Academic literature on the topic 'Sup-Norm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sup-Norm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sup-Norm"

1

Grundmeier, Dusty, Lars Simon, and Berit Stensønes. "Sup-norm estimates for $\overline{\partial}$." Pure and Applied Mathematics Quarterly 18, no. 2 (2022): 531–71. http://dx.doi.org/10.4310/pamq.2022.v18.n2.a8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Temple, Blake. "Sup-norm estimates in Glimm's method." Journal of Differential Equations 83, no. 1 (January 1990): 79–84. http://dx.doi.org/10.1016/0022-0396(90)90069-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Young, Robin. "Sup-norm stability for Glimm's scheme." Communications on Pure and Applied Mathematics 46, no. 6 (July 1993): 903–48. http://dx.doi.org/10.1002/cpa.3160460605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karafyllis, Iasson, and Miroslav Krstic. "ISS estimates in the spatial sup-norm for nonlinear 1-D parabolic PDEs." ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 57. http://dx.doi.org/10.1051/cocv/2021053.

Full text
Abstract:
This paper provides novel Input-to-State Stability (ISS)-style maximum principle estimates for classical solutions of nonlinear 1-D parabolic Partial Differential Equations (PDEs). The derivation of the ISS-style maximum principle estimates is performed in two ways: by using an ISS Lyapunov Functional for the sup norm and by exploiting well-known maximum principles. The estimates provide fading memory ISS estimates in the sup norm of the state with respect to distributed and boundary inputs. The obtained results can handle parabolic PDEs with nonlinear and non-local in-domain terms/boundary conditions. Three illustrative examples show the efficiency of the proposed methodology for the derivation of ISS estimates in the sup norm of the state.
APA, Harvard, Vancouver, ISO, and other styles
5

Brown, Mark. "Weighted sup-norm inequalities and their applications." Communications in Statistics - Theory and Methods 19, no. 11 (January 1990): 4061–81. http://dx.doi.org/10.1080/03610929008830429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bertin, Karine, and Vincent Rivoirard. "Maxiset in sup-norm for kernel estimators." TEST 18, no. 3 (April 15, 2008): 475–96. http://dx.doi.org/10.1007/s11749-008-0109-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jorgenson, J., and J. Kramer. "Bounding the sup-norm of automorphic forms." Geometrical and Functional Analysis GAFA 14, no. 6 (December 2004): 1267–77. http://dx.doi.org/10.1007/s00039-004-0491-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blomer, Valentin, and Péter Maga. "The Sup-Norm Problem for PGL(4)." International Mathematics Research Notices 2015, no. 14 (June 19, 2014): 5311–32. http://dx.doi.org/10.1093/imrn/rnu100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hinz, Michael. "Sup-norm-closable bilinear forms and Lagrangians." Annali di Matematica Pura ed Applicata (1923 -) 195, no. 4 (June 6, 2015): 1021–54. http://dx.doi.org/10.1007/s10231-015-0503-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nezir, Veysel, and Nizami Mustafa. "c0 can be renormed to have the fixed point property for affine nonexpansive mappings." Filomat 32, no. 16 (2018): 5645–63. http://dx.doi.org/10.2298/fil1816645n.

Full text
Abstract:
P.K. Lin gave the first example of a non-reflexive Banach space (X,||?||) with the fixed point property (FPP) for nonexpansive mappings and showed this fact for (l1,||?||1) with the equivalent norm ||?|| given by ||x|| = sup k?N 8k/1+8k ?1,n=k |xn|, for all x = (xn)n?N ? l1. We wonder (c0, ||?||1) analogue of P.K. Lin?s work and we give positive answer if functions are affine nonexpansive. In our work, for x = (?k)k ? c0, we define |||x||| := lim p?? sup ?k?N ?k (?1,j=k |?j|p/2j)1/p where ?k ?k 3, k is strictly increasing with ?k > 2, ?k ? N, then we prove that (c0,|||?|||) has the fixed point property for affine |||?|||-nonexpansive self-mappings. Next, we generalize this result and show that if ?(?) is an equivalent norm to the usual norm on c0 such that lim sup n ?(1/n ?n,m=1 xm + x) = lim sup n ?(1/n ?n,m=1 xm) + ?(x) for every weakly null sequence (xn)n and for all x ? c0, then for every ? > 0, c0 with the norm ||?||? = ?(?)+?|||?||| has the FPP for affine ||?||?-nonexpansive self-mappings.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sup-Norm"

1

Stey, George C. "Asymptotic expansion for the L1 Norm of N-Fold convolutions." The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1174537038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jana, Subhajit. "Sup-norm problem of certain eigenfunctions on arithmetic hyperbolic manifolds." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/52739.

Full text
Abstract:
We prove a power saving over the local bound for the L∞ norm of uniformly non- tempered Hecke-Maass forms on arithmetic hyperbolic manifolds of dimension 4 and 5. We use accidental isomorphism and use the Hecke theory of the correspond- ing groups to show that if the automorphic form is non-tempered at positive density of finite places then the Hecke eigenvalues are large; amplifying the saving coming from the non temperedness we get a power saving.
Science, Faculty of
Mathematics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Menes, Thibaut. "Grandes valeurs des formes de Maass sur des quotients compacts de grassmanniennes hyperboliques dans l’aspect volume." Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131059.

Full text
Abstract:
Soient n > m = 1 des entiers tels que n + m >= 4 soit pair. On prouve l’existence, dans l’aspect volume, de formes de Maass exceptionnelles sur des quotients compacts de la grassmanienne hyperbolique de signature (n,m). La méthode repose sur le travail de Rudnick et Sarnak, étendu par Donnelly puis généralisé par Brumley et Marshall en rang supérieur. Celle-ci combine un argument de comptage et une relation de périodes permettant de montrer qu’une certaine période distingue les relèvements thêta depuis un groupe auxiliaire. La structure de niveau est définie relativement à cette période et le groupe auxiliaire qui intervient est U(m,m) ou Sp_2m(R), de sorte que (U(n,m),U(m,m)) ou (O(n,m),Sp_2m(R)) soit une paire duale réductive de type 1. La borne inférieure s’exprime naturellement, à un facteur logarithmique près, comme le quotient des volumes avec la structure de congruence principale sur le groupe auxiliaire
Let n > m = 1 be integers such that n + m >= 4 is even. We prove the existence, in the volume aspect, of exceptional Maass forms on compact quotients of the hyperbolic Grassmannian of signature (n,m). The method builds upon the work of Rudnick and Sarnak, extended by Donnelly and then generalized by Brumley and Marshall to higher rank. It combines a counting argument with a period relation, showingthat a certain period distinguishes theta lifts from an auxiliary group. The congruence structure is defined with respect to this period and the auxiliary group is either U(m,m) or Sp_2m(R), making (U(n,m),U(m,m)) or (O(n,m),Sp_2m(R)) a type 1 dual reductive pair. The lower bound is naturally expressed, up to a logarithmic factor, as the ratio of the volumes, with the principal congruence structure on the auxiliary group
APA, Harvard, Vancouver, ISO, and other styles
4

Maknun, Imam Jauhari. "Évaluation numérique des éléments finis DKMQ pour les plaques et les coques." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS040/document.

Full text
Abstract:
Dans le cadre linéaire, les modèles de Mindlin-Reissner pour les plaques épaisses et de Naghdi pour les coques épaisses sont les plus utilisés. Il est connu que la discrétisation par éléments finis de ces modèles conduit à un phénomène de verrouillage numérique quand l’épaisseur tend vers zéro. Il s’agit du verrouillage en cisaillement dans le cas des plaques et du verrouillage en cisaillement et en membrane dans le cas des coques. Il existe quelques éléments finis qui permettent d’éviter ces difficultés ou du moins de les réduire. L’élément DKMQ pour les plaques et sa version DKMQ24 pour les coques, sont des éléments de bas ordre, basés sur une formulation mixte, qui ont été proposés il y a quelques années afin d’éviter ces phénomènes de verrouillage. Dans cette thèse, on s’est attaché à évaluer numériquement les performances de ces éléments. Outre les cas tests classiques, on s’est focalisé sur l’analyse de la condition inf-sup discrète pour l’élément DKMQ. Nous avons étudié également le test de la s-norme proposé par Bathe, pour l’élément DKMQ24. Enfin, nous avons effectué une analyse d’erreur a posteriori pour les éléments DKMQ et DKMQ24, en utilisant l’estimateur d’erreur Z2 (dû à Zienkiewicz et Zhu), associé aux techniques de recouvrement de la moyenne, de projection ou encore SPR. Les résultats obtenus ont permis de quantifier les performances de ces deux éléments finis pour les problèmes de verrouillage, et d’en dégager les limites. Deux applications importantes de ces éléments DKMQ et DKMQ24 ont été ensuite présentées, la première concerne la simulation des poutres à parois minces à section ouverte et la seconde le calcul des plaques composites
In the linear case, the Mindlin-Reissner model for thick plates and the Naghdi model for thick shells are commonly used. The finite element discretization of these models leads to numerical locking phenomenon when the thickness approaches zero : shear locking for plates and both shear and membrane locking for shells. There are some finite elements that could reduce or even eliminate this phenomenon. DKMQ element for plates or DKMQ24 element for shells, are low-order elements, based on a mixed formulation, introduced a few years ago to prevent the numerical locking phenomenon. In this thesis, we concentrated on numerical evaluation of the performance of these elements. Besides the classical benchmark tests, we also focused on the analysis of discrete inf-sup condition for DKMQ element. We studied the s-norm test proposed by Bathe for DKMQ24 element. Finally, we performed a posteriori error estimation for DKMQ and DKMQ24 elements, using the error estimator Z2 (proposed by Zienkiewicz and Zhu), associated with the averaging, projection or SPR recovery methods. The results obtained have enabled us to quantify the performance of these two finite elements for locking problems, and to identify their limits. Two important applications of these elements DKMQ and DKMQ24 were then presented ; the first one concerns thin-walled beams with open cross-section and the second one composite plates
APA, Harvard, Vancouver, ISO, and other styles
5

Hirsch, Gérard. "Équations de relation floue et mesures d'incertain en reconnaissance de formes." Nancy 1, 1987. http://www.theses.fr/1987NAN10030.

Full text
Abstract:
Il est appelé que le sylogisme indirect n'est pas parfait quelque soit l'opérateur de composition floue. Un opérateur de maximalisation (ou de minimalisation) est déterminé pour la composition sup-T norme (ou INF-T conorme). Après la reprise des résultats des mesures d'incertain il est donné une application numérique au problème de classification des phonèmes
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Sup-Norm"

1

Sogge, Christopher D. The sharp Weyl formula. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.003.0003.

Full text
Abstract:
This chapter considers the sharp Weyl formula using the tools provided in the previous chapter. It attempts to prove the sharp Weyl formula which says that there is a constant c, depending on (M,g) in a natural way, so that N(λ‎) = cλ‎ⁿ + O(λ‎superscript n minus 1). The chapter then details the sup-norm estimates for eigenfunctions and spectral clusters. Next, this chapter proves the sharp Weyl formula and in doing so, outlines a number of theorems, the first of which the chapter focuses on in establishing its sharpness and in obtaining improved bounds for its Weyl formula's error term. Finally, the chapter shows that improved bounds are also available for the remainder term in the Weyl formula when (M,g) has nonpositive sectional curvature.
APA, Harvard, Vancouver, ISO, and other styles
2

Sogge, Christopher D. Improved spectral asymptotics and periodic geodesics. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.003.0005.

Full text
Abstract:
This chapter proves an improved Weyl formula under the assumption that the set of periodic geodesics for (M,g) has measure zero. It then shows trace estimates associated with shrinking spectral bands, details and proves a lemma, and gives a related generalization of the Weyl formula from Chapter 3 that involves pseudodifferential operators. The chapter then proves its main result by using a version of the Duistermaat-Guillemin theorem, which allows the use of the Hadamard parametrix and the arguments from Chapter 3. To conclude, the chapter shows that one can improve the sup-norm estimates from Chapter 3 if one assumes a condition on the geodesic flow that is similar to a hypothesis laid out in the Duistermaat-Guillemin theorem.
APA, Harvard, Vancouver, ISO, and other styles
3

Alger, Justin. Conserving the Oceans. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197540534.001.0001.

Full text
Abstract:
Conserving the Oceans: The Politics of Large Marine Protected Areas documents the efforts of activists and states to increase the pace and scale of global ocean protections, leading to a new global norm in ocean conservation of large marine protected areas (MPAs) exceeding 200,000 km2. Through an analysis of domestic political economies, the book explains how states have protected millions of square kilometers of ocean space while remaining highly responsive to the interests of businesses. It argues that states design environmental policies above all around two key features of a given space: (1) the composition of extractive versus non-extractive industry interests; and (2) the salience of various industry interests, defined as the degree to which businesses would suffer tangible and significant costs in response to new environmental regulations. Through an analysis of large MPA advocacy campaigns in Australia, Palau, and the US, this book demonstrates how the political economy of a given marine space shapes how governments align their environmental and economic goals, sometimes strengthening conservation but more often than not undermining it. While recognizing important global progress and growing ambition to conserve ocean ecosystems, Conserving the Oceans demonstrates that even ambitious large MPAs have so far not fundamentally challenged a neoliberal paradigm of environmentalism that has caused considerable ecological harm.
APA, Harvard, Vancouver, ISO, and other styles
4

Sogge, Christopher D. Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.001.0001.

Full text
Abstract:
Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. The book gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace–Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. The book shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. It begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. The book avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. It also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, the book demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Sup-Norm"

1

Lyche, Tom, and Karl Scherer. "On the Sup-norm Condition Number of the Multivariate Triangular Bernstein Basis." In Multivariate Approximation and Splines, 141–51. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8871-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Friedman, Joshua S., Jay Jorgenson, and Jürg Kramer. "Uniform Sup-Norm Bounds on Average for Cusp Forms of Higher Weights." In Arbeitstagung Bonn 2013, 127–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43648-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Giné, Evarist, and Hailin Sang. "On the estimation of smooth densities by strict probability densities at optimal rates in sup-norm." In Institute of Mathematical Statistics Collections, 128–49. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2013. http://dx.doi.org/10.1214/12-imscoll910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haesemeyer, Christian, and Charles A. Weibel. "Existence of Norm Varieties." In The Norm Residue Theorem in Motivic Cohomology, 144–57. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.003.0010.

Full text
Abstract:
This chapter constructs norm varieties for symbols ª = {𝑎1, ...,𝑎𝑛} over a field 𝑘 of characteristic 0, and starts the proof that norm varieties are Rost varieties. It first recalls the definition of a norm variety for a symbol ª in 𝐾𝑀 𝑛(𝑘)/𝓁; if 𝑛 ≥ 2 and 𝑘 is 𝓁-special, norm varieties are geometrically irreducible. Next, the chapter uses the Chain Lemma to produce a specific ν‎ n−1-variety ℙ(𝒜), and a pencil Q of splitting varieties over 𝔸1—{0} whose fibers 𝑄𝑊 are fixed point equivalent to ℙ (𝒜). Using a bordism result, this chapter shows that any equivariant resolution 𝑄(ª) of 𝑄𝑊 is a ν‎ n−1-variety. Next, one of Rost's degree formulas is used to show that any norm variety for ª is ν‎ n−1 because 𝑄(ª) is. Finally, a norm variety for ª is constructed by induction on 𝑛, making use of the global inductive assumption that BL(n − 1) holds.
APA, Harvard, Vancouver, ISO, and other styles
5

"Sup-norm estimates for the ∂-equation." In Lectures on Counterexamples in Several Complex Variables, 165–67. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/chel/363/23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Sup-Norm Estimate Based on Characteristics." In The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields, 99–104. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813230866_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"High-Order Refined Sup-Norm Estimates." In The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields, 139–45. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813230866_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haesemeyer, Christian, and Charles A. Weibel. "The Motivic Group H−1,−1BM." In The Norm Residue Theorem in Motivic Cohomology, 95–102. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.003.0007.

Full text
Abstract:
This chapter develops some more of the properties of the Borel–Moore homology groups 𝐻𝐵𝑀 −1,−1(𝑋). It shows that it is contravariant in 𝑋 for finite flat maps, and has a functorial pushforward for proper maps. If 𝑋 is smooth and proper (in characteristic 0), 𝐻𝐵𝑀 −1,−1(𝑋) agrees with 𝐻2𝒅+1,𝒅+1(𝑋, ℤ), and has a nice presentation, which this chapter explores in more depth. The main result in this chapter is the proposition that: if 𝑋 is a norm variety for ª and 𝑘 is 𝓁-special then the image of 𝐻𝐵𝑀 −1,−1(𝑋) → 𝑘× is the group of units 𝑏 such that ª ∪ 𝑏 vanishes in 𝐾𝑀 𝑛+1(𝑘)/𝓁. Again, this chapter also explores the historic trajectory of its equations.
APA, Harvard, Vancouver, ISO, and other styles
9

Haesemeyer, Christian, and Charles A. Weibel. "Hilbert 90 for KnM." In The Norm Residue Theorem in Motivic Cohomology, 42–53. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691191041.003.0003.

