Journal articles on the topic 'Superconcentrated electrolyte'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Superconcentrated electrolyte.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Klorman, Jake A., and Kah Chun Lau. "The Relevance of Lithium Salt Solvate Crystals in Superconcentrated Electrolytes in Lithium Batteries." Energies 16, no. 9 (April 26, 2023): 3700. http://dx.doi.org/10.3390/en16093700.
Full textTian, Zengying, Wenjun Deng, Xusheng Wang, Chunyi Liu, Chang Li, Jitao Chen, Mianqi Xue, Rui Li, and Feng Pan. "Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors." Functional Materials Letters 10, no. 06 (December 2017): 1750081. http://dx.doi.org/10.1142/s1793604717500813.
Full textYang, Chongyin, Liumin Suo, Oleg Borodin, Fei Wang, Wei Sun, Tao Gao, Xiulin Fan, et al. "Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility." Proceedings of the National Academy of Sciences 114, no. 24 (May 31, 2017): 6197–202. http://dx.doi.org/10.1073/pnas.1703937114.
Full textDubouis, Nicolas, Pierre Lemaire, Boris Mirvaux, Elodie Salager, Michael Deschamps, and Alexis Grimaud. "The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes." Energy & Environmental Science 11, no. 12 (2018): 3491–99. http://dx.doi.org/10.1039/c8ee02456a.
Full textPal, Urbi, Fangfang Chen, Derick Gyabang, Thushan Pathirana, Binayak Roy, Robert Kerr, Douglas R. MacFarlane, Michel Armand, Patrick C. Howlett, and Maria Forsyth. "Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications." Journal of Materials Chemistry A 8, no. 36 (2020): 18826–39. http://dx.doi.org/10.1039/d0ta06344d.
Full textRakov, Dmitrii. "(Best Student Presentation) Is Solid-Electrolyte Interphase Formation Affected by Electrode Conductivity?" ECS Meeting Abstracts MA2023-01, no. 5 (August 28, 2023): 873. http://dx.doi.org/10.1149/ma2023-015873mtgabs.
Full textWang, Weijian, Wenjun Deng, Xusheng Wang, Yibo Li, Zhuqing Zhou, Zongxiang Hu, Mianqi Xue, and Rui Li. "A hybrid superconcentrated electrolyte enables 2.5 V carbon-based supercapacitors." Chemical Communications 56, no. 57 (2020): 7965–68. http://dx.doi.org/10.1039/d0cc02040k.
Full textYamada, Yuki, Makoto Yaegashi, Takeshi Abe, and Atsuo Yamada. "A superconcentrated ether electrolyte for fast-charging Li-ion batteries." Chemical Communications 49, no. 95 (2013): 11194. http://dx.doi.org/10.1039/c3cc46665e.
Full textLundgren, Henrik, Johan Scheers, Mårten Behm, and Göran Lindbergh. "Characterization of the Mass-Transport Phenomena in a Superconcentrated LiTFSI:Acetonitrile Electrolyte." Journal of The Electrochemical Society 162, no. 7 (2015): A1334—A1340. http://dx.doi.org/10.1149/2.0961507jes.
Full textSun, Ju, Luke A. O’Dell, Michel Armand, Patrick C. Howlett, and Maria Forsyth. "Anion-Derived Solid-Electrolyte Interphase Enables Long Life Na-Ion Batteries Using Superconcentrated Ionic Liquid Electrolytes." ACS Energy Letters 6, no. 7 (June 14, 2021): 2481–90. http://dx.doi.org/10.1021/acsenergylett.1c00816.
Full textWang, Andrew A., Anna B. Gunnarsdóttir, Jack Fawdon, Mauro Pasta, Clare P. Grey, and Charles W. Monroe. "Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach." ACS Energy Letters 6, no. 9 (August 15, 2021): 3086–95. http://dx.doi.org/10.1021/acsenergylett.1c01213.
Full textChen, Long, Jiaxun Zhang, Qin Li, Jenel Vatamanu, Xiao Ji, Travis P. Pollard, Chunyu Cui, et al. "A 63 m Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries." ACS Energy Letters 5, no. 3 (February 27, 2020): 968–74. http://dx.doi.org/10.1021/acsenergylett.0c00348.
Full textDeng, Wenjun, Xusheng Wang, Chunyi Liu, Chang Li, Jitao Chen, Nan Zhu, Rui Li, and Mianqi Xue. "Li/K mixed superconcentrated aqueous electrolyte enables high-performance hybrid aqueous supercapacitors." Energy Storage Materials 20 (July 2019): 373–79. http://dx.doi.org/10.1016/j.ensm.2018.10.023.
Full textShiga, Tohru, Yumi Masuoka, and Yuichi Kato. "Competition between Conversion Reaction with Cerium Dioxide and Lithium Plating in Superconcentrated Electrolyte." Langmuir 36, no. 46 (November 11, 2020): 14039–45. http://dx.doi.org/10.1021/acs.langmuir.0c02622.
Full textRakov, Dmitrii. "(Digital Presentation) Importance of Electrified Interfaces in Researchable Metal Anode Batteries: Ionic Liquid Electrolyte Composition and Electrode Preconditioning." ECS Meeting Abstracts MA2022-02, no. 1 (October 9, 2022): 90. http://dx.doi.org/10.1149/ma2022-02190mtgabs.
Full textLi, Yibo, Zhuqing Zhou, Wenjun Deng, Chang Li, Xinran Yuan, Jun Hu, Man Zhang, Haibiao Chen, and Rui Li. "A Superconcentrated Water‐in‐Salt Hydrogel Electrolyte for High‐Voltage Aqueous Potassium‐Ion Batteries." ChemElectroChem 8, no. 8 (February 18, 2021): 1451–54. http://dx.doi.org/10.1002/celc.202001509.
Full textLee, ChangHee, and Soon-Ki Jeong. "A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries." Chemistry Letters 45, no. 12 (December 5, 2016): 1447–49. http://dx.doi.org/10.1246/cl.160769.
Full textOkoshi, Masaki, Chien-Pin Chou, and Hiromi Nakai. "Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries." Journal of Physical Chemistry B 122, no. 9 (February 12, 2018): 2600–2609. http://dx.doi.org/10.1021/acs.jpcb.7b10589.
Full textDhattarwal, Harender Singh, Yun-Wen Chen, Jer-Lai Kuo, and Hemant Kumar Kashyap. "Mechanistic Insight on the Solid Electrolyte Interphase (SEI) Formed By a Superconcentrated [Li][TFSI] in Acetonitrile Electrolyte Near Lithium Metal." ECS Meeting Abstracts MA2021-02, no. 3 (October 19, 2021): 406. http://dx.doi.org/10.1149/ma2021-023406mtgabs.
Full textZhang, Man, Weijian Wang, Xianhui Liang, Chang Li, Wenjun Deng, Haibiao Chen, and Rui Li. "Promoting operating voltage to 2.3 V by a superconcentrated aqueous electrolyte in carbon-based supercapacitor." Chinese Chemical Letters 32, no. 7 (July 2021): 2217–21. http://dx.doi.org/10.1016/j.cclet.2020.12.017.
Full textDupre, Nicolas, Khryslyn Arano, Robert Kerr, Bernard Lestriez, Jean Le Bideau, Patrick C. Howlett, Maria Forsyth, and Dominique Guyomard. "(Invited) Tuning the Formation and Structure of the Silicon Electrode/Electrolyte Interphase in Superconcentrated Ionic Liquids." ECS Meeting Abstracts MA2021-02, no. 2 (October 19, 2021): 224. http://dx.doi.org/10.1149/ma2021-022224mtgabs.
Full textPeriyapperuma, Kalani, Elisabetta Arca, Steven Harvey, Thushan Pathirana, Chunmei Ban, Anthony Burrell, Cristina Pozo-Gonzalo, and Patrick C. Howlett. "High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase." ACS Applied Materials & Interfaces 12, no. 37 (September 2, 2020): 42236–47. http://dx.doi.org/10.1021/acsami.0c09074.
Full textDhattarwal, Harender S., Yun-Wen Chen, Jer-Lai Kuo, and Hemant K. Kashyap. "Mechanistic Insight on the Formation of a Solid Electrolyte Interphase (SEI) by an Acetonitrile-Based Superconcentrated [Li][TFSI] Electrolyte near Lithium Metal." Journal of Physical Chemistry C 124, no. 50 (December 8, 2020): 27495–502. http://dx.doi.org/10.1021/acs.jpcc.0c08009.
Full textArano, Khryslyn, Srdan Begic, Fangfang Chen, Dmitrii Rakov, Driss Mazouzi, Nicolas Gautier, Robert Kerr, et al. "Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids." ACS Applied Materials & Interfaces 13, no. 24 (June 11, 2021): 28281–94. http://dx.doi.org/10.1021/acsami.1c06465.
Full textZeng, Pan, Yamiao Han, Xiaobo Duan, Guichong Jia, Liwu Huang, and Yungui Chen. "A stable graphite electrode in superconcentrated LiTFSI-DME/DOL electrolyte and its application in lithium-sulfur full battery." Materials Research Bulletin 95 (November 2017): 61–70. http://dx.doi.org/10.1016/j.materresbull.2017.07.018.
Full textLi, Yibo, Zhuqing Zhou, Wenjun Deng, Chang Li, Xinran Yuan, Jun Hu, Man Zhang, Haibiao Chen, and Rui Li. "Cover Feature: A Superconcentrated Water‐in‐Salt Hydrogel Electrolyte for High‐Voltage Aqueous Potassium‐Ion Batteries (ChemElectroChem 8/2021)." ChemElectroChem 8, no. 8 (March 22, 2021): 1389. http://dx.doi.org/10.1002/celc.202100324.
Full textLee, Eun Goo, Jintaek Park, Sung-Eun Lee, Junhee Lee, Changik Im, Gayeong Yoo, Jeeyoung Yoo, and Youn Sang Kim. "Superconcentrated aqueous electrolyte and UV curable polymer composite as gate dielectric for high-performance oxide semiconductor thin-film transistors." Applied Physics Letters 114, no. 17 (April 29, 2019): 172903. http://dx.doi.org/10.1063/1.5093741.
Full textFerdousi, Shammi A., Matthias Hilder, Andrew Basile, Haijin Zhu, Luke A. O'Dell, Damien Saurel, Teofilo Rojo, Michel Armand, Maria Forsyth, and Patrick C. Howlett. "Water as an Effective Additive for High‐Energy‐Density Na Metal Batteries? Studies in a Superconcentrated Ionic Liquid Electrolyte." ChemSusChem 12, no. 8 (March 28, 2019): 1700–1711. http://dx.doi.org/10.1002/cssc.201802988.
Full textGossage, Zachary Tyson, Nanako Ito, Tomooki Hosaka, Ryoichi Tatara, and Shinichi Komaba. "Understanding the Development and Properties of SEI in Concentrated Aqueous Electrolytes Via Scanning Electrochemical Microscopy." ECS Meeting Abstracts MA2023-02, no. 60 (December 22, 2023): 2900. http://dx.doi.org/10.1149/ma2023-02602900mtgabs.
Full textPham, Ngan K., Tuyen T. T. Truong, Kha Minh Le, Tuyen Thi Kim Huynh, Man V. Tran, and Phung Le. "Nonflammable Sulfone-Based Electrolytes for Achieving High-Voltage Li-Ion Batteries Using LiNi0.5Mn1.5O4 Cathode Material." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 291. http://dx.doi.org/10.1149/ma2022-012291mtgabs.
Full textPathirana, Thushan, Dmitrii A. Rakov, Fangfang Chen, Maria Forsyth, Robert Kerr, and Patrick C. Howlett. "Improving Cycle Life through Fast Formation Using a Superconcentrated Phosphonium Based Ionic Liquid Electrolyte for Anode-Free and Lithium Metal Batteries." ACS Applied Energy Materials 4, no. 7 (July 2, 2021): 6399–407. http://dx.doi.org/10.1021/acsaem.1c01641.
Full textTang, Peiyuan, Yi Cao, and Wenfeng Qiu. "Preparation and Properties of an Ultrahigh-Energy-Density Aqueous Supercapacitor with a Superconcentrated Electrolyte and a Sr-Modified Lanthanum Zirconate Flexible Electrode." ACS Omega 6, no. 38 (September 20, 2021): 24720–30. http://dx.doi.org/10.1021/acsomega.1c03486.
Full textYamada, Yuki, and Atsuo Yamada. "Review—Superconcentrated Electrolytes for Lithium Batteries." Journal of The Electrochemical Society 162, no. 14 (2015): A2406—A2423. http://dx.doi.org/10.1149/2.0041514jes.
Full textSelf, Julian, Kara D. Fong, and Kristin A. Persson. "Transport in Superconcentrated LiPF6 and LiBF4/Propylene Carbonate Electrolytes." ACS Energy Letters 4, no. 12 (November 6, 2019): 2843–49. http://dx.doi.org/10.1021/acsenergylett.9b02118.
Full textGenereux, Simon, Valérie Gariépy, and Dominic Rochefort. "Impact of Water on the Properties of Superconcentrated Electrolytes." ECS Meeting Abstracts MA2020-02, no. 4 (November 23, 2020): 670. http://dx.doi.org/10.1149/ma2020-024670mtgabs.
Full textYamada, Yuki, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama, and Atsuo Yamada. "Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes." ChemElectroChem 2, no. 11 (July 31, 2015): 1687–94. http://dx.doi.org/10.1002/celc.201500235.
Full textYamada, Yuki, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama, and Atsuo Yamada. "Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes." ChemElectroChem 2, no. 11 (October 12, 2015): 1627. http://dx.doi.org/10.1002/celc.201500426.
Full textCiurduc, Diana Elena, Nicola Boaretto, Juan P. Fernández-Blázquez, and Rebeca Marcilla. "Development of high performing polymer electrolytes based on superconcentrated solutions." Journal of Power Sources 506 (September 2021): 230220. http://dx.doi.org/10.1016/j.jpowsour.2021.230220.
Full textYAMADA, Yuki. "Developing New Functionalities of Superconcentrated Electrolytes for Lithium-ion Batteries." Electrochemistry 85, no. 9 (2017): 559–65. http://dx.doi.org/10.5796/electrochemistry.85.559.
Full textGénéreux, Simon, Valérie Gariépy, and Dominic Rochefort. "Impact of Water on the Properties of Litfsi-Acetonitrile Superconcentrated Electrolytes." ECS Meeting Abstracts MA2020-01, no. 4 (May 1, 2020): 556. http://dx.doi.org/10.1149/ma2020-014556mtgabs.
Full textKim, Jungyu, Bonhyeop Koo, Joonhyung Lim, Jonggu Jeon, Chaiho Lim, Hochun Lee, Kyungwon Kwak, and Minhaeng Cho. "Dynamic Water Promotes Lithium-Ion Transport in Superconcentrated and Eutectic Aqueous Electrolytes." ACS Energy Letters 7, no. 1 (December 10, 2021): 189–96. http://dx.doi.org/10.1021/acsenergylett.1c02012.
Full textDroguet, Léa, Gustavo M. Hobold, Marie Francine Lagadec, Rui Guo, Christophe Lethien, Maxime Hallot, Olivier Fontaine, Jean-Marie Tarascon, Betar M. Gallant, and Alexis Grimaud. "Can an Inorganic Coating Serve as Stable SEI for Aqueous Superconcentrated Electrolytes?" ACS Energy Letters 6, no. 7 (June 28, 2021): 2575–83. http://dx.doi.org/10.1021/acsenergylett.1c01097.
Full textYamada, Yuki, Keizo Furukawa, Keitaro Sodeyama, Keisuke Kikuchi, Makoto Yaegashi, Yoshitaka Tateyama, and Atsuo Yamada. "Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries." Journal of the American Chemical Society 136, no. 13 (March 23, 2014): 5039–46. http://dx.doi.org/10.1021/ja412807w.
Full textYamada, Yuki, Kenji Usui, Ching Hua Chiang, Keisuke Kikuchi, Keizo Furukawa, and Atsuo Yamada. "General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes." ACS Applied Materials & Interfaces 6, no. 14 (March 26, 2014): 10892–99. http://dx.doi.org/10.1021/am5001163.
Full textHan, Sungho. "Anionic effects on the structure and dynamics of water in superconcentrated aqueous electrolytes." RSC Advances 9, no. 2 (2019): 609–19. http://dx.doi.org/10.1039/c8ra09589b.
Full textYamada, Yuki, and Atsuo Yamada. "Superconcentrated Electrolytes to Create New Interfacial Chemistry in Non-aqueous and Aqueous Rechargeable Batteries." Chemistry Letters 46, no. 8 (August 5, 2017): 1056–64. http://dx.doi.org/10.1246/cl.170284.
Full textYamada, Yuki, Ching Hua Chiang, Keitaro Sodeyama, Jianhui Wang, Yoshitaka Tateyama, and Atsuo Yamada. "Cover Picture: Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes (ChemElectroChem 11/2015)." ChemElectroChem 2, no. 11 (October 12, 2015): 1625. http://dx.doi.org/10.1002/celc.201500427.
Full textRakov, Dmitrii A., Fangfang Chen, Shammi A. Ferdousi, Hua Li, Thushan Pathirana, Alexandr N. Simonov, Patrick C. Howlett, Rob Atkin, and Maria Forsyth. "Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes." Nature Materials 19, no. 10 (May 4, 2020): 1096–101. http://dx.doi.org/10.1038/s41563-020-0673-0.
Full textChen, Fangfang, Patrick Howlett, and Maria Forsyth. "Na-Ion Solvation and High Transference Number in Superconcentrated Ionic Liquid Electrolytes: A Theoretical Approach." Journal of Physical Chemistry C 122, no. 1 (December 21, 2017): 105–14. http://dx.doi.org/10.1021/acs.jpcc.7b09322.
Full textTakada, Koji, Yuki Yamada, Eriko Watanabe, Jianhui Wang, Keitaro Sodeyama, Yoshitaka Tateyama, Kazuhisa Hirata, Takeo Kawase, and Atsuo Yamada. "Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries." ACS Applied Materials & Interfaces 9, no. 39 (September 20, 2017): 33802–9. http://dx.doi.org/10.1021/acsami.7b08414.
Full text