Journal articles on the topic 'SUBMICRON TECHNOLOGIES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SUBMICRON TECHNOLOGIES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Claeys, Cor, Jan Vanhellemont, and Eddy Simoen. "Defect Engineering in Submicron CMOS Technologies." Solid State Phenomena 19-20 (January 1991): 95–108. http://dx.doi.org/10.4028/www.scientific.net/ssp.19-20.95.
Full textGal, Laszlo, C. Prunty, and R. Kumar. "Comparative study of submicron BiCMOS technologies." Microelectronics Journal 23, no. 1 (March 1992): 59–74. http://dx.doi.org/10.1016/0026-2692(92)90097-k.
Full textZhu, Tao, Hai Rong Li, Yan Dong Wan, Sha Chen, and Hai Bing Liu. "Recognizability and Controlling Technology of Submicron Particles." Applied Mechanics and Materials 182-183 (June 2012): 369–73. http://dx.doi.org/10.4028/www.scientific.net/amm.182-183.369.
Full textLiu, Xiaoxiao, Guangsheng Ma, Jingbo Shao, Zhi Yang, and Guanjun Wang. "Interconnect crosstalk noise evaluation in deep-submicron technologies." Microelectronics Reliability 49, no. 2 (February 2009): 170–77. http://dx.doi.org/10.1016/j.microrel.2008.11.013.
Full textJarron, P., G. Anelli, T. Calin, J. Cosculluela, M. Campbell, M. Delmastro, F. Faccio, et al. "Deep submicron CMOS technologies for the LHC experiments." Nuclear Physics B - Proceedings Supplements 78, no. 1-3 (August 1999): 625–34. http://dx.doi.org/10.1016/s0920-5632(99)00615-5.
Full textChong, Y. F., K. L. Pey, A. T. S. Wee, A. See, Z. X. Shen, C. H. Tung, R. Gopalakrishnan, and Y. F. Lu. "Laser-induced titanium disilicide formation for submicron technologies." Journal of Electronic Materials 30, no. 12 (December 2001): 1549–53. http://dx.doi.org/10.1007/s11664-001-0172-2.
Full textAchkasov, A., Maksim Solodilov, Nikolay Litvinov, Pavel Chubunov, V. Zolnikov, Dmitriy Shehovcov, and Oleg Bordyuzha. "Features of the design of microcircuits made using deep-submicron technologies." Modeling of systems and processes 15, no. 4 (December 13, 2022): 7–17. http://dx.doi.org/10.12737/2219-0767-2022-15-4-7-17.
Full textSchwalke, U., M. Kerber, K. Koller, and H. J. Jacobs. "EXTIGATE: The ultimate process architecture for submicron CMOS technologies." IEEE Transactions on Electron Devices 44, no. 11 (1997): 2070–77. http://dx.doi.org/10.1109/16.641386.
Full textNikolaidis, T., and C. Papadas. "ESD production for deep submicron triple well CMOS technologies." Electronics Letters 35, no. 23 (1999): 2025. http://dx.doi.org/10.1049/el:19991393.
Full textЧубур, K. Chubur, Яньков, A. Yankov, Зольников, Konstantin Zolnikov, Ачкасов, and A. Achkasov. "ALGORITHMIC BASIS OF MODELING FAILURES IN DEEP-SUBMICRON TECHNOLOGIES." Modeling of systems and processes 8, no. 1 (July 2, 2015): 15–17. http://dx.doi.org/10.12737/12014.
Full textShields, Christopher. "Submicron Filtration Media." International Nonwovens Journal os-14, no. 3 (September 2005): 1558925005os—14. http://dx.doi.org/10.1177/1558925005os-1400305.
Full textClaeys, C., J. Vanhellemont, T. Cavioni, and F. Gualandris. "Structural and Electrical Characterization of SWAMI Techniques for Submicron Technologies." Journal of The Electrochemical Society 136, no. 9 (September 1, 1989): 2619–24. http://dx.doi.org/10.1149/1.2097519.
Full textYao, Chunhua, Kewal K. Saluja, and Parameswaran Ramanathan. "Power and Thermal Constrained Test Scheduling Under Deep Submicron Technologies." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 30, no. 2 (February 2011): 317–22. http://dx.doi.org/10.1109/tcad.2010.2079350.
Full textMogul, H. C., T. A. Rost, and Der-Gao Lin. "Advantages of LDD-only implanted fluorine with submicron CMOS technologies." IEEE Transactions on Electron Devices 44, no. 3 (March 1997): 388–94. http://dx.doi.org/10.1109/16.556148.
Full textPonomarev, Y. V., P. A. Stolk, C. Salm, J. Schmitz, and P. H. Woerlee. "High-performance deep submicron CMOS technologies with polycrystalline-SiGe gates." IEEE Transactions on Electron Devices 47, no. 4 (April 2000): 848–55. http://dx.doi.org/10.1109/16.831003.
Full textManghisoni, M., L. Ratti, V. Re, and V. Speziali. "Submicron CMOS technologies for low-noise analog front-end circuits." IEEE Transactions on Nuclear Science 49, no. 4 (August 2002): 1783–90. http://dx.doi.org/10.1109/tns.2002.801540.
Full textDeleonibus, S., P. Molle, L. Tosti, and M. C. Taccusel. "Sealing Silicon Nitride Removal in SILO Field Isolation for Submicron Technologies." Journal of The Electrochemical Society 138, no. 12 (December 1, 1991): 3739–42. http://dx.doi.org/10.1149/1.2085491.
Full textPriya, M. Geetha, K. Baskaran, and D. Krishnaveni. "Leakage Power Reduction Techniques in Deep Submicron Technologies for VLSI Applications." Procedia Engineering 30 (2012): 1163–70. http://dx.doi.org/10.1016/j.proeng.2012.01.976.
Full textHansen, D. L. "Proton Cross-Sections from Heavy-Ion Data in Deep-Submicron Technologies." IEEE Transactions on Nuclear Science 62, no. 6 (December 2015): 2874–80. http://dx.doi.org/10.1109/tns.2015.2482360.
Full textVincent, E., S. Bruyere, C. Papadas, and P. Mortini. "Dielectric reliability in deep-submicron technologies: From thin to ultrathin oxides." Microelectronics Reliability 37, no. 10-11 (October 1997): 1499–506. http://dx.doi.org/10.1016/s0026-2714(97)00095-4.
Full textKobeda, E., J. D. Warnock, J. P. Gambino, S. B. Brodsky, B. Cunningham, and S. Basavaiah. "Diffusion barrier properties of TiN films for submicron silicon bipolar technologies." Journal of Applied Physics 72, no. 7 (October 1992): 2743–48. http://dx.doi.org/10.1063/1.351525.
Full textDeura, Manabu, Yasuo Nara, Tatsuya Yamazaki, Kenichi Gotoh, Fumio Ohtake, Hajime Kurata, and Toshihiro Sugii. "Deep-submicron CMOS technologies for low-power and high-performance operation." Electronics and Communications in Japan (Part II: Electronics) 79, no. 11 (1996): 1–9. http://dx.doi.org/10.1002/ecjb.4420791101.
Full textNGAN, A. H. W., P. C. WO, L. ZUO, H. LI, and N. AFRIN. "THE STRENGTH OF SUBMICRON-SIZED MATERIALS." International Journal of Modern Physics B 20, no. 25n27 (October 30, 2006): 3579–86. http://dx.doi.org/10.1142/s0217979206040027.
Full textLiu, Xiao Xiao, Jing Bo Shao, and Ling Ling Zhao. "An Efficient Methodology for Estimating Interconnect Crosstalk Noise in Deep-Submicron Technologies." Advanced Materials Research 989-994 (July 2014): 2647–50. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.2647.
Full textАчкасов, A. Achkasov, Яньков, A. Yankov, Зольников, Konstantin Zolnikov, Чубур, and K. Chubur. "THE ALGORITHMIC BASIS OF MODELLING OF FAILURES FROM EXPOSURE TO HEAVY CHARGED PARTICLES IN VLSI, MADE BY DEEP-SUBMICRON TECHNOLOGIES." Modeling of systems and processes 8, no. 3 (January 11, 2016): 36–38. http://dx.doi.org/10.12737/17166.
Full textKalra, Shruti. "On the mathematical insight of moderate inversion for ultradeep submicron CMOS technologies." Journal of Computational Electronics 17, no. 1 (November 16, 2017): 205–10. http://dx.doi.org/10.1007/s10825-017-1109-1.
Full textSimoen, E., and C. Claeys. "Reliability aspects of the low-frequency noise behaviour of submicron CMOS technologies." Semiconductor Science and Technology 14, no. 8 (January 1, 1999): R61—R71. http://dx.doi.org/10.1088/0268-1242/14/8/201.
Full textClaeys, Cor, Geert Eneman, Mireia Bargallo Gonzalez, Sofie Put, and Eddy Simoen. "Electrical Performance and Reliability Aspects of Strain Engineered Deep Submicron CMOS Technologies." ECS Transactions 8, no. 1 (December 19, 2019): 15–22. http://dx.doi.org/10.1149/1.2767280.
Full textKim, Jisu, Kyungho Ryu, Jung Pill Kim, Seung H. Kang, and Seong-Ook Jung. "STT-MRAM Sensing Circuit With Self-Body Biasing in Deep Submicron Technologies." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, no. 7 (July 2014): 1630–34. http://dx.doi.org/10.1109/tvlsi.2013.2272587.
Full textEndzhievskaya, I. G., A. V. Demina, and M. A. Galkin. "Industrial waste-based submicron additives in cement mortars." Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture 24, no. 3 (June 26, 2022): 114–27. http://dx.doi.org/10.31675/1607-1859-2022-24-3-114-127.
Full textStaman, J. W., R. L. Hodges, G. A. Dixit, F. R. Bryant, R. Sundaresan, C. C. Wei, and F. T. Liou. "Characterization of defects resulting from the poly-buffered local oxidation isolation process." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1392–93. http://dx.doi.org/10.1017/s0424820100131590.
Full textSchmitz, A., and R. Tielert. "A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies." Advances in Radio Science 3 (May 13, 2005): 355–58. http://dx.doi.org/10.5194/ars-3-355-2005.
Full textClaeys, Cor, Sofie Put, Alessio Griffoni, Andrea Cester, Simone Gerardin, G. Meneghesso, Alessandro Paccagnella, and Eddy Simoen. "Impact of Radiation on the Operation and Reliability of Deep Submicron CMOS Technologies." ECS Transactions 27, no. 1 (December 17, 2019): 39–46. http://dx.doi.org/10.1149/1.3360593.
Full textKleczek, R., and P. Kmon. "Comparative analysis of the readout front-end electronics implemented in deep submicron technologies." Journal of Instrumentation 13, no. 11 (November 5, 2018): C11002. http://dx.doi.org/10.1088/1748-0221/13/11/c11002.
Full textLa Rosa, Giuseppe, and Stewart E. Rauch. "Channel hot carrier effects in n-MOSFET devices of advanced submicron CMOS technologies." Microelectronics Reliability 47, no. 4-5 (April 2007): 552–58. http://dx.doi.org/10.1016/j.microrel.2007.01.031.
Full textEkekwe, Ndubuisi, and Ralph Etienne-Cummings. "Power dissipation sources and possible control techniques in ultra deep submicron CMOS technologies." Microelectronics Journal 37, no. 9 (September 2006): 851–60. http://dx.doi.org/10.1016/j.mejo.2006.03.008.
Full textIsmail, Ayman, and Mohamed Elmasry. "Analysis of the Flash ADC Bandwidth–Accuracy Tradeoff in Deep-Submicron CMOS Technologies." IEEE Transactions on Circuits and Systems II: Express Briefs 55, no. 10 (October 2008): 1001–5. http://dx.doi.org/10.1109/tcsii.2008.2001979.
Full textAmerasekera, Ajith, and Amitava Chatterjee. "An investigation of BiCMOS ESD protection circuit elements and applications in submicron technologies." Journal of Electrostatics 31, no. 2-3 (December 1993): 145–60. http://dx.doi.org/10.1016/0304-3886(93)90006-s.
Full textAgrawal, Pankaj, and Nikhil Saxena. "Leakage current analysis for stack based Nano CMOS Digital Circuits." International Journal of Electrical and Electronics Research 2, no. 2 (June 30, 2014): 5–11. http://dx.doi.org/10.37391/ijeer.020202.
Full textLee, Jin Woo. "3D Nanoprinting Technologies for Tissue Engineering Applications." Journal of Nanomaterials 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/213521.
Full textViswadha, Singathala Guru. "Next Generation Computing Using Quantum Dot Cellular Automata Nano Technology, New Promising Alternative to CMOS." Asian Journal of Computer Science and Technology 8, S3 (June 5, 2019): 19–24. http://dx.doi.org/10.51983/ajcst-2019.8.s3.2111.
Full textWirth, Gilson. "Bulk built in current sensors for single event transient detection in deep-submicron technologies." Microelectronics Reliability 48, no. 5 (May 2008): 710–15. http://dx.doi.org/10.1016/j.microrel.2008.01.002.
Full textHu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, and Zou Shi-Chang. "The influence of channel length on total ionizing dose effect in deep submicron technologies." Acta Physica Sinica 61, no. 5 (2012): 050702. http://dx.doi.org/10.7498/aps.61.050702.
Full textFazeli, M., S. G. Miremadi, A. Ejlali, and A. Patooghy. "Low energy single event upset/single event transient-tolerant latch for deep subMicron technologies." IET Computers & Digital Techniques 3, no. 3 (2009): 289. http://dx.doi.org/10.1049/iet-cdt.2008.0099.
Full textJenkins, K. A., J. N. Burghartz, and P. D. Agnello. "Identification of gate electrode discontinuities in submicron CMOS technologies, and effect on circuit performance." IEEE Transactions on Electron Devices 43, no. 5 (May 1996): 759–65. http://dx.doi.org/10.1109/16.491253.
Full textSallagoity, P., M. Ada-Hanifi, M. Paoli, and M. Haond. "Analysis of width edge effects in advanced isolation schemes for deep submicron CMOS technologies." IEEE Transactions on Electron Devices 43, no. 11 (1996): 1900–1906. http://dx.doi.org/10.1109/16.543025.
Full textLeonenko, Nina. "Integration of fiber lasers in processes of mineral raw material processing." E3S Web of Conferences 56 (2018): 03020. http://dx.doi.org/10.1051/e3sconf/20185603020.
Full textLukyanenko, A. V., and T. E. Smolyarova. "Alternative technology for creating nanostructures using Dip Pen Nanolithography." Физика и техника полупроводников 52, no. 5 (2018): 519. http://dx.doi.org/10.21883/ftp.2018.05.45863.52.
Full textLiu, Xiao Xiao, Jing Bo Shao, and Ling Ling Zhao. "A New Spatial Correlation Model Based on the Distributed RC-∏ Model." Advanced Materials Research 989-994 (July 2014): 2204–7. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.2204.
Full textBoyes, E. D. "LVEDS For Advanced Materials and Semiconductor Technologies." Microscopy and Microanalysis 5, S2 (August 1999): 314–15. http://dx.doi.org/10.1017/s1431927600014896.
Full text