Dissertations / Theses on the topic 'Subwavelength photonics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 dissertations / theses for your research on the topic 'Subwavelength photonics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Jianhao. "Subwavelength engineering of silicon waveguides and cavities for nonlinear photonics." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS332/document.
Full textSecond-order Pockels and the third-order Kerr effects are among the important effects exploited for light modulation and light generation in integrated photonic platforms. To take advantage of these nonlinearities in silicon photonics, especially due to the lack of second order effect in bulk Si, the use of subwavelength optical structures is explored. In this context, this thesis work has focused on two main aspects, including: 1) Exploration of a novel photonic cavity scheme to take benefit of the electro-optical Pockels effect in strained Si structures for the realization of ultra-fast lower-consumption compact silicon modulators; 2) Exploration of a new family of waveguides leading to an automatic satisfaction of energy/momentum conservation for the purpose of Kerr frequency comb generation in integrated photonic platforms. For improving the performances of integrated silicon resonant optical modulators, we have developed a novel Fano cavity resonator enabled by sub-wavelength engineering, leading simultaneously to high extinction ratio (23 dB) with a small Q factor of only 5600, and characterized by an ultra-low power consumption of less than 5 fj/bit when relying on the free carrier plasma dispersion effect. We have further extended the method to design a strained silicon Fano modulation structure which performances traditionally suffer from the weak amplitude of the exploited strain-induced Pockels effect and from considerable microwave losses due to large footprint components. By means of the proposed ultra-compact subwavelength structured Fano resonator, around 200-fold/60-fold (Q factor of 32000/5600) improvement on the modulation extinction ratio with the same driven voltage was theoretically predicted. For improving the exploitation of silicon Kerr nonlinearities, we have proposed a novel family of graded index optical waveguides intending to automatically fulfill the energy and momentum conservation laws of four-wave mixing processes. The design of the waveguide section is based on a principle inherited from quantum wells of wave mechanics and concepts inherited from subwavelength structures for the practical realization of the rather particular index profiles. Standing on these specific waveguides in term of light dispersion, we have applied them to the modeling of frequency micro-combs (e.g. frequency combs generated using micro-ring resonators and a CW light source) by solving the nonlinear relevant equations (Lugiato-Lefever) to dynamically analyze the soliton comb spectrum generation process in various configurations. On top of this model, the specifically automatically phase-matched sub-wavelength-enabled graded-index waveguides were considered to trim and extend the bandwidth of silicon soliton frequency combs, demonstrating enlarged bandwidth and improved spectrum design flexibility with respect to previous works. Overall, one of the dominant features of our study was to contribute to showing that sub-long wavelength photonic structures could provide concrete solutions to problems useful for the realization of on-chip non-linear functions. Subwavelength/nano structures not only benefit to passive photonic circuits which have been intensively developed in the past ten years, but also show strong potentials in the realization of active functions. This subwavelength toolbox is decisive in practice for the concrete achievement of the objectives pursued
Rolly, Brice. "Subwavelength photonic resonators for enhancing light-matter interactions." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4366.
Full textOptical antennas are structures able to convert, in both ways, electromagnetic energy between a light beam and a source (or absorber) placed in the structure. The use of sub-wavelength resonators enables one to realize this function in an efficient way, on relatively broad bandwidths, and to have a compact design. A good understanding of the optical properties of such resonators, taken individually, and of their couplings, is thus necessary in order to propose efficient optical antenna designs. In this manuscript, using a multipole decomposition of the fields and a T-matrix method, we obtain rigorous analytical solutions for spherical, homogeneous resonators, from which we deduce simplified, intuitive models that are still very close to the exact resolution of the Maxwell equations.Among other results, those models enabled us to propose a nanoantenna design that is at once compact, radiative and efficient, by using a hybrid metallo-dielectric structure. Some collaborations with experimental groups enabled us to validate, on the one hand, the optical characteristics of hybrid chromophores that are self-assembled using a DNA template (S. Bidault, Paris), and on the other hand, the possibility of using multiple combined electric and magnetic resonances (supported by dielectric spheres of moderate refractive index, n=2.45) in order to reflect, or more importantly collect, radiation coming from an electric dipole emitter placed nearby (the experiment was realized in the microwave regime by R. Abdeddaim and J-M. Geffrin)
Wadsworth, Samuel Lanning. "Multilayered planar periodic subwavelength microstructures for generating and detecting circularly polarized thermal infrared radiation." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5075.
Full textID: 030422966; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 169-181).
Ph.D.
Doctorate
Optics and Photonics
Fievre, Ange Marie P. "Uniquely Identifiable Tamper-Evident Device Using Coupling between Subwavelength Gratings." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/1762.
Full textMazuir, Clarisse. "Design, fabrication, and testing of high-transparency deep ultra-violet contacts using surface plasmon coupling in subwavelength aluminum meshes." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4979.
Full textID: 029810223; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 140-145).
Ph.D.
Doctorate
Optics and Photonics
Nuño, ruano Paula. "Optomechanical silicon metamaterials for Brillouin-based devices." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST122.
Full textSilicon photonics attracts immense interest in fundamental research and technological and commercial development due to its compatibility with the electronics industry's standard fabrication and processing techniques. Traditionally developed for datacom applications, nowadays, silicon photonics is exploring more fields, such as on-chip signal processing, sensing, on-chip to free-space communications, and even quantum information and computing. This wide range of applications is possible thanks to novel physical phenomena. In this context, Brillouin scattering emerges as a promising tool for the next generation of integrated circuits. This nonlinear interaction between light and mechanical modes of a structure couples optical photons (in the THz regime) with MHz- and GHz-phonons, allowing a very efficient frequency conversion. This property is critical for microwave signal processing and quantum transduction between superconducting qubits and optical fibres. These two technologies are set to revolutionise telecommunications in the coming decades. Novel integrated designs yielding strong optomechanical coupling have been an active research field since the early 2000s. Due to their small size, tight light confinement, and large optical interaction with the structure boundaries, these new geometries promise an exceptional optomechanical response. We contribute to this effort by utilising subwavelength structures to maximise the Brillouin effect by harnessing independent control over optical and mechanical modes. Subwavelength structures, i.e., periodic geometries with a pitch smaller than half the optical wavelength, offer unique control of light propagation, anisotropy, and optical mode engineering. Thanks to recent developments in fabrication facilities, these structures promise a new generation of silicon-on-insulator compact devices with novel capabilities without incorporating new materials
Lou, Fei. "Design, fabrication and characterization of plasmonic components based on silicon nanowire platform." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143953.
Full textQC 20140404
Ye, Erika. "Periodic subwavelength photonic structures." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/111287.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 110-117).
Three applications of the interaction of light with periodic dielectric structures are investigated. The first application is large-area spectroscopy, for which we use the mid-field diffraction pattern generated by the light source passing through a transmission grating to determine its spectral composition. By utilizing a large grating size, we are able to achieve resolutions of < 4 nm experimental while having an etendue of roughly 0.033 mm2. Furthermore, since we are sampling the mid-field light pattern as opposed to the farfield, the entire spectrometer can fit within a 10 mm by 10 mm by 5 mm volume. The second application are barcodes based on the wavelength-dependent back-scattering off of a photonic crystal resonant cavity. The challenge is that we want to observe high quality factor resonant peaks while reducing the size of the crystal to less than 10 microns. So far the highest quality factor observed was about 800. The third application is a Fano silicon photonic crystal modulator waveguide device. The resonant cavity of the modulator is a 1D photonic crystal cavity. If we excite the fundamental and first excited mode of the waveguide, we obtain a Fano resonance that can potentially increase modulation depth and efficiency. We investigated how to improve the modulator architecture to reliably design resonators with sharp Fano resonance peaks. Those these applications are still in their early stages, the are promising for furthering each technology.
by Erika Ye.
M. Eng.
Lombardo, David. "Design and Fabrication of Suspended Waveguides With Photonic Grating Structures." University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1591796311145344.
Full textNikkhah, Hamdam. "Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37144.
Full textRuan, Zhichao. "Dispersion Engineering : Negative Refraction and Designed Surface Plasmons in Periodic Structures." Doctoral thesis, Stockholm : Informations- och kommunikationsteknik, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4542.
Full textKhanfar, Hazem. "Polarizing Optical Devices Based on Embedded One-Dimensional Subwavelength-Structured Photonic-Crystal Layers." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/1022.
Full textKhodami, Maryam. "Dispersion Characteristics of One-dimensional Photonic Band Gap Structures Composed of Metallic Inclusions." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23179.
Full textTorrijos, Morán Luis. "Photonic Applications Based on Bimodal Interferometry in Periodic Integrated Waveguides." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172163.
Full text[ES] La fotónica de silicio es una tecnología emergente clave en redes de comunicación e interconexiones de centros de datos de nueva generación, entre otros. Su éxito se basa en la utilización de plataformas compatibles con la tecnología CMOS para la integración de circuitos ópticos en dispositivos pequeños para una producción a gran escala a bajo coste. Dentro de este campo, los interferómetros integrados juegan un papel crucial en el desarrollo de diversas aplicaciones fotónicas en un chip como sensores biológicos, moduladores electro-ópticos, conmutadores totalmente ópticos, circuitos programables o sistemas LiDAR, entre otros. Sin embargo, es bien sabido que la interferometría óptica suele requerir caminos de interacción muy largos, lo que dificulta su integración en espacios muy compactos. Para mitigar algunas de estas limitaciones de tamaño, surgieron varios enfoques, incluyendo materiales sofisticados o estructuras más complejas, que, en principio, redujeron el área de diseño pero a expensas de aumentar los pasos del proceso de fabricación y el coste. Esta tesis tiene como objetivo proporcionar soluciones generales al problema de tamaño típico de los interferómetros ópticos integrados, con el fin de permitir la integración densa de dispositivos basados en silicio. Para ello, aunamos los beneficios tanto de las guías de onda bimodales como de las estructuras periódicas, en términos de la mejora del rendimiento y la posibilidad para diseñar interferómetros monocanal en áreas muy reducidas. Más específicamente, investigamos los efectos dispersivos que aparecen en estructuras menores a la longitud de onda y en las de cristal fotónico, para su implementación en diferentes configuraciones interferométricas bimodales. Además, demostramos varias aplicaciones potenciales como sensores, moduladores y conmutadores en tamaños ultra compactos de unas pocas micras cuadradas. En general, esta tesis propone un nuevo concepto de interferómetro integrado que aborda los requisitos de tamaño de la fotónica actual y abre nuevas vías para futuros dispositivos basados en funcionamiento bimodal.
[CA] La fotònica de silici és una tecnologia emergent clau en xarxes de comunicació i interconnexions de centres de dades de nova generació, entre altres. El seu èxit es basa en la utilització de plataformes compatibles amb la tecnologia CMOS per a la integració de circuits òptics en dispositius diminuts per a una producció a gran escala a baix cost. Dins d'aquest camp, els interferòmetres integrats juguen un paper crucial en el desenvolupament de diverses aplicacions fotòniques en un xip com a sensors biològics, moduladors electro-òptics, commutadors totalment òptics, circuits programables o sistemes LiDAR, entre altres. No obstant això, és ben sabut que la interferometría òptica sol requerir camins d'interacció molt llargs, la qual cosa dificulta la seua integració en espais molt compactes. Per a mitigar algunes d'aquestes limitacions de grandària, van sorgir diversos enfocaments, incloent materials sofisticats o estructures més complexes, que, en principi, van reduir l'àrea de disseny però a costa d'augmentar els processos de fabricació i el cost. Aquesta tesi té com a objectiu proporcionar solucions generals al problema de grandària típica dels interferòmetres òptics integrats, amb la finalitat de permetre la integració densa de dispositius basats en silici. Per a això, combinem els beneficis tant de les guies d'ones bimodals com de les estructures periòdiques, en termes de funcionament d'alt rendiment per a dissenyar interferòmetres monocanal compactes en àrees molt reduïdes. Més específicament, investiguem els efectes dispersius que apareixen en estructures menors a la longitud d'ona i en les de cristall fotònic, per a la seua implementació en diferents configuracions interferomètriques bimodals. A més, vam demostrar diverses aplicacions potencials com a sensors, moduladors i commutadors en grandàries ultres compactes d'unes poques micres cuadrades. En general, aquesta tesi proposa un nou concepte d'interferòmetre integrat que aborda els requisits de grandària de la fotònica actual i obri noves vies per a futurs dispositius basats en funcionament bimodal.
[EN] Silicon photonics is a key emerging technology in next-generation communication networks and data centers interconnects, among others. Its success relies on the ability of using CMOS-compatible platforms for the integration of optical circuits into small devices for a large-scale production at low-cost. Within this field, integrated interferometers play a crucial role in the development of several on-chip photonic applications such as biological sensors, electro-optic modulators, all-optical switches, programmable circuits or LiDAR systems, among others. However, it is well known that optical interferometry usually requires very long interaction paths, which hinders its integration in highly compact footprints. To mitigate some of these size limitations, several approaches emerged including sophisticated materials or more complex structures, which, in principle, reduced the design area but at the expense of increasing fabrication process steps and cost. This thesis aims at providing general solutions to the long-standing size problem typical of optical integrated interferometers, in order to enable the densely integration of silicon-based devices. To this end, we combine the benefits from both bimodal waveguides and periodic structures, in terms of high-performance operation and compactness to design single-channel interferometers in very reduced areas. More specifically, we investigate the dispersive effects that arise from subwavelength grating and photonic crystal structures for their implementation in different bimodal interferometric configurations. Furthermore, we demonstrate various potential applications such as sensors, modulators and switches in ultra-compact footprints of a few square microns. In general, this thesis proposes a new concept of integrated interferometer that addresses the size requirements of current photonics and open up new avenues for future bimodal-operation-based devices.
Financial support is also gratefully acknowledged through postdoctoral FPI grants from Universitat Politècnica de València (PAID-01-18). European Commission through the Horizon 2020 Programme (PHC-634013 PHOCNOSIS project). The authors acknowledge funding from the Generalitat Valenciana through the AVANTI/2019/123, ACIF/2019/009 and PPC/2020/037 grants and from the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencia Regional Government 2014–2020.
Torrijos Morán, L. (2021). Photonic Applications Based on Bimodal Interferometry in Periodic Integrated Waveguides [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172163
TESIS
Compendio
Shih, Bing-Hao, and 施秉豪. "Subwavelength grating devices for silicon photonics applications." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/72125727549035450349.
Full text國立中山大學
光電工程學系研究所
104
This thesis focuses on the design and simulation of subwavelength waveguide gratings, which reflect the light at its Bragg wavelength, implemented on silicon-on-insulator (SOI) platform. This photonic device has been utilized as an optical filter, a wavelength division multiplexer, and a sensing element. However, the strong side-lobe ripples arise from the waveguide gratings would cause serious channel crosstalks once the waveguide gratings are used to implement wavelength division multiplexing devices. In this work, we incorporate Gaussian-apodized structure in the waveguide grating design to reduce the side-lobe ripples by means of grating width modulation. Apodized grating is able to obtain a side-lobe suppression ratio of larger than 20 dB. Such an apodization structure is successfully implemented in strip-type and cladding-modulated waveguide gratings for side-lobe suppression. It works for not only uniform gratings but also phase-shifted gratings and sampled gratings. In addition, the moiré grating design, which is composed of two grating periods, is also implemented on SOI waveguides. This moiré grating has a π phase shift just like a phase-shifted grating, but more importantly this grating provides a tunable resonant bandwidth, which can not be achieved by a conventional phase-shifted grating. A resonant bandwidth of 0.18, 0.6 and 1.09 nm can be realized by cascading one, two, and three moiré gratings, respectively. Performance variation of the moiré gratings against the fabrication errors is finally investigated.
Granchi, Nicoletta. "Imaging of subwavelength light localization in all-dielectric complex nanostructures." Doctoral thesis, 2022. http://hdl.handle.net/2158/1264978.
Full textZhang, Yang active 2013. "Multi-layer silicon photonic devices for on-chip optical interconnects." Thesis, 2013. http://hdl.handle.net/2152/23344.
Full texttext
Tang, Lingling. "Subwavelength-scale Light Localization in Complete Photonic Bandgap Materials." Diss., 2010. http://hdl.handle.net/10161/2980.
Full textThe objective of this dissertation work is to examine light localization in semiconductors provided by a complete photonic bandgap via three-dimensional (3D) woodpile photonic crystals. A 3D photonic crystal is a periodic nanostructure that demonstrates omni-directional Bragg reflection. These materials are anticipated to become a powerful tool for engineering light propagation and localization within subwavelength scales due to their complete photonic bandgap and the distinctive dispersion relation.
The approach of realizing microcavities in this dissertation is to combine multi-directional etching fabrication methods with mode gap design. Modulation of unit cell size along a line-defect 3D waveguide could bring a guiding mode into the mode gap region of the waveguide and form a microcavity with a resonance inside the complete photonic bandgap. The designed microcavities could be fabricated by multi-directional etching methods because they can structurally be decomposed into two sets of connected and straight dielectric rods.
Ultra-high-quality factor microcavities and sub-wavelength-scale waveguides are designed without introduction of local disorders. Monopole, dipole, and quadrupole resonant modes are demonstrated with a small modal volume. The smallest modal volumes obtained are 0.36 cubic half-wavelengths for a resonance field in vacuum, and 2.88 cubic half-wavelengths for a resonance field in a dielectric. Direct metal contacts with the microcavities do not significantly deteriorate the quality factors because the resonant fields are located inside the microcavities. Single-mode woodpile waveguides are also designed in both lateral and vertical propagation directions.
The multi-directional etching method is a simple approach to the fabrication of woodpile photonic crystals and designed optical components with a variety of crystal orientations and surfaces, including (110), (001), (100), and (010) planes. An arbitrary surface plane (mn0) is obtained with this method, where m and n are integers. Moreover, it can also produce large area woodpile photonic crystals with high precision in silicon and GaAs materials.
These optical components in woodpile photonic crystals would be building blocks of high-density, low-loss 3D integrated optics, cavity quantum electrodynamics (QED), nonlinear optics, and enable the realization of current-injection optical devices.
Dissertation
Chang, Ping-Chien, and 張鈵健. "Wafer-scale subwavelength grating formation and its photonic applications." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/84615583506020372533.
Full text國立中山大學
光電工程學系研究所
104
This thesis focuses on the modification of our mirror-tunable laser interference system for short-period (200~400 nm) grating formation over a large sample area with superior uniformity. Experimental results indicate that the resist gratings have a fill factor variation of < 1.3%, a thickness variation of < 3%, and a grating period variation of < 0.15%. Such a superior grating structure then serves as the building block to realize RGB reflective filters and wire-grid optical polarizers. The gratings are also applied for liquid crystal alignment on a flexible substrate. The RGB reflective filter is based on a guided-mode resonance mechanism and the grating is made of high-refractive-index silicon material. According to the rigorous coupled-wave analysis, the reflecting wavelength of a Si grating can be adjusted by changing the grating period. A reflection bandwidth of > 80 nm and a reflectivity of > 75% are predicted and experimentally demonstrated. Wire-grid optical polarizer is realized by oblique depositing Aluminum atop the resist gratings. The resultant optical polarizer enables an optical transmission of 60% and an extinction ratio of about 40:1. The alignment of liquid crystal by grating allows an optical transmission of up to 95%. After assembling RGB reflective filter with standard liquid crystal cell, we show that color mixing can be achieved by adjusting the voltage applied to the cell. We believe that the proposed all-grating-based reflective display concept could be a high-efficiency and low-cost choice.
Wang, Lingyun Ph D. "Embedded metallic grating and photonic crystal based scanning probes for subwavelength near-field light confinement." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-12-6671.
Full texttext
Silva, Solange Vieira da. "Trapping light in metal and topological nanostructures." Doctoral thesis, 2020. http://hdl.handle.net/10316/96362.
Full textNanophotonics is a field of research dedicated to study the interactions of nanosized-objects with light. One of the goals of nanophotonics is to enable the miniaturization of optical components at a competitive scale with microelectronics. There are several rewards in using light based technologies, such as building photonic circuits that are not only smaller but faster and more efficient than the electronic counterparts, new solar cells that have enhanced energy absorption, nano-optical sensors able to detect ultralow concentrations of molecules in chemical solutions, amongst many others. My work aims to contribute to this field of research by exploring new mechanisms to accomplish an efficient spatial confinement of light. This thesis is devoted to the analytical and numerical study of three different ways to confine light in the nanoscale. First, we investigate light trapping in open plasmonic resonators (metaatoms) with different shapes. It is found that in some conditions complexshaped dielectric cavities may support discrete light states screened by volume plasmons that in the limit of a vanishing material loss have an infinite lifetime. The embedded eigenstates can be efficiently pumped with a plane wave excitation when the meta-atom core has a nonlinear response, such that the trapped light energy is precisely quantized. Then, we investigate how the spatial dispersion effects, e.g., caused by the electron-electron interactions in a metal, affect these trapped eigenstates in three-dimensional open plasmonic resonators. Heuristically, one may expect that the repulsive-type electron-electron interactions should act against light localization, and thereby that they should have a negative impact on the formation of the embedded eigenstates. Surprisingly, it is found that the nonlocality of the material response creates new degrees of freedom and relaxes the requirements for the observation of trapped light. In particular, a zero-permittivity condition is no longer mandatory and the same resonator shell can potentially suppress the radiation loss at multiple frequencies. The possibility to trap and guide light in wire metamaterials is also investigated. Specifically, we investigate the guided modes supported by a metamaterial slab formed by two mutually orthogonal and nonconnected sets of parallel metallic wires. It is demonstrated that the wire medium slab has a peculiar comb-like dispersion diagram. In the continuum approximation, the metamaterial supports a diverging number of guided mode branches that accumulate near the light line due to a strong hyperbolic response in the static limit. In a realistic system, the number of guided modes branches is finite and is determined by the density of wires. Remarkably, the guided modes may be characterized by a fast field variation along the transverse direction, which can be exploited to detect subwavelength particles or defects. Lastly, we investigated topological trapped states in photonic crystals. We show that in one-dimensional periodic systems the number of bands below a band gap determines the topological Chern number of an extended system with a synthetic dimension. It is theoretically and numerically demonstrated that in real-space the Chern number gives the number of gapless trapped state branches localized at the interface of the photonic crystal, when its geometry is continuously displaced by one lattice period. Furthermore, we introduce a novel class of topological systems with inversion-symmetry and fractional (non-integral) Chern numbers. It is proven that the non-integral topological number arises due to the discontinuous behaviour of the Hamiltonian in the spectral domain. We introduce a bulk-edge correspondence that links the number of edge-states with the fractional topological number.
A nano-fotónica é uma área de investigação dedicada ao estudo das interacções da luz com objectos nanométricos. Um dos objectivos da nanofotónica é possibilitar a miniaturização de componentes ópticos para uma escala competitiva com a microelectrónica. Existem vários benefícios em usar tecnologia fotónica, como a construção de circuitos fotónicos com pequenas dimensões que não são apenas mais rápidos mas também mais eficientes do que as suas contrapartes eletrónicas, novas células solares com uma maior absorção energética, sensores nano-ópticos capazes de detectar concentrações extremamente baixas de moléculas em soluções químicas, entre outros. O objectivo principal do meu trabalho é contribuir para esta área de investigação, explorando novos mecanismos de confinamento espacial da luz de forma eficiente. Esta tese é dedicada ao estudo analítico e numérico de três mecanismos diferentes de confinar a luz à nano-escala. Em primeiro lugar, é investigado o aprisionamento da luz em ressoadores plasmónicos abertos (meta-átomos) de diferentes geometrias. É mostrado que, em certas condições, cavidades dieléctricas de geometrias complexas podem suportar estado fotónicos discretos que, no limite em que as perdas materiais são nulas, possuem tempos de vida infinitos. Estes estados surgem devido à acção dos plasmões de volume suportados pela camada plasmónica exterior do meta-átomo e podem ser excitados eficientemente por uma onda plana quando o núcleo do ressoador possui uma resposta não-linear. Demonstra-se que a energia aprisionada no núcleo do ressoador é precisamente quantizada. Depois, é investigado o impacto dos efeitos de dispersão espacial, causados por exemplo pelas interacções electrão-electrão em metais, nos estados próprios embebidos suportados por ressoadores abertos plasmónicos tridimensionais. Heuristicamente, seria de esperar que as interacções repulsivas electrão-electrão agissem de maneira deteriorante no mecanismo de localização de luz e, portanto, tivessem um impacto negativo na formação dos estados próprios embebidos. Surpreendentemente, é mostrado neste trabalho que a dispersão não-local do material que encapsula o meta-átomo dá origem a novos graus de liberdade e relaxa os requisitos necessários ao aprisionamento da luz. Em particular, a condição que exige que o material da cápsula exiba uma permitividade exactamente igual a zero deixa de ser obrigatória, passando a ser possível que a mesma cápsula suprima a perda por radiação em várias frequências. É estudada de seguida a possibilidade de aprisionar e guiar luz em metamateriais de fios metálicos. Especificamente, investigamos os modos guiados suportados por um metamaterial formado por dois planos de fios metálicos mutuamente ortogonais. É demonstrado que o meio de fios tem um diagrama de dispersão peculiar, semelhante a um pente. No limite em que o material é visto como um meio contínuo (homogeneizado), o metamaterial suporta um número divergente de “ramos” de modos guiados que se acumulam junto à linha da luz devido à forte resposta hiperbólica do metamaterial no limite estático. Num sistema realista, o número de ramos é finito e determinado pela densidade de fios. Curiosamente, os modos são caracterizados por uma variação do campo rápida na direcção transversal, que pode ser explorada na detecção de partículas e defeitos de dimensão sub-lambda. Por último, são investigados modos de luz topologicamente aprisionados em cristais fotónicos. São estudadas as propriedades topológicas de sistemas periódicos unidimensionais, e é mostrado que o número de bandas abaixo do hiato de frequências determina o número de Chern de um sistema extendido com uma dimensão sintética. É demonstrado teórica e numericamente que, no espaço-real, o número de Chern determina o número de estados aprisionados na interface de um cristal fotónico no intervalo de frequências da banda não-propagante, quando a sua geometria sofre uma deslocação contínua de um período de estrutura. Além disso, é introduzida uma nova classe de sistemas topológicos com inversão de simetria e números de Chern fraccionários. É provado que o número topológico fraccionário é devido às descontinuidades do Hamiltoniano no domínio espectral. É introduzida uma correspondência volume-interface que liga o número de estados de interface com o número topológico fraccionário.
Instituto de Telecomunicações
Hung, Shih-Ting, and 洪士庭. "The study of negative refraction photonic crystals lens and the antireflection layers of solar cell in subwavelength structure." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/60058940020323856023.
Full text國立清華大學
原子科學系
93
Owing to the vigorous development of nano-technology, the bandgap region of photonic crystals or electro-optical devices can be shifted from microwave to infrared or visible light and applications of photonic crystals(PBG) are more extensively and practically. Nano-technology can apply to fabricate many kinds of novel electro-optical devices. Most importantly, it can reduce the volume of these devices substantially and thus will be engaged in highly concentrated integration of electro-optical devices. In this thesis, we study three kinds of subwavelength structure electro-optical devices. First, we use HDPCVD(High Density Plasma Chemical Vapor Deposition) to improve conventional autocloning method and expect to fabricate 2-D PCs waveguide by simpler, reproducible and flexible process. Second, we use autocloning method to fabricate the antireflection layer of solar cell. We also discuss negative refraction lens in this study. We successfully fabricate 2-D PCs waveguide and the antireflection layer of solar cell by using autocloning method. We also use 2D FDTD(Finite-difference time-domain) to simulate negative refraction phenomenon of low-index material, and apply to the fabrication of negative refraction lens. Many characteristics of electro-optical devices are obtained and the valuable applications are also analyzed.
Chen, Wei Fan, and 陳緯帆. "Optimized Subwavelength Period of One-Dimensional Photonic Crystal to Increase Light Extraction Efficiency of GaN-Based Light Emitting Diode." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/66238144752413308475.
Full text長庚大學
電子工程學系
101
For last few years, the GaN-based light emitting diodes(LEDs) have great developed. But in the illumination applications, light extraction of GaN-based LEDs remains limited, one of the most significant problem is the total internal reflection of trapped light within GaN material with high refractive index. In this dissertation, for improving the light extraction efficiency, electron-beam lithography and inductively plasma dry etching were used to achieve sub-wavelength grating-periodic structures with exact dimensions on the p-side of nitride-based LEDs with multiple quantum wells. The main focus of the dissertation can be divided into two parts. First, fixed the Air duty cycle, change the period of structure, to find the best period. Second, fixed the period of structure, change the part of air, to find the best air duty cycle. Done for different periods and air duty cycle in discussion.