Academic literature on the topic 'Subgrid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Subgrid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Subgrid"

1

NESLITURK, ALI I. "A STABILIZING SUBGRID FOR CONVECTION–DIFFUSION PROBLEM." Mathematical Models and Methods in Applied Sciences 16, no. 02 (February 2006): 211–31. http://dx.doi.org/10.1142/s0218202506001121.

Full text
Abstract:
A stabilizing subgrid which consists of a single additional node in each triangular element is analyzed by solving the convection–diffusion problem, especially in the case of small diffusion. The choice of the location of the subgrid node is based on minimizing the residual of a local problem inside each element. We study convergence properties of the method under consideration and its connection with previously suggested stabilizing subgrids. We prove that the standard Galerkin finite element solution on augmented grid produces a discrete solution that satisfy the same a priori error estimates that are typically obtained with SUPG and RFB methods. Some numerical experiments that confirm the theoretical findings are also presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Yeh, Pat J.-F., and Elfatih A. B. Eltahir. "Representation of Water Table Dynamics in a Land Surface Scheme. Part II: Subgrid Variability." Journal of Climate 18, no. 12 (June 15, 2005): 1881–901. http://dx.doi.org/10.1175/jcli3331.1.

Full text
Abstract:
Abstract A lumped unconfined aquifer model has been developed and interactively coupled to a land surface scheme in a companion paper. Here, the issue of the representation of subgrid variability of water table depths (WTDs) is addressed. A statistical–dynamical (SD) approach is used to account for the effects of the unresolved subgrid variability of WTD in the grid-scale groundwater runoff. The dynamic probability distribution function (PDF) of WTD is specified as a two-parameter gamma distribution based on observations. The grid-scale groundwater rating curve (i.e., aquifer storage–discharge relationship) is derived statistically by integrating a point groundwater runoff model with respect to the PDF of WTD. Next, a mosaic approach is utilized to account for the effects of subgrid variability of WTD in the grid-scale groundwater recharge. A grid cell is categorized into different subgrids based on the PDF of WTD. The grid-scale hydrologic fluxes are computed by averaging all of the subgrid fluxes weighted by their fractions. This new methodology combines the strengths of the SD approach and the mosaic approach. The results of model testing in Illinois from 1984 to 1994 indicate that the simulated hydrologic variables (soil saturation and WTD) and fluxes (evaporation, runoff, and groundwater recharge) agree well with the observations. Because of the paucity of the large-scale observations on WTD, the development of a practical parameter estimation procedure is indispensable before the global implementation of the developed scheme of water table dynamics in climate models.
APA, Harvard, Vancouver, ISO, and other styles
3

Habets, F., and G. M. Saulnier. "Subgrid runoff parameterization." Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26, no. 5-6 (January 2001): 455–59. http://dx.doi.org/10.1016/s1464-1909(01)00034-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Valdettaro, L. "Subgrid-Scale modeling." EAS Publications Series 21 (2006): 197–218. http://dx.doi.org/10.1051/eas:2006114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Noma, and Krishnan Mahesh. "A velocity-estimation subgrid model constrained by subgrid scale dissipation." Journal of Computational Physics 227, no. 8 (April 2008): 4190–206. http://dx.doi.org/10.1016/j.jcp.2007.12.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yaling, Luxi Hao, and Gaowen Yin. "Distributed Energy Management of the Hybrid AC/DC Microgrid with High Penetration of Distributed Energy Resources Based on ADMM." Complexity 2021 (September 14, 2021): 1–9. http://dx.doi.org/10.1155/2021/1863855.

Full text
Abstract:
This paper aims to investigate energy management of the hybrid AC/DC microgrid with the high penetration of distributed energy resources (DERs), such as electrical vehicles, heat pumps, and photovoltaics. In the previous studies, energy management of the hybrid microgrid is usually carried out by the system operator in a centralized manner, which suffers from the compromise of privacy information protection and the risk of single-point failure. Therefore, this paper proposes a distributed energy management scheme of the hybrid microgrid using the projection function-based alternating direction method of multipliers (P-ADMM), which allows each subgrid, i.e., AC subgrid and DC subgrid, to make day-ahead schedules independently with information exchanges while obtaining the optimal energy management solution. The energy management problem of the hybrid microgrid is formulated as a mixed-integer quadratic programming (MIQP) model, considering DER and energy storage system operation constraints, system operation constraints, and converter operation constraints. Then, the MIQP model is decomposed and distributed into smaller-scale QP models between subgrids using the P-ADMM algorithm, which can handle binary variables through projection functions. The numerical results conducted on the hybrid microgrid demonstrate that the proposed distributed scheme can effectively achieve optimal energy management for the hybrid AC/DC microgrid in a distributed manner.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Ye. "Eddy damping, backscatter, and subgrid stresses in subgrid modeling of turbulence." Physical Review A 43, no. 12 (June 1, 1991): 7049–52. http://dx.doi.org/10.1103/physreva.43.7049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brillant, Guillaume, Sabine Husson, and Françoise Bataille. "Subgrid-Scale Diffusivity: Wall Behavior and Dynamic Methods." Journal of Applied Mechanics 73, no. 3 (September 26, 2004): 360–67. http://dx.doi.org/10.1115/1.2173005.

Full text
Abstract:
This study concerns the near-wall behavior of the subgrid-scale diffusivity. This is shown to depend on the thermal boundary conditions. Therefore, the constant subgrid-scale Prandtl number hypothesis is questionable and a direct modeling of the subgrid-scale diffusivity is considered instead. Large-eddy simulations are carried out using the Trio U code in a turbulent channel flow configuration with the three classical thermal boundary conditions (constant temperature, constant heat flux, and adiabatic wall). Different dynamic methods are used to model the subgrid-scale diffusivity and results are compared with constant subgrid-scale Prandtl number large-eddy simulations and with direct numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
9

Kitsios, Vassili, Jorgen S. Frederiksen, and Meelis J. Zidikheri. "Subgrid Model with Scaling Laws for Atmospheric Simulations." Journal of the Atmospheric Sciences 69, no. 4 (March 30, 2012): 1427–45. http://dx.doi.org/10.1175/jas-d-11-0163.1.

Full text
Abstract:
Abstract Subgrid-scale parameterizations with self-similar scaling laws are developed for large-eddy simulations (LESs) of atmospheric flows. The key new contribution is the development of scaling laws that govern how these parameterizations depend on the LES resolution and flow strength. Both stochastic and deterministic representations of the effects of subgrid-scale eddies on the retained scales are considered. The stochastic subgrid model consists of a backscatter noise term and a drain eddy viscosity, while in the deterministic subgrid model the net effect of these two terms is represented by a net eddy viscosity. In both cases the subgrid transfers are calculated self-consistently from the statistics of higher-resolution-reference direct numerical simulations (DNSs). The dependence of the subgrid parameterizations on