Journal articles on the topic 'Subword complexes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 journal articles for your research on the topic 'Subword complexes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gorsky, Mikhail A. "Subword complexes and edge subdivisions." Proceedings of the Steklov Institute of Mathematics 286, no. 1 (October 2014): 114–27. http://dx.doi.org/10.1134/s0081543814060078.
Full textKnutson, Allen, and Ezra Miller. "Subword complexes in Coxeter groups." Advances in Mathematics 184, no. 1 (May 2004): 161–76. http://dx.doi.org/10.1016/s0001-8708(03)00142-7.
Full textCeballos, Cesar, Jean-Philippe Labbé, and Christian Stump. "Subword complexes, cluster complexes, and generalized multi-associahedra." Journal of Algebraic Combinatorics 39, no. 1 (March 13, 2013): 17–51. http://dx.doi.org/10.1007/s10801-013-0437-x.
Full textGorsky, M. A. "Subword Complexes and Nil-Hecke Moves." Modeling and Analysis of Information Systems 20, no. 6 (March 13, 2015): 121–28. http://dx.doi.org/10.18255/1818-1015-2013-6-121-128.
Full textKnutson, Allen. "Schubert Patches Degenerate to Subword Complexes." Transformation Groups 13, no. 3-4 (June 26, 2008): 715–26. http://dx.doi.org/10.1007/s00031-008-9013-1.
Full textBergeron, Nantel, and Cesar Ceballos. "A Hopf algebra of subword complexes." Advances in Mathematics 305 (January 2017): 1163–201. http://dx.doi.org/10.1016/j.aim.2016.10.007.
Full textGorsky, M. A. "Subword complexes and 2-truncated cubes." Russian Mathematical Surveys 69, no. 3 (June 30, 2014): 572–74. http://dx.doi.org/10.1070/rm2014v069n03abeh004903.
Full textCeballos, Cesar, Arnau Padrol, and Camilo Sarmiento. "ν-Tamari lattices via subword complexes." Electronic Notes in Discrete Mathematics 61 (August 2017): 215–21. http://dx.doi.org/10.1016/j.endm.2017.06.041.
Full textEscobar, Laura, and Karola Mészáros. "Subword complexes via triangulations of root polytopes." Algebraic Combinatorics 1, no. 3 (2018): 395–414. http://dx.doi.org/10.5802/alco.17.
Full textArmstrong, Drew, and Patricia Hersh. "Sorting orders, subword complexes, Bruhat order and total positivity." Advances in Applied Mathematics 46, no. 1-4 (January 2011): 46–53. http://dx.doi.org/10.1016/j.aam.2010.09.006.
Full textPilaud, Vincent, and Christian Stump. "Brick polytopes of spherical subword complexes and generalized associahedra." Advances in Mathematics 276 (May 2015): 1–61. http://dx.doi.org/10.1016/j.aim.2015.02.012.
Full textHruska, G. Christopher, and Daniel T. Wise. "Towers, ladders and the B. B. Newman Spelling Theorem." Journal of the Australian Mathematical Society 71, no. 1 (August 2001): 53–69. http://dx.doi.org/10.1017/s1446788700002718.
Full textBergeron, Nantel, Cesar Ceballos, and Jean-Philippe Labbé. "Fan Realizations of Type $$A$$ A Subword Complexes and Multi-associahedra of Rank 3." Discrete & Computational Geometry 54, no. 1 (April 23, 2015): 195–231. http://dx.doi.org/10.1007/s00454-015-9691-0.
Full textJahn, Dennis, and Christian Stump. "Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups." Mathematische Zeitschrift 304, no. 2 (May 6, 2023). http://dx.doi.org/10.1007/s00209-023-03267-w.
Full textSmirnov, Evgeny Yurievich, and Anna Tutubalina. "Slide complexes and subword complexes." Russian Mathematical Surveys 75, no. 6 (2020). http://dx.doi.org/10.1070/rm9981.
Full textSmirnov, Evgeny Yurievich, and Anna Alekseevna Tutubalina. "Slide polynomials and subword complexes." Sbornik: Mathematics 212, no. 10 (2021). http://dx.doi.org/10.1070/sm9477.
Full textPilaud, Vincent, and Christian Stump. "Generalized associahedra via brick polytopes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AR,..., Proceedings (January 1, 2012). http://dx.doi.org/10.46298/dmtcs.3021.
Full textPilaud, Vincent, and Christian Stump. "EL-labelings and canonical spanning trees for subword complexes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (January 1, 2013). http://dx.doi.org/10.46298/dmtcs.2328.
Full textCeballos, Cesar, Arnau Padrol, and Camilo Sarmiento. "The ν-Tamari Lattice via ν-Trees, ν-Bracket Vectors, and Subword Complexes." Electronic Journal of Combinatorics 27, no. 1 (January 10, 2020). http://dx.doi.org/10.37236/8000.
Full textBergeron, Nantel, Cesar Ceballos, and Jean-Philippe Labbé. "Fan realizations of type $A$ subword complexes and multi-associahedra of rank 3." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (January 1, 2015). http://dx.doi.org/10.46298/dmtcs.2512.
Full textBergeron, Nantel, and Cesar Ceballos. "A Hopf algebra of subword complexes (Extended abstract)." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 28th... (April 22, 2020). http://dx.doi.org/10.46298/dmtcs.6359.
Full textEscobar, Laura. "Bott-Samelson Varieties, Subword Complexes and Brick Polytopes." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AT,..., Proceedings (January 1, 2014). http://dx.doi.org/10.46298/dmtcs.2448.
Full textEscobar, Laura, and Karola Mészáros. "Toric matrix Schubert varieties and root polytopes (extended abstract)." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 28th... (April 22, 2020). http://dx.doi.org/10.46298/dmtcs.6405.
Full textEscobar, Laura. "Brick Manifolds and Toric Varieties of Brick Polytopes." Electronic Journal of Combinatorics 23, no. 2 (April 29, 2016). http://dx.doi.org/10.37236/5038.
Full textCeballos, Cesar, and Vincent Pilaud. "Cluster Algebras of Type D: Pseudotriangulations Approach." Electronic Journal of Combinatorics 22, no. 4 (December 23, 2015). http://dx.doi.org/10.37236/5282.
Full textEscobar, Laura, Alex Fink, Jenna Rajchgot, and Alexander Woo. "Gröbner bases, symmetric matrices, and type C Kazhdan–Lusztig varieties." Journal of the London Mathematical Society 109, no. 2 (February 2024). http://dx.doi.org/10.1112/jlms.12856.
Full textCeballos, Cesar, and Vincent Pilaud. "Denominator vectors and compatibility degrees in cluster algebras of finite type." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (January 1, 2013). http://dx.doi.org/10.46298/dmtcs.12795.
Full text