Academic literature on the topic 'Suitable parameterization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Suitable parameterization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Suitable parameterization"

1

Mechem, David B., and Yefim L. Kogan. "A Bulk Parameterization of Giant CCN." Journal of the Atmospheric Sciences 65, no. 7 (2008): 2458–66. http://dx.doi.org/10.1175/2007jas2502.1.

Full text
Abstract:
Abstract A parameterization for giant cloud condensation nuclei (GCCN), suitable for use in bulk microphysical models, has been developed that uses precise representations of the condensational growth of aerosol particles in the subcloud layer. The formulation employs an observationally based GCCN distribution function and directly observable parameters of GCCN, such as concentration and the shape of the aerosol spectra. The parameterization couples naturally to parameterizations of sea salt flux from the ocean surface. The behavior of the GCCN parameterization in a large eddy simulation (LES) framework is consistent with simulations employing explicit, size-resolving microphysical methods. The parameterization properly represents the sensitivity of cloud, drizzle, turbulence, and radiative properties to changes in GCCN concentration for polluted and clean background CCN environments.
APA, Harvard, Vancouver, ISO, and other styles
2

Ming, Yi, V. Ramaswamy, Leo J. Donner, and Vaughan T. J. Phillips. "A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models." Journal of the Atmospheric Sciences 63, no. 4 (2006): 1348–56. http://dx.doi.org/10.1175/jas3686.1.

Full text
Abstract:
Abstract A new parameterization is proposed to link the droplet number concentration to the size distribution and chemical composition of aerosol and updraft velocity. Except for an empirical assumption of droplet growth, the parameterization is formulated almost entirely on first principles to allow for satisfactory performance under a variety of conditions. For a series of updraft velocity ranging from 0.03 to 10.0 m s−1, the droplet number concentrations predicted with the parameterization are in good agreement with the detailed parcel model simulations with an average error of −4 ± 26% (one standard deviation). The accuracy is comparable to or better than some existing parameterizations. The parameterization is able to account for the effects of droplet surface tension and mass accommodation coefficient on activation without adjusting the empirical parameter. These desirable attributes make the parameterization suitable for being used in the prognostic determination of the cloud droplet number concentration in general circulation models (GCMs).
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Difu, Junqiang Song, Xiaoyong Li, Kaijun Ren, and Hongze Leng. "A Novel Sea Surface Roughness Parameterization Based on Wave State and Sea Foam." Journal of Marine Science and Engineering 9, no. 3 (2021): 246. http://dx.doi.org/10.3390/jmse9030246.

Full text
Abstract:
A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.
APA, Harvard, Vancouver, ISO, and other styles
4

Alexias, Pavlos, and Kyriakos C. Giannakoglou. "Shape Optimization of a Two-Fluid Mixing Device Using Continuous Adjoint." Fluids 5, no. 1 (2020): 11. http://dx.doi.org/10.3390/fluids5010011.

Full text
Abstract:
In this paper, the continuous adjoint method is used for the optimization of a static mixing device. The CFD model used is suitable for the flow simulation of the two miscible fluids that enter the device. The formulation of the adjoint equations, which allow the computation of the sensitivity derivatives is briefly demonstrated. A detailed analysis of the geometry parameterization is presented and a set of different parameterization scenarios are investigated. In detail, two different parameterizations are combined into a two-stage optimization algorithm which targets maximum mixture uniformity at the exit of the mixer and minimum total pressure losses. All parameterizations are in conformity with specific manufacturability constraints of the final shape. The non-dominated front of optimal solutions is obtained by using the weighted sum of the two objective functions and executing a set of optimization runs. The effectiveness of the proposed synthetic parameterization schemes is assessed and discussed in detail. Finally, a reduced length mixer is optimized to study the impact of the length of the tube on the device’s performance.
APA, Harvard, Vancouver, ISO, and other styles
5

Madi, Raneem, Gerrit Huibert de Rooij, Henrike Mielenz, and Juliane Mai. "Parametric soil water retention models: a critical evaluation of expressions for the full moisture range." Hydrology and Earth System Sciences 22, no. 2 (2018): 1193–219. http://dx.doi.org/10.5194/hess-22-1193-2018.

Full text
Abstract:
Abstract. Few parametric expressions for the soil water retention curve are suitable for dry conditions. Furthermore, expressions for the soil hydraulic conductivity curves associated with parametric retention functions can behave unrealistically near saturation. We developed a general criterion for water retention parameterizations that ensures physically plausible conductivity curves. Only 3 of the 18 tested parameterizations met this criterion without restrictions on the parameters of a popular conductivity curve parameterization. A fourth required one parameter to be fixed. We estimated parameters by shuffled complex evolution (SCE) with the objective function tailored to various observation methods used to obtain retention curve data. We fitted the four parameterizations with physically plausible conductivities as well as the most widely used parameterization. The performance of the resulting 12 combinations of retention and conductivity curves was assessed in a numerical study with 751 days of semiarid atmospheric forcing applied to unvegetated, uniform, 1 m freely draining columns for four textures. Choosing different parameterizations had a minor effect on evaporation, but cumulative bottom fluxes varied by up to an order of magnitude between them. This highlights the need for a careful selection of the soil hydraulic parameterization that ideally does not only rely on goodness of fit to static soil water retention data but also on hydraulic conductivity measurements. Parameter fits for 21 soils showed that extrapolations into the dry range of the retention curve often became physically more realistic when the parameterization had a logarithmic dry branch, particularly in fine-textured soils where high residual water contents would otherwise be fitted.
APA, Harvard, Vancouver, ISO, and other styles
6

Hernández-Rivera, Efraín, Souma Chowdhury, Shawn P. Coleman, Payam Ghassemi, and Mark A. Tschopp. "Integrating exploratory data analytics into ReaxFF parameterization." MRS Communications 8, no. 03 (2018): 1300–1310. http://dx.doi.org/10.1557/mrc.2018.155.

Full text
Abstract:
We present a systematic approach to refine hyperdimensional interatomic potentials, which is showcased on the ReaxFF formulation. The objective of this research is to utilize the relationship between interatomic potential input variables and objective responses (e.g., cohesive energy) to identify and explore suitable parameterizations for the boron carbide (B–C) system. Through statistical data analytics, ReaxFF's parametric complexity was overcome via dimensional reduction (55 parameters) while retaining enough degrees of freedom to capture most of the variability in responses. Two potentials were identified which improved on an existing parameterization for the objective set if interest, showcasing the framework's capabilities.
APA, Harvard, Vancouver, ISO, and other styles
7

Ratkowsky, D. A. "A suitable parameterization of the Michaelis-Menten enzyme reaction." Biochemical Journal 240, no. 2 (1986): 357–60. http://dx.doi.org/10.1042/bj2400357.

Full text
Abstract:
It is shown here that a suitable form for estimation and inference using the Michaelis-Menten [(1913) Biochem Z. 49, 333-369] model for simple enzymic reactions is one in which the two parameters appear in the denominator of the equation. In this form, convergence to the least-squares estimates using the Gauss-Newton method [see Kennedy & Gentle (1980) Statistical Computing, Marcel Dekker, New York] is virtually ensured, or, as the model in this form is a member of the class of ‘generalized linear models’, it may be fitted by packages such as those of Rothamsted Experimental Station [(1977) GENSTAT (A General Statistical Program), Rothamsted Experimental Station, Harpenden] and the Numerical Algorithms Group [(1978) GLIM (Generalised Linear Interactive Modeling), Numerical Algorithms Group, Oxford]. Furthermore, the parameters-in-denominator principle is readily extended to more complicated catalytic models. With all parameters in the denominator, the least-squares estimators are close to being unbiased and normally distributed, whereas severe bias and non-normality may result from use of the standard formulations.
APA, Harvard, Vancouver, ISO, and other styles
8

Njuki, Sammy M., Chris M. Mannaerts, and Zhongbo Su. "Accounting for Turbulence-Induced Canopy Heat Transfer in the Simulation of Sensible Heat Flux in SEBS Model." Remote Sensing 15, no. 6 (2023): 1578. http://dx.doi.org/10.3390/rs15061578.

Full text
Abstract:
Surface turbulent heat fluxes are crucial for monitoring drought, heat waves, urban heat islands, agricultural water management, and other hydrological applications. Energy Balance Models (EBMs) are widely used to simulate surface heat fluxes from a combination of remote sensing-derived variables and meteorological data. Single-source EBMs, in particular, are preferred in mapping surface turbulent heat fluxes due to their relative simplicity. However, most single-source EBMs suffer from uncertainties inherent to the parameter kB−1, which is used to account for differences in the source of heat and the sink of momentum when representing aerodynamic resistance in single-source EBMs. For instance, the parameterization of kB−1 in the commonly used single-source Surface Energy Balance System (SEBS) model uses a constant value of the foliage heat transfer coefficient (Ct), in the parameterization of the vegetation component of kB−1 (kBv−1). Thus, SEBS ignores the effect of turbulence on canopy heat transfer. As a result, SEBS has been found to greatly underestimate sensible heat flux in tall forest canopies, where turbulence is a key contributor to canopy heat transfer. This study presents a revised parameterization of kBv−1 for the SEBS model. A physically based formulation of Ct, which considers the effect of turbulence on Ct, is used in deriving the revised parameterization. Simulation results across 15 eddy covariance (EC) flux tower sites show that the revised parameterization significantly reduces the underestimation of sensible heat flux compared to the original parameterization under tall forest canopies. The revised parameterization is relatively simple and does not require additional information on canopy structure compared to some more complex parameterizations proposed in the literature. As such, the revised parameterization is suitable for mapping surface turbulent heat fluxes, especially under tall forest canopies.
APA, Harvard, Vancouver, ISO, and other styles
9

Gholami, Yaser, Romain Brossier, Stéphane Operto, Alessandra Ribodetti, and Jean Virieux. "Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1: Sensitivity and trade-off analysis." GEOPHYSICS 78, no. 2 (2013): R81—R105. http://dx.doi.org/10.1190/geo2012-0204.1.

Full text
Abstract:
In most geologic environments, accounting for anisotropy is necessary to perform acoustic full waveform inversion (FWI) of wide-azimuth and wide-aperture seismic data because of the potential dependence of wave speeds on the direction of the wave propagation. In the framework of multiparameter FWI, the subsurface parameterization controls the influence of the different parameter classes on the modeled seismic data as a function of the scattering angle and hence the resolution with which the parameters can be reconstructed and the potential trade-off between different parameters. We have evaluated a numerical procedure based on computation of the scattering patterns of the different parameters to assess the sensitivity of the seismic data to different parameterizations of vertical transverse isotropic media in the acoustic approximation. Among the different categories we have tested, a monoparametric FWI was found for imaging one wave speed with a broad wavenumber content, keeping the Thomsen parameters fixed, which have a small influence on the data relative to the wave speed. This raises the question of the initial information required in the background models of the Thomsen parameters to perform reliable monoparameter FWI. Alternatively, simultaneously inverting the horizontal and vertical wave speeds introduces limited trade-off effects because these wave speeds have significant influence on the data for distinct ranges of scattering angles, while the influence of the Thomsen parameter [Formula: see text] remains weak. With such parameterization, the short-to-intermediate wavelengths of the vertical velocity are updated from the short-to-intermediate scattering angles, while the long-to-intermediate wavelengths of the horizontal velocity are updated from the wide-to-intermediate scattering angles. We concluded that the choice of the subsurface parameterization can be driven by the acquisition geometry, which controls the scattering-angle coverage and hence the resolving power of FWI, and by the accuracy of the available initial FWI models.
APA, Harvard, Vancouver, ISO, and other styles
10

Boutle, I. A., J. E. J. Eyre, and A. P. Lock. "Seamless Stratocumulus Simulation across the Turbulent Gray Zone." Monthly Weather Review 142, no. 4 (2014): 1655–68. http://dx.doi.org/10.1175/mwr-d-13-00229.1.

Full text
Abstract:
Abstract A pragmatic approach for representing partially resolved turbulence in numerical weather prediction models is introduced and tested. The method blends a conventional boundary layer parameterization, suitable for large grid lengths, with a subgrid turbulence scheme suitable for large-eddy simulation. The key parameter for blending the schemes is the ratio of grid length to boundary layer depth. The new parameterization is combined with a scale-aware microphysical parameterization and tested on a case study forecast of stratocumulus evolution. Simulations at a range of model grid lengths between 1 km and 100 m are compared to aircraft observations. The improved microphysical representation removes the correlation between precipitation rate and model grid length, while the new turbulence parameterization improves the transition from unresolved to resolved turbulence as grid length is reduced.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography