): 103901. http://dx.doi.org/10.1063/5.0085234.
Full textTarasov, Mikhail, Andrey Lomov, Artem Chekushkin, Mikhail Fominsky, Denis Zakharov, Andrey Tatarintsev, Sergey Kraevsky, and Anton Shadrin. "Quasiepitaxial Aluminum Film Nanostructure Optimization for Superconducting Quantum Electronic Devices." Nanomaterials 13, no. 13 (July 4, 2023): 2002. http://dx.doi.org/10.3390/nano13132002.
Full textSavostin, E. O., and N. A. Pertsev. "Superconducting straintronics via the proximity effect in superconductor–ferromagnet nanostructures." Nanoscale 12, no. 2 (2020): 648–57. http://dx.doi.org/10.1039/c9nr06739f.
Full textZhilyaev, Ivan. "Nanostructure Model for Superconducting State of High-Temperature Superconductors-Cuprates." Quantum Matter 4, no. 4 (August 1, 2015): 334–38. http://dx.doi.org/10.1166/qm.2015.1202.
Full textAlkaabi, Zaid K., and Emad K. Al-Shakarchi. "Studying the Physical Properties of Bi-2223 Nanostructure Prepared Thermal Treatment Method." Materials Science Forum 1039 (July 20, 2021): 269–73. http://dx.doi.org/10.4028/www.scientific.net/msf.1039.269.
Full textPrikhna, T. A., A. P. Shapovalov, G. E. Grechnev, V. G. Boutko, A. A. Gusev, A. V. Kozyrev, M. A. Belogolovskiy, V. E. Moshchil, and V. B. Sverdun. "Formation of nanostructure in magnesium diboride based materials with high superconducting characteristics." Low Temperature Physics 42, no. 5 (May 2016): 380–94. http://dx.doi.org/10.1063/1.4952985.
Full textTsai, J. S., Y. Nakamura, and YU Pashkin. "Qubit utilizing charge-number state in super conducting nanostructure." Quantum Information and Computation 1, Special (December 2001): 124–28. http://dx.doi.org/10.26421/qic1.s-13.
Full textPong, Ian, Christian Scheuerlein, Carmine Senatore, Ludovic Thilly, Marco Di Michiel, Alexandre Gerardin, Simon C. Hopkins, et al. "Cu Ti Formation in Nb Ti/Cu Superconducting Strand Monitored by In Situ Techniques." Defect and Diffusion Forum 297-301 (April 2010): 695–701. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.695.
Full textObradors, X., T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, and X. Granados. "Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7thin films based on trifluoroacetate solutions." Superconductor Science and Technology 25, no. 12 (October 26, 2012): 123001. http://dx.doi.org/10.1088/0953-2048/25/12/123001.
Full textAyani, C. G., F. Calleja, P. Casado Aguilar, A. Norris, J. J. Navarro, M. Garnica, M. Acebrón, et al. "Robust, carbon related, superconducting nanostructure at the apex of a tungsten STM tip." Applied Physics Letters 115, no. 7 (August 12, 2019): 073108. http://dx.doi.org/10.1063/1.5097694.
Full textPrikhna, Tatiana, Michael Eisterer, Wolfgang Gawalek, Harald W. Weber, Viktor Moshchil, Artem Kozyrev, Myroslav Karpets, et al. "Influence of Oxygen and Boron Distribution on the Superconducting Characteristics of Nanostructural Mg-B-O Ceramics." Solid State Phenomena 200 (April 2013): 137–43. http://dx.doi.org/10.4028/www.scientific.net/ssp.200.137.
Full textМихайлин, Н. Ю., Д. В. Шамшур, Р. В. Парфеньев, В. И. Козуб, Ю. М. Гальперин, Ю. А. Кумзеров, and А. В. Фокин. "Размерные зависимости магнитных свойств сверхпроводящих наноструктур свинца в пористом стекле." Физика твердого тела 60, no. 6 (2018): 1058. http://dx.doi.org/10.21883/ftt.2018.06.45976.11m.
Full textYe, Yan, Da Yin, Bin Wang, and Qingwen Zhang. "Synthesis of Three-Dimensional Fe3O4/Graphene Aerogels for the Removal of Arsenic Ions from Water." Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/864864.
Full textZhou, W. L., J. Wiemann, K. L. Stokes, and C. J. O’Connor. "Monodisperse Pbse Nanoparticle Self-Assembling Nanoarrays Before and After Annealing." Microscopy and Microanalysis 7, S2 (August 2001): 314–15. http://dx.doi.org/10.1017/s1431927600027641.
Full textShevchun, Artem F., Galina K. Strukova, Ivan M. Shmyt’ko, Gennady V. Strukov, Sergey A. Vitkalov, Dmitry S. Yakovlev, Ivan A. Nazhestkin, and Dmitry V. Shovkun. "Superconductivity in Hierarchical 3D Nanostructured Pb–In Alloys." Symmetry 14, no. 10 (October 13, 2022): 2142. http://dx.doi.org/10.3390/sym14102142.
Full textTu, Kaixiong, Jinxing Gu, Linguo Lu, Shijun Yuan, Long Zhou, and Zhongfang Chen. "CuB monolayer: a novel 2D anti-van’t Hoff/Le Bel nanostructure with planar hyper-coordinate boron/copper and superconductivity." Journal of Materials Informatics 2, no. 3 (2022): 13. http://dx.doi.org/10.20517/jmi.2022.10.
Full textJayasree, T. K., and P. Predeep. "Nanocomposites Based on High-Tc Superconducting Ceramic 2212 BSCCO and their Properties." Advanced Materials Research 938 (June 2014): 210–14. http://dx.doi.org/10.4028/www.scientific.net/amr.938.210.
Full textWu, Chuanbao, Gaoyang Zhao, and Li Lei. "Enhancement of critical current density in superconducting YBa2Cu3O7−x films by nanostructure development of substrate surface using sol–gel method." Journal of Sol-Gel Science and Technology 67, no. 1 (May 17, 2013): 203–7. http://dx.doi.org/10.1007/s10971-013-3068-8.
Full textSosiati, H., S. Hata, T. Doi, A. Matsumoto, H. Kitaguchi, and H. Nakashima. "Nanostructure characterization of Ni and B layers as artificial pinning centers in multilayered MgB2/Ni and MgB2/B superconducting thin films." Physica C: Superconductivity 488 (May 2013): 1–8. http://dx.doi.org/10.1016/j.physc.2013.02.011.
Full textШевцова, О. Д., М. В. Лихолетова, Е. В. Чарная, Е. В. Шевченко, Ю. А. Кумзеров, and А. В. Фокин. "Динамическая восприимчивость нанокомпозита пористое стекло/Ga-In-Sn в области сверхпроводимости." Физика твердого тела 64, no. 1 (2022): 40. http://dx.doi.org/10.21883/ftt.2022.01.51829.195.
Full textJasim, Saleh Eesaa, Mohamad Ashry Jusoh, Muhammad Aizat Kamarudin, Fahmiruddin Esa, and Rodziah Nazlan. "Effect of Processing Parameters on the Morphology, Particulate, and Superconducting Properties of Electrospun YBCO Nanostructures." Journal of Nano Research 63 (June 2020): 89–97. http://dx.doi.org/10.4028/www.scientific.net/jnanor.63.89.
Full textWojnarowicz, Jacek, Sylwia Kusnieruk, Tadeusz Chudoba, Stanislaw Gierlotka, Witold Lojkowski, Wojciech Knoff, Malgorzata I. Lukasiewicz, et al. "Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis." Beilstein Journal of Nanotechnology 6 (September 30, 2015): 1957–69. http://dx.doi.org/10.3762/bjnano.6.200.
Full textNguyen Van, Tri. "Superconductivity Mechanism in the Modulated Quantum Well of YBCO Structure." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C620. http://dx.doi.org/10.1107/s2053273314093796.
Full textNaghib, Seyed Morteza, Yasser Zare, and Kyong Yop Rhee. "A facile and simple approach to synthesis and characterization of methacrylated graphene oxide nanostructured polyaniline nanocomposites." Nanotechnology Reviews 9, no. 1 (February 28, 2020): 53–60. http://dx.doi.org/10.1515/ntrev-2020-0005.
Full textNath, Manashi, Swastik Kar, Arup K. Raychaudhuri, and C. N. R. Rao. "Superconducting NbSe2 nanostructures." Chemical Physics Letters 368, no. 5-6 (January 2003): 690–95. http://dx.doi.org/10.1016/s0009-2614(02)01930-9.
Full textSmirnov, Konstantin V., Yuriy B. Vachtomin, Andrey V. Smirnov, Roman V. Ozhegov, Ivan V. Pentin, Aleksandr V. Divochii, Elizaveta V. Slivinskaya, and Grigory N. Goltsman. "Terahertz and Infrared Receivers Based on Thin-Film Superconducting Nanostructures." Siberian Journal of Physics 5, no. 4 (December 1, 2010): 63–67. http://dx.doi.org/10.54362/1818-7919-2010-5-4-63-67.
Full textNiedzielski, Bjoern, Chenglong Jia, and Jamal Berakdar. "Supercurrent Induced by Chiral Coupling in Multiferroic/Superconductor Nanostructures." Nanomaterials 11, no. 1 (January 13, 2021): 184. http://dx.doi.org/10.3390/nano11010184.
Full textBagraev, N. T., L. E. Klyachkin, A. A. Koudryavtsev, A. M. Malyarenko, and V. V. Romanov. "Superconducting properties of silicon nanostructures." Semiconductors 43, no. 11 (November 2009): 1441–54. http://dx.doi.org/10.1134/s1063782609110098.
Full textWu, Xing-Cai, You-Rong Tao, Qi-Xiu Gao, Chang-Jie Mao, and Jun-Jie Zhu. "Superconducting TaS2−xIy hierarchical nanostructures." Chemical Communications, no. 28 (2009): 4290. http://dx.doi.org/10.1039/b905168f.
Full textFomin, Vladimir M., Roman O. Rezaev, Evgenii A. Levchenko, Daniel Grimm, and Oliver G. Schmidt. "Superconducting properties of nanostructured microhelices." Journal of Physics: Condensed Matter 29, no. 39 (August 21, 2017): 395301. http://dx.doi.org/10.1088/1361-648x/aa7dbe.
Full textGurevich, V. L., V. I. Kozub, and A. L. Shelankov. "Thermoelectric effects in superconducting nanostructures." European Physical Journal B 51, no. 2 (May 2006): 285–92. http://dx.doi.org/10.1140/epjb/e2006-00218-6.
Full textAziz, Mohsin, David Christopher Hudson, and Saverio Russo. "Molybdenum-rhenium superconducting suspended nanostructures." Applied Physics Letters 104, no. 23 (June 9, 2014): 233102. http://dx.doi.org/10.1063/1.4883115.
Full textArutyunov, K. Yu, Sh Farhangfar, D. A. Presnov, and J. P. Pekola. "Unconventional behavior of superconducting nanostructures." Physica B: Condensed Matter 284-288 (July 2000): 1848–49. http://dx.doi.org/10.1016/s0921-4526(99)02868-9.
Full textPolat, Özgür, Tolga Aytug, M. Parans Paranthaman, Keith J. Leonard, Andrew R. Lupini, Steve J. Pennycook, Harry M. Meyer, et al. "An evaluation of phase separated, self-assembled LaMnO3-MgO nanocomposite films directly on IBAD-MgO as buffer layers for flux pinning enhancements in YBa2Cu3O7-δ coated conductors." Journal of Materials Research 25, no. 3 (March 2010): 437–43. http://dx.doi.org/10.1557/jmr.2010.0073.
Full textPagano, Sergio, Nadia Martucciello, Emanuele Enrico, Eugenio Monticone, Kazumasa Iida, and Carlo Barone. "Iron-Based Superconducting Nanowires: Electric Transport and Voltage-Noise Properties." Nanomaterials 10, no. 5 (April 30, 2020): 862. http://dx.doi.org/10.3390/nano10050862.
Full textShah, M. A. "Large Scale Production of MgO Nanostructures and their Possible Applications." Materials Science Forum 760 (July 2013): 69–71. http://dx.doi.org/10.4028/www.scientific.net/msf.760.69.
Full textSeviour, R., C. J. Lambert, and A. F. Volkov. "Anomalous transport in normal-superconducting and ferromagnetic-superconducting nanostructures." Physical Review B 59, no. 9 (March 1, 1999): 6031–34. http://dx.doi.org/10.1103/physrevb.59.6031.
Full textSmetanin D. V., Likholetova M. V., Charnaya E. V., Lee M. K., Chang L. J., Shevchenko E. V., Kumzerov Yu. A., and Fokin A. V. "Superconductivity and Phase Diagram in the Nanostructured Eutectic Ga-Ag Alloy." Physics of the Solid State 64, no. 8 (2022): 942. http://dx.doi.org/10.21883/pss.2022.08.54608.360.
Full textLikholetova, Marina V., Elena V. Charnaya, Evgenii V. Shevchenko, Min Kai Lee, Lieh-Jeng Chang, Yurii A. Kumzerov, and Aleksandr V. Fokin. "Magnetic Studies of Superconductivity in the Ga-Sn Alloy Regular Nanostructures." Nanomaterials 13, no. 2 (January 9, 2023): 280. http://dx.doi.org/10.3390/nano13020280.
Full textSerrano, Ismael García, Javier Sesé, Isabel Guillamón, Hermann Suderow, Sebastián Vieira, Manuel Ricardo Ibarra, and José María De Teresa. "Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields." Beilstein Journal of Nanotechnology 7 (November 14, 2016): 1698–708. http://dx.doi.org/10.3762/bjnano.7.162.
Full textLu, Jun, Zhili Xiao, Qiyin Lin, Helmut Claus, and Zhigang Zak Fang. "Low-Temperature Synthesis of Superconducting NanocrystallineMgB2." Journal of Nanomaterials 2010 (2010): 1–5. http://dx.doi.org/10.1155/2010/191058.
Full textBang, Wonbae, W. Teizer, K. K. D. Rathnayaka, I. F. Lyuksyutov, and D. G. Naugle. "Controlling superconductivity in thin film with an external array of magnetic nanostructures." International Journal of Modern Physics B 29, no. 25n26 (October 14, 2015): 1542035. http://dx.doi.org/10.1142/s0217979215420357.
Full textSealy, Cordelia. "DNA assembly creates 3D superconducting nanostructures." Nano Today 36 (February 2021): 101071. http://dx.doi.org/10.1016/j.nantod.2020.101071.
Full textJoshi, Lalit M., P. K. Rout, Sudhir Husale, and Anurag Gupta. "Dissipation processes in superconducting NbN nanostructures." AIP Advances 10, no. 11 (November 1, 2020): 115116. http://dx.doi.org/10.1063/5.0021428.
Full textArutyunov, K. Yu, D. A. Presnov, S. V. Lotkhov, A. B. Pavolotski, and L. Rinderer. "Resistive-state anomaly in superconducting nanostructures." Physical Review B 59, no. 9 (March 1, 1999): 6487–98. http://dx.doi.org/10.1103/physrevb.59.6487.
Full textHayashi, M., H. Yoshioka, and A. Kanda. "Superconducting proximity effect in graphene nanostructures." Journal of Physics: Conference Series 248 (November 1, 2010): 012002. http://dx.doi.org/10.1088/1742-6596/248/1/012002.
Full textFaley, Michael I., Joshua Williams, Penghan Lu, and Rafal E. Dunin-Borkowski. "TiN-NbN-TiN and Permalloy Nanostructures for Applications in Transmission Electron Microscopy." Electronics 12, no. 9 (May 8, 2023): 2144. http://dx.doi.org/10.3390/electronics12092144.
Full text