Full text
Abstract:
This chapter formulates a norm-trace relation for the Milnor 𝐾-theory and étale cohomology of a cyclic Galois extension, herein called Hilbert 90 for 𝐾𝑀 𝑛. To begin, the chapter uses condition BL(n) to establish a related exact sequence in Galois cohomology. It then establishes that condition BL(n − 1) implies the particular case of condition H90(n) for 𝓁-special fields 𝑘 such that 𝐾𝑀 𝑛(𝑘) is 𝓁-divisible. This case constitutes the first part of the inductive step in the proof of Theorem A. The remainder of this chapter explains how to reduce the general case to this particular one. The chapter concludes with some background on the Hilbert 90 for 𝐾𝑀 𝑛.
APA, Harvard, Vancouver, ISO, and other styles
10

Grattan, Patrick. "Hop drying in Continental Title of Chapter Europe." In Oasts and Hop Kilns, 131–41. Liverpool University Press, 2021. http://dx.doi.org/10.3828/liverpool/9781789622515.003.0015.

Full text
Abstract:
Each hop growing and drying country in Europe had its own character and distinct hop drying buildings. Poperinge on the Belgian-French border the main centre for Flanders. Small inset kilns, the oast design taken up in England, remained the norm in Flanders with many surviving examples. The story of hops in Alsace and Burgundy recounted. Multi-storied, timber-framed buildings in Bavaria were the normal method of drying with natural draught, not fires. Major expansion in the 19th-20th centuries in Bavaria and Bohemia � Czech Republic
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sup-Norm"

1

Han, Sujia, and Caiqin Song. "The Minimal Norm Hermitian Solutions of the Reduced Biquaternion Matrix Equation MO + OT N = Z." In 2024 24th International Conference on Control, Automation and Systems (ICCAS), 1023–28. IEEE, 2024. https://doi.org/10.23919/iccas63016.2024.10773034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lhachemi, Hugo, and Christophe Prieur. "Stabilization of a reaction-diffusion equation in H2-norm with application to saturated Neumann measurement." In 2024 IEEE 63rd Conference on Decision and Control (CDC), 1187–92. IEEE, 2024. https://doi.org/10.1109/cdc56724.2024.10886069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gajdusek, M., A. A. H. Damen, and P. P. J. van den Bosch. "l-norm and clipped l2-norm based commutation for ironless over-actuated electromagnetic actuators." In 2010 XIX International Conference on Electrical Machines (ICEM). IEEE, 2010. http://dx.doi.org/10.1109/icelmach.2010.5608136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chang, B. c., and J. Pearson. "Iterative computation of minimal H norm." In 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohimani, G. H., M. Babaie-Zadeh, and C. Jutten. "Complex-valued sparse representation based on smoothed ℓ0 norm." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4518501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Taner, Sueda, and Christoph Studer. "ℓp−ℓq-Norm Minimization for Joint Precoding and Peak-to-Average-Power Ratio Reduction." In 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53345.2021.9723175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abubakar, Aria, and Peter M. van den Berg. "A multiplicative weighted L2-norm total variation regularization for deblurring algorithms." In Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shafi, S. Yusef, Zahra Aminzare, Murat Arcak, and Eduardo D. Sontag. "Spatial uniformity in diffusively-coupled systems using weighted L2 norm contractions." In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cong Ma, Yu Liu, Lin Zhang, and Xuqi Zhu. "Distributed compressive video sensing based on smoothed ℓ0 norm with partially known support." In 2011 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2011. http://dx.doi.org/10.1109/icme.2011.6011921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Qianqian, Rui Min, Zongjie Cao, and Yiming Pi. "Super-resolution SAR tomography focusing by lp — Norm regularization-the FOCUSS algorithm." In 2012 IEEE Globecom Workshops (GC Wkshps). IEEE, 2012. http://dx.doi.org/10.1109/glocomw.2012.6477785.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sup-Norm"

1

Christensen, Timothy M., and Xiaohong Chen. Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation. Institute for Fiscal Studies, June 2015. http://dx.doi.org/10.1920/wp.cem.2015.3215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Xiaohong, and Timothy M. Christensen. Optimal sup-norm rates and uniform inference on nonlinear functionals of nonparametric IV regression. The IFS, February 2017. http://dx.doi.org/10.1920/wp.cem.2017.0917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parker, Thomas. A comparison of alternative approaches to sup-norm goodness of fit tests with estimated parameters. Institute for Fiscal Studies, November 2010. http://dx.doi.org/10.1920/wp.cem.2010.3410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography