Academic literature on the topic 'Sudden warming; Tropospheric planetary waves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sudden warming; Tropospheric planetary waves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sudden warming; Tropospheric planetary waves"

1

Chen, Quanliang, Luyang Xu, and Hongke Cai. "Impact of Stratospheric Sudden Warming on East Asian Winter Monsoons." Advances in Meteorology 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/640912.

Full text
Abstract:
Fifty-two Stratospheric sudden warming (SSW) events that occurred from 1957 to 2002 were analyzed based on the 40-year European Centre for Medium-Range Weather Forecasts Reanalysis dataset. Those that could descent to the troposphere were composited to investigate their impacts on the East Asian winter monsoon (EAWM). It reveals that when the SSW occurs, the Arctic Oscillation (AO) and the North Pacific Oscillation (NPO) are both in the negative phase and that the tropospheric circulation is quite wave-like. The Siberian high and the Aleutian low are both strengthened, leading to an increased gradient between the Asian continent and the North Pacific. Hence, a strong EAWM is observed with widespread cooling over inland and coastal East Asia. After the peak of the SSW, in contrast, the tropospheric circulation is quite zonally symmetric with negative phases of AO and NPO. The mid-tropospheric East Asian trough deepens and shifts eastward. This configuration facilitates warming over the East Asian inland and cooling over the coastal East Asia centered over Japan. The activities of planetary waves during the lifecycle of the SSW were analyzed. The anomalous propagation and the attendant altered amplitude of the planetary waves can well explain the observed circulation and the EAWM.
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Lantao, Walter A. Robinson, and Gang Chen. "The Predictability of Stratospheric Warming Events: More from the Troposphere or the Stratosphere?" Journal of the Atmospheric Sciences 69, no. 2 (February 1, 2012): 768–83. http://dx.doi.org/10.1175/jas-d-11-0144.1.

Full text
Abstract:
Abstract The roles of the stratosphere and the troposphere in determining the predictability of stratospheric final warming and sudden warming events are evaluated in an idealized atmospheric model. For each stratospheric warming event simulated in the model, a number of forecast experiments are performed from 10 or 20 days prior to the warming onset with perturbations in the troposphere and in the stratosphere separately. It is found that the stratosphere affects predictions of warming onset primarily by providing the initial state of the zonal winds, while the tropospheric initial conditions have a large impact through the generation and propagation of planetary waves. These results correspond to the roles played by the initial zonal flow and the evolution of eddy forcings in a zonally symmetric model. The initial stratospheric zonal flow has some influence on stratospheric wave driving, but in most cases this does not significantly affect the timing of the warming, except when the initial condition is close to the onset date. These results highlight the role of the troposphere in determining stratospheric planetary wave driving and support the importance of tropospheric precursors to the stratospheric warming events.
APA, Harvard, Vancouver, ISO, and other styles
3

White, Ian P., Chaim I. Garfinkel, Edwin P. Gerber, Martin Jucker, Peter Hitchcock, and Jian Rao. "The Generic Nature of the Tropospheric Response to Sudden Stratospheric Warmings." Journal of Climate 33, no. 13 (July 1, 2020): 5589–610. http://dx.doi.org/10.1175/jcli-d-19-0697.1.

Full text
Abstract:
AbstractThe tropospheric response to midwinter sudden stratospheric warmings (SSWs) is examined using an idealized model. SSW events are triggered by imposing high-latitude stratospheric heating perturbations of varying magnitude for only a few days, spun off from a free-running control integration (CTRL). The evolution of the thermally triggered SSWs is then compared with naturally occurring SSWs identified in CTRL. By applying a heating perturbation, with no modification to the momentum budget, it is possible to isolate the tropospheric response directly attributable to a change in the stratospheric polar vortex, independent of any planetary wave momentum torques involved in the initiation of an SSW. Zonal-wind anomalies associated with the thermally triggered SSWs first propagate downward to the high-latitude troposphere after ~2 weeks, before migrating equatorward and stalling at midlatitudes, where they straddle the near-surface jet. After ~3 weeks, the circulation and eddy fluxes associated with thermally triggered SSWs evolve very similarly to SSWs in CTRL, despite the lack of initial planetary wave driving. This suggests that at longer lags, the tropospheric response to SSWs is generic and it is found to be linearly governed by the strength of the lower-stratospheric warming, whereas at shorter lags, the initial formation of the SSW potentially plays a large role in the downward coupling. In agreement with previous studies, synoptic waves are found to play a key role in the persistent tropospheric jet shift at long lags. Synoptic waves appear to respond to the enhanced midlatitude baroclinicity associated with the tropospheric jet shift, and preferentially propagate poleward in an apparent positive feedback with changes in the high-latitude refractive index.
APA, Harvard, Vancouver, ISO, and other styles
4

Peters, D. H. W., P. Vargin, A. Gabriel, N. Tsvetkova, and V. Yushkov. "Tropospheric forcing of the boreal polar vortex splitting in January 2003." Annales Geophysicae 28, no. 11 (November 26, 2010): 2133–48. http://dx.doi.org/10.5194/angeo-28-2133-2010.

Full text
Abstract:
Abstract. The dynamical evolution of the relatively warm stratospheric winter season 2002–2003 in the Northern Hemisphere was studied and compared with the cold winter 2004–2005 based on NCEP-Reanalyses. Record low temperatures were observed in the lower and middle stratosphere over the Arctic region only at the beginning of the 2002–2003 winter. Six sudden stratospheric warming events, including the major warming event with a splitting of the polar vortex in mid-January 2003, have been identified. This led to a very high vacillation of the zonal mean circulation and a weakening of the stratospheric polar vortex over the whole winter season. An estimate of the mean chemical ozone destruction inside the polar vortex showed a total ozone loss of about 45 DU in winter 2002–2003; that is about 2.5 times smaller than in winter 2004–2005. Embedded in a winter with high wave activity, we found two subtropical Rossby wave trains in the troposphere before the major sudden stratospheric warming event in January 2003. These Rossby waves propagated north-eastwards and maintained two upper tropospheric anticyclones. At the same time, the amplification of an upward propagating planetary wave 2 in the upper troposphere and lower stratosphere was observed, which could be caused primarily by those two wave trains. Furthermore, two extratropical Rossby wave trains over the North Pacific Ocean and North America were identified a couple of days later, which contribute mainly to the vertical planetary wave activity flux just before and during the major warming event. It is shown that these different tropospheric forcing processes caused the major warming event and contributed to the splitting of the polar vortex.
APA, Harvard, Vancouver, ISO, and other styles
5

Pogoreltsev, A. I., O. G. Aniskina, A. Y. Kanukhina, T. S. Ermakova, A. I. Ugryumov, and Y. V. Efimova. "Tropospheric circulation response to sudden stratospheric warming observed in January 2013." HYDROMETEOROLOGY AND ECOLOGY. PROCEEDINGS OF THE RUSSIAN STATE HYDROMETEOROLOGICAL UNIVERSITY, no. 60 (2020): 241–54. http://dx.doi.org/10.33933/2074-2762-2020-60-241-254.

Full text
Abstract:
Analysis of the dynamical regime changes in the stratosphere during different phases of the Sudden Stratospheric Warming (SSW) that has been observed in January 2013 is presented. The different mechanisms of SSW influence on the tropospheric circulation through the stationary planetary waves (SPWs) reflection and/or increase in SPWs activity due to nonlinear interaction with the mean flow and their subsequent propagation into the troposphere are discussed. Three-dimensional wave activity flux and its divergence are determined using the UK Met Office data; the synoptic situation and its changes during the SSW events are analyzed. The wave activity penetrates downward from stratosphere into the troposphere and can affect weather processes during the SSW and right afterwards. It is this time that polar anticyclones can be formed at high latitudes, which quickly go southward along meridional directions and then deviate to the East at middle latitudes. Interestingly, the locations of polar anticyclone formations and subsequent displacements correspond to the regions of maximal horizontal wave activity fluxes connected with stratospheric processes. The results obtained allow us to suggest that accounting of stratospheric processes and their influence on the troposphere in winter season can improve the middle-range forecast of anticyclone formation and cold weather events at middle latitudes.
APA, Harvard, Vancouver, ISO, and other styles
6

Xie, Jincai, Jinggao Hu, Haiming Xu, Shuai Liu, and Huan He. "Dynamic Diagnosis of Stratospheric Sudden Warming Event in the Boreal Winter of 2018 and Its Possible Impact on Weather over North America." Atmosphere 11, no. 5 (April 26, 2020): 438. http://dx.doi.org/10.3390/atmos11050438.

Full text
Abstract:
In the winter of 2018, a major stratospheric sudden warming (SSW) event occurred in the Northern Hemisphere. This study performs a dynamic diagnosis on this 2018 SSW event and analyzes its possible impact on the weather over North America. The result shows that the ridge over Alaska in the mid-troposphere and the trough over the northeastern North America are the prominent tropospheric precursory signals before the occurrence of this SSW event. The signals appear 10 days before the SSW, which greatly enhances the propagation of the planetary wavenumber 2 from the troposphere to the extratropical stratosphere. The collapse process of stratospheric polar vortex indicates that this SSW is a typical vortex splitting event dominated by planetary wavenumber 2. Additionally, after the SSW onset, no reflection of the stratosphere on the tropospheric planetary waves is observed. Thus, this event can also be classified as an absorbing-type SSW event. A noticeable cold wave occurs in the northwestern North America within 10 days after the 2018 SSW. This cold wave is probably associated with the SSW-related west–east dipole, namely a ridge over Alaska and a trough over the northeastern North America in the mid-troposphere that lasted up to 10 days after the onset date. The composite analysis of the other seven SSW events with an emergence of similar mid-tropospheric circulation pattern after SSW onset date yields coincident 2-meter temperature anomalies in the northwestern North America, which confirms the above conclusion to some extent.
APA, Harvard, Vancouver, ISO, and other styles
7

Albers, John R., George N. Kiladis, Thomas Birner, and Juliana Dias. "Tropical Upper-Tropospheric Potential Vorticity Intrusions during Sudden Stratospheric Warmings." Journal of the Atmospheric Sciences 73, no. 6 (May 20, 2016): 2361–84. http://dx.doi.org/10.1175/jas-d-15-0238.1.

Full text
Abstract:
Abstract The intrusion of lower-stratospheric extratropical potential vorticity into the tropical upper troposphere in the weeks surrounding the occurrence of sudden stratospheric warmings (SSWs) is examined. The analysis reveals that SSW-related PV intrusions are significantly stronger, penetrate more deeply into the tropics, and exhibit distinct geographic distributions compared to their climatological counterparts. While climatological upper-tropospheric and lower-stratospheric (UTLS) PV intrusions are generally attributed to synoptic-scale Rossby wave breaking, it is found that SSW-related PV intrusions are governed by planetary-scale wave disturbances that deform the extratropical meridional PV gradient maximum equatorward. As these deformations unfold, planetary-scale wave breaking along the edge of the polar vortex extends deeply into the subtropical and tropical UTLS. In addition, the material PV deformations also reorganize the geographic structure of the UTLS waveguide, which alters where synoptic-scale waves break. In combination, these two intrusion mechanisms provide a robust explanation describing why displacement and split SSWs—or, more generally, anomalous stratospheric planetary wave events—produce intrusions with unique geographic distributions: displacement SSWs have a single PV intrusion maximum over the Pacific Ocean, while split SSWs have intrusion maxima over the Pacific and Indian Oceans. It is also shown that the two intrusion mechanisms involve distinct time scales of variability, and it is highlighted that they represent an instantaneous and direct link between the stratosphere and troposphere. This is in contrast to higher-latitude stratosphere–troposphere coupling that occurs indirectly via wave–mean flow feedbacks.
APA, Harvard, Vancouver, ISO, and other styles
8

Lindgren, Erik A., and Aditi Sheshadri. "The role of wave–wave interactions in sudden stratospheric warming formation." Weather and Climate Dynamics 1, no. 1 (March 10, 2020): 93–109. http://dx.doi.org/10.5194/wcd-1-93-2020.

Full text
Abstract:
Abstract. The effects of wave–wave interactions on sudden stratospheric warming formation are investigated using an idealized atmospheric general circulation model, in which tropospheric heating perturbations of zonal wave numbers 1 and 2 are used to produce planetary-scale wave activity. Zonal wave–wave interactions are removed at different vertical extents of the atmosphere in order to examine the sensitivity of stratospheric circulation to local changes in wave–wave interactions. We show that the effects of wave–wave interactions on sudden warming formation, including sudden warming frequencies, are strongly dependent on the wave number of the tropospheric forcing and the vertical levels where wave–wave interactions are removed. Significant changes in sudden warming frequencies are evident when wave–wave interactions are removed even when the lower-stratospheric wave forcing does not change, highlighting the fact that the upper stratosphere is not a passive recipient of wave forcing from below. We find that while wave–wave interactions are required in the troposphere and lower stratosphere to produce displacements when wave number 2 heating is used, both splits and displacements can be produced without wave–wave interactions in the troposphere and lower stratosphere when the model is forced by wave number 1 heating. We suggest that the relative strengths of wave number 1 and 2 vertical wave flux entering the stratosphere largely determine the split and displacement ratios when wave number 2 forcing is used but not wave number 1.
APA, Harvard, Vancouver, ISO, and other styles
9

Sjoberg, Jeremiah P., and Thomas Birner. "Transient Tropospheric Forcing of Sudden Stratospheric Warmings." Journal of the Atmospheric Sciences 69, no. 11 (November 1, 2012): 3420–32. http://dx.doi.org/10.1175/jas-d-11-0195.1.

Full text
Abstract:
Abstract The amplitude of upward-propagating tropospherically forced planetary waves is known to be of first-order importance in producing sudden stratospheric warmings (SSWs). This forcing amplitude is observed to undergo strong temporal fluctuations. Characteristics of the resulting transient forcing leading to SSWs are studied in reanalysis data and in highly truncated simple models of stratospheric wave–mean flow interaction. It is found in both the reanalysis data and the simple models that SSWs are preferentially generated by transient forcing of sufficiently long time scales (on the order of 1 week or longer). The time scale of the transient forcing is found to play a stronger role in producing SSWs than the strength of the forcing. In the simple models it is possible to fix the amplitude of the tropospheric forcing but to vary the time scale of the forcing. The resulting frequency of occurrence of SSWs shows dramatic reductions for decreasing forcing time scales.
APA, Harvard, Vancouver, ISO, and other styles
10

Hitchcock, Peter, Theodore G. Shepherd, Masakazu Taguchi, Shigeo Yoden, and Shunsuke Noguchi. "Lower-Stratospheric Radiative Damping and Polar-Night Jet Oscillation Events." Journal of the Atmospheric Sciences 70, no. 5 (April 23, 2013): 1391–408. http://dx.doi.org/10.1175/jas-d-12-0193.1.

Full text
Abstract:
Abstract The effect of stratospheric radiative damping time scales on stratospheric variability and on stratosphere–troposphere coupling is investigated in a simplified global circulation model by modifying the vertical profile of radiative damping in the stratosphere while holding it fixed in the troposphere. Perpetual-January conditions are imposed, with sinusoidal topography of zonal wavenumber 1 or 2. The depth and duration of the simulated sudden stratospheric warmings closely track the lower-stratospheric radiative time scales. Simulations with the most realistic profiles of radiative damping exhibit extended time-scale recoveries analogous to polar-night jet oscillation (PJO) events, which are observed to follow sufficiently deep stratospheric warmings. These events are characterized by weak lower-stratospheric winds and enhanced stability near the tropopause, which persist for up to 3 months following the initial warming. They are obtained with both wave-1 and wave-2 topography. Planetary-scale Eliassen–Palm (EP) fluxes entering the vortex are also suppressed, which is in agreement with observed PJO events. Consistent with previous studies, the tropospheric jets shift equatorward in response to the warmings. The duration of the shift is closely correlated with the period of enhanced stability. The magnitude of the shift in these runs, however, is sensitive only to the zonal wavenumber of the topography. Although the shift is sustained primarily by synoptic-scale eddies, the net effect of the topographic form drag and the planetary-scale fluxes is not negligible; they damp the surface wind response but enhance the vertical shear. The tropospheric response may also reduce the generation of planetary waves, further extending the stratospheric dynamical time scales.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Sudden warming; Tropospheric planetary waves"

1

Rosier, Suzanne Mary. "Dynamical evolution of the northern stratosphere in early winter, 1991/92 : observational and modelling studies." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography