Journal articles on the topic 'Sulfur Dot'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sulfur Dot.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Xueliang, Kuan Hu, Ruwen Tang, Kun Zhao, and Yunsheng Ding. "CuS quantum dot modified carbon aerogel as an immobilizer for lithium polysulfides for high-performance lithium–sulfur batteries." RSC Advances 6, no. 75 (2016): 71319–27. http://dx.doi.org/10.1039/c6ra11990e.
Full textBrubaker, Cole D., Talitha M. Frecker, James R. McBride, Kemar R. Reid, G. Kane Jennings, Sandra J. Rosenthal, and Douglas E. Adams. "Incorporation of fluorescent quantum dots for 3D printing and additive manufacturing applications." Journal of Materials Chemistry C 6, no. 28 (2018): 7584–93. http://dx.doi.org/10.1039/c8tc02024h.
Full textJian, Zhixu, Shichao Zhang, Xianggang Guan, Jiajie Li, Honglei Li, Wenxu Wang, Yalan Xing, and Huaizhe Xu. "ZnO quantum dot-modified rGO with enhanced electrochemical performance for lithium–sulfur batteries." RSC Advances 10, no. 54 (2020): 32966–75. http://dx.doi.org/10.1039/d0ra04986g.
Full textVeamatahau, Aisea, Bo Jiang, Tom Seifert, Satoshi Makuta, Kay Latham, Masayuki Kanehara, Toshiharu Teranishi, and Yasuhiro Tachibana. "Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states." Physical Chemistry Chemical Physics 17, no. 4 (2015): 2850–58. http://dx.doi.org/10.1039/c4cp04761c.
Full textLuo, Zhimin, Dongliang Yang, Guangqin Qi, Jingzhi Shang, Huanping Yang, Yanlong Wang, Lihui Yuwen, Ting Yu, Wei Huang, and Lianhui Wang. "Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction." J. Mater. Chem. A 2, no. 48 (2014): 20605–11. http://dx.doi.org/10.1039/c4ta05096g.
Full textYang, Ze, Juan Xiao, Jia-Yun Wan, Zhong-Guo Liu, Ting-Ting Cao, Wen-Jie Zhang, and Hang-Xing Wang. "Graphene oxide/carbon dot composite: a new photoelectrode material for photocurrent response enhancement." Physical Chemistry Chemical Physics 17, no. 48 (2015): 32283–88. http://dx.doi.org/10.1039/c5cp05616k.
Full textYuan, Mingjian, Kyle W. Kemp, Susanna M. Thon, Jin Young Kim, Kang Wei Chou, Aram Amassian, and Edward H. Sargent. "High-Performance Quantum-Dot Solids via Elemental Sulfur Synthesis." Advanced Materials 26, no. 21 (March 21, 2014): 3513–19. http://dx.doi.org/10.1002/adma.201305912.
Full textAl Ghifari, Alvin Dior, Edi Sanjaya, and Isnaeni Isnaeni. "Pengaruh Doping Nitrogen, Sulfur, dan Boron terhadap Spektrum Absorbansi dan Fotoluminesensi Karbon Dot Asam Sitrat." Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics 2, no. 2 (December 31, 2019): 93–101. http://dx.doi.org/10.15408/fiziya.v2i2.11787.
Full textRasal, Akash S., Khalilalrahman Dehvari, Girum Getachew, Chiranjeevi Korupalli, Anil V. Ghule, and Jia-Yaw Chang. "Efficient quantum dot-sensitized solar cells through sulfur-rich carbon nitride modified electrolytes." Nanoscale 13, no. 11 (2021): 5730–43. http://dx.doi.org/10.1039/d0nr07963d.
Full textMeng, Fanrong, Haoran Xu, Shuolin Wang, Jingxian Wei, Wengong Zhou, Qiang Wang, Peng Li, Fangong Kong, and Yucang Zhang. "One-step high-yield preparation of nitrogen- and sulfur-codoped carbon dots with applications in chromium(vi) and ascorbic acid detection." RSC Advances 12, no. 30 (2022): 19686–94. http://dx.doi.org/10.1039/d2ra01758j.
Full textPark, Joong Pill, Jin Hyuck Heo, Sang Hyuk Im, and Sang-Wook Kim. "Highly efficient solid-state mesoscopic PbS with embedded CuS quantum dot-sensitized solar cells." Journal of Materials Chemistry A 4, no. 3 (2016): 785–90. http://dx.doi.org/10.1039/c5ta08668j.
Full textNemati, Fatemeh, Morteza Hosseini, Rouholah Zare-Dorabei, and Mohammad Reza Ganjali. "Sensitive recognition of ethion in food samples using turn-on fluorescence N and S co-doped graphene quantum dots." Analytical Methods 10, no. 15 (2018): 1760–66. http://dx.doi.org/10.1039/c7ay02850d.
Full textTang, Jingmin, Masanori Sakamoto, Haruhisa Ohta, and Ken-ichi Saitow. "1% defect enriches MoS2 quantum dot: catalysis and blue luminescence." Nanoscale 12, no. 7 (2020): 4352–58. http://dx.doi.org/10.1039/c9nr07612c.
Full textFan, Shengnan, Xiaoqing Li, Fanghui Ma, Minghui Yang, Juan Su, and Xiang Chen. "Sulfur quantum dot based fluorescence assay for lactate dehydrogenase activity detection." Journal of Photochemistry and Photobiology A: Chemistry 430 (September 2022): 113989. http://dx.doi.org/10.1016/j.jphotochem.2022.113989.
Full textFan, Shengnan, Xiaoqing Li, Fanghui Ma, Minghui Yang, Juan Su, and Xiang Chen. "Sulfur quantum dot based fluorescence assay for lactate dehydrogenase activity detection." Journal of Photochemistry and Photobiology A: Chemistry 430 (September 2022): 113989. http://dx.doi.org/10.1016/j.jphotochem.2022.113989.
Full textYang, Zusing, Chia-Ying Chen, Chi-Wei Liu, and Huan-Tsung Chang. "Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells." Chemical Communications 46, no. 30 (2010): 5485. http://dx.doi.org/10.1039/c0cc00642d.
Full textKurka, Vladislav, Zdeněk Kuboň, Ladislav Kander, Petr Jonšta, and Ondřej Kotásek. "The Effect of Bismuth on Technological and Material Characteristics of Low-Alloyed Automotive Steels with a Good Machinability." Metals 12, no. 2 (February 9, 2022): 301. http://dx.doi.org/10.3390/met12020301.
Full textClarke, Samuel, Randall E. Mielke, Andrea Neal, Patricia Holden, and Jay L. Nadeau. "Bacterial and Mineral Elements in an Arctic Biofilm: A Correlative Study Using Fluorescence and Electron Microscopy." Microscopy and Microanalysis 16, no. 2 (January 26, 2010): 153–65. http://dx.doi.org/10.1017/s1431927609991334.
Full textLi, Fei, Lang Sun, Yi Luo, Ming Li, Yongjie Xu, Guanghui Hu, Xinyu Li, and Liang Wang. "Effect of thiophene S on the enhanced ORR electrocatalytic performance of sulfur-doped graphene quantum dot/reduced graphene oxide nanocomposites." RSC Advances 8, no. 35 (2018): 19635–41. http://dx.doi.org/10.1039/c8ra02040j.
Full textDaniels, Craig, Patricia Godoy, Estrella Duque, M. Antonia Molina-Henares, Jesús de la Torre, José María del Arco, Carmen Herrera, et al. "Global Regulation of Food Supply by Pseudomonas putida DOT-T1E." Journal of Bacteriology 192, no. 8 (February 5, 2010): 2169–81. http://dx.doi.org/10.1128/jb.01129-09.
Full textNgoc Anh, Nguyen Thi, Pei-Yi Chang, and Ruey-An Doong. "Sulfur-doped graphene quantum dot-based paper sensor for highly sensitive and selective detection of 4-nitrophenol in contaminated water and wastewater." RSC Advances 9, no. 46 (2019): 26588–97. http://dx.doi.org/10.1039/c9ra04414k.
Full textLu, Haixin, Hanqiang Zhang, Yufei Li, and Feng Gan. "Sensitive and selective determination of tetracycline in milk based on sulfur quantum dot probes." RSC Advances 11, no. 37 (2021): 22960–68. http://dx.doi.org/10.1039/d1ra03745e.
Full textWang, Shan, Xing Bao, Bei Gao, and Meng Li. "A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch”." Dalton Transactions 48, no. 23 (2019): 8288–96. http://dx.doi.org/10.1039/c9dt01186b.
Full textWang, Xiaobin, Yuqing Zhao, Qing Hua, Jiaojiao Lu, Feiyan Tang, Wenjie Sun, Feng Luan, Xuming Zhuang, and Chunyuan Tian. "An ultrasensitive electrochemiluminescence biosensor for the detection of total bacterial count in environmental and biological samples based on a novel sulfur quantum dot luminophore." Analyst 147, no. 8 (2022): 1716–21. http://dx.doi.org/10.1039/d2an00153e.
Full textRavenschlag, Katrin, Kerstin Sahm, Jakob Pernthaler, and Rudolf Amann. "High Bacterial Diversity in Permanently Cold Marine Sediments." Applied and Environmental Microbiology 65, no. 9 (September 1, 1999): 3982–89. http://dx.doi.org/10.1128/aem.65.9.3982-3989.1999.
Full textJahani, Ghazaleh, Masoume Malmir, and Majid M. Heravi. "Catalytic Oxidation of Alcohols over a Nitrogen- and Sulfur-Doped Graphitic Carbon Dot-Modified Magnetic Nanocomposite." Industrial & Engineering Chemistry Research 61, no. 5 (February 1, 2022): 2010–22. http://dx.doi.org/10.1021/acs.iecr.1c04198.
Full textKang, Jin Soo, Jiho Kang, Jiyoung Chae, Yoon Jun Son, Juwon Jeong, Jin Kim, Jae-Yup Kim, Soon Hyung Kang, Kwang-Soon Ahn, and Yung-Eun Sung. "Vapor-Deposited Tungsten Carbide Nano-Dendrites as Sulfur-Tolerant Electrocatalysts for Quantum Dot-Sensitized Solar Cells." Journal of The Electrochemical Society 165, no. 14 (2018): H954—H961. http://dx.doi.org/10.1149/2.0911814jes.
Full textChiu, Arlene, Eric Rong, Christianna Bambini, Yida Lin, Chengchangfeng Lu, and Susanna M. Thon. "Sulfur-Infused Hole Transport Materials to Overcome Performance-Limiting Transport in Colloidal Quantum Dot Solar Cells." ACS Energy Letters 5, no. 9 (August 18, 2020): 2897–904. http://dx.doi.org/10.1021/acsenergylett.0c01586.
Full textLi, Lu, Chao Yang, Yong Li, Yulun Nie, and Xike Tian. "Sulfur quantum dot-based portable paper sensors for fluorometric and colorimetric dual-channel detection of cobalt." Journal of Materials Science 56, no. 7 (November 9, 2020): 4782–96. http://dx.doi.org/10.1007/s10853-020-05544-z.
Full textAkhgari, Farhad, Naser Samadi, Khalil Farhadi, and Mehrdad Akhgari. "A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin." Canadian Journal of Chemistry 95, no. 6 (June 2017): 641–48. http://dx.doi.org/10.1139/cjc-2016-0531.
Full textFavaro, Marco, Mattia Cattelan, Stephen W. T. Price, Andrea E. Russell, Laura Calvillo, Stefano Agnoli, and Gaetano Granozzi. "In Situ Study of Graphene Oxide Quantum Dot-MoSx Nanohybrids as Hydrogen Evolution Catalysts." Surfaces 3, no. 2 (June 16, 2020): 225–36. http://dx.doi.org/10.3390/surfaces3020017.
Full textMartins, Eduardo Constante, Edson Roberto Santana, and Almir Spinelli. "Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks." Talanta 252 (January 2023): 123836. http://dx.doi.org/10.1016/j.talanta.2022.123836.
Full textFang Wang, Huiming Zhang, and Bin Xu. "Nitrogen and Sulfur Quantum Dot Co-Modified Graphene Nanosheet with Enhanced Photocatalytic Activity for Methyl Orange Degradation." Russian Journal of Physical Chemistry A 94, no. 11 (October 30, 2020): 2299–305. http://dx.doi.org/10.1134/s0036024420110333.
Full textXu, Wenjiao, Yuxiu Sun, Bin Ding, and Jingbo Zhang. "Zeolitic-imidazolate frameworks derived Pt-free counter electrodes for high-performance quantum dot-sensitized solar cells." Royal Society Open Science 5, no. 5 (May 2018): 180335. http://dx.doi.org/10.1098/rsos.180335.
Full textXiao, Tingjiao, Fengjin Yi, Mingzhi Yang, Weiliang Liu, Mei Li, Manman Ren, Xu Zhang, and Zhen Zhou. "A composite of CoNiP quantum dot-decorated reduced graphene oxide as a sulfur host for Li–S batteries." Journal of Materials Chemistry A 9, no. 31 (2021): 16692–98. http://dx.doi.org/10.1039/d1ta03608d.
Full textHmar, Jehova Jire L., Tanmoy Majumder, Saurab Dhar, and Suvra Prakash Mondal. "Sulfur and Nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications." Thin Solid Films 612 (August 2016): 274–83. http://dx.doi.org/10.1016/j.tsf.2016.06.014.
Full textLi, Yue, Jia Wang, Yaqiong Yang, and Suqin Han. "Sulfur and nitrogen co‐doped graphene quantum dot‐assisted chemiluminescence for sensitive detection of tryptophan and mercury (II)." Luminescence 35, no. 5 (January 26, 2020): 773–80. http://dx.doi.org/10.1002/bio.3783.
Full textChen, Hongyan, Guoli Fu, Xupeng Xu, Xuming Xu, Wenqi Ju, Zengsheng Ma, Xinming Wang, and Weixin Lei. "NiO quantum dot-modified high specific surface carbon aerogel materials as an advanced host for lithium-sulfur batteries." Electrochimica Acta 467 (November 2023): 143087. http://dx.doi.org/10.1016/j.electacta.2023.143087.
Full textMajumder, Tanmoy, Saurab Dhar, Pinak Chakraborty, Kamalesh Debnath, and Suvra Prakash Mondal. "S, N Co-Doped Graphene Quantum Dots Decorated C-Doped ZnO Nanotaper Photoanodes for Solar Cells Applications." Nano 14, no. 01 (January 2019): 1950012. http://dx.doi.org/10.1142/s1793292019500127.
Full textCoolen, Marco J. L., and Jörg Overmann. "Analysis of Subfossil Molecular Remains of Purple Sulfur Bacteria in a Lake Sediment." Applied and Environmental Microbiology 64, no. 11 (November 1, 1998): 4513–21. http://dx.doi.org/10.1128/aem.64.11.4513-4521.1998.
Full textThon, Susanna Mitrani, Arlene Chiu, Yida Lin, Hoon Jeong Lee, Sreyas Chintapalli, and Botong Qiu. "(Keynote) New Materials and Spectroscopies for Colloidal Quantum Dot Solar Cells." ECS Meeting Abstracts MA2022-02, no. 20 (October 9, 2022): 918. http://dx.doi.org/10.1149/ma2022-0220918mtgabs.
Full textLu, Haochen, Qiubo Guo, Qi Fan, Liang Xue, Xingyu Lu, Feng Zan, and Hui Xia. "Cobalt sulfide quantum dot embedded in nitrogen/sulfur-doped carbon nanosheets as a polysulfide barrier in Li-S batteries." Journal of Alloys and Compounds 870 (July 2021): 159341. http://dx.doi.org/10.1016/j.jallcom.2021.159341.
Full textZhang, Jianli, Yun Cheng, Haibo Chen, Yang Wang, Qiang Chen, Guangya Hou, Ming Wen, and Yiping Tang. "MoP Quantum Dot-Modified N,P-Carbon Nanotubes as a Multifunctional Separator Coating for High-Performance Lithium–Sulfur Batteries." ACS Applied Materials & Interfaces 14, no. 14 (March 31, 2022): 16289–99. http://dx.doi.org/10.1021/acsami.2c02212.
Full textZeng, Peng, Hao Yu, Hong Liu, Yongfang Li, Ziyi Zhou, Xi Zhou, Changmeng Guo, et al. "Enhancing Reaction Kinetics of Sulfur-Containing Species in Li-S Batteries by Quantum Dot-Level Tin Oxide Hydroxide Catalysts." ACS Applied Energy Materials 4, no. 5 (April 20, 2021): 4935–44. http://dx.doi.org/10.1021/acsaem.1c00513.
Full textLi, Ling, Xichuan Yang, Wenming Zhang, Huayan Zhang, and Xiaowei Li. "Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dot-sensitized solar cells." Journal of Power Sources 272 (December 2014): 508–12. http://dx.doi.org/10.1016/j.jpowsour.2014.08.116.
Full textLi, Wenhua, Guoqiang Long, Qianqiao Chen, and Qin Zhong. "High-efficiency layered sulfur-doped reduced graphene oxide and carbon nanotube composite counter electrode for quantum dot sensitized solar cells." Journal of Power Sources 430 (August 2019): 95–103. http://dx.doi.org/10.1016/j.jpowsour.2019.05.020.
Full textLiu, Yongfeng, Xiuwen Shao, Zhaoju Gao, Xiaolin Zhu, Zhangcheng Pan, Yupeng Ying, Jinpeng Yang, Wei Pei, and Jia Wang. "Sulfur quantum dot as a fluorescent nanoprobe for Fe3+ ions: Uncovering of detection mechanism, high sensitivity, and large detection range." Journal of Luminescence 257 (May 2023): 119693. http://dx.doi.org/10.1016/j.jlumin.2023.119693.
Full textNasrin, Fahmida, Kenta Tsuruga, Doddy Irawan Setyo Utomo, Ankan Dutta Chowdhury, and Enoch Y. Park. "Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses." Biosensors 11, no. 10 (October 7, 2021): 376. http://dx.doi.org/10.3390/bios11100376.
Full textLee, YC, MH Buraidah, and HJ Woo. "Poly(acrylamide-co-acrylic acid) gel polymer electrolyte incorporating with water-soluble sodium sulfide salt for quasi-solid-state quantum dot-sensitized solar cell." High Performance Polymers 32, no. 2 (March 2020): 183–91. http://dx.doi.org/10.1177/0954008320902232.
Full textZheng, Guihua, Shiyao Li, Ting Zhang, Feiyun Zhu, Jing Sun, Shuangjiang Li, and Linfeng You. "Water Pollution Control and Treatment Based on Quantum Dot Chemical and Biological High-Sensitivity Sensing." Journal of Sensors 2021 (October 28, 2021): 1–10. http://dx.doi.org/10.1155/2021/8704363.
Full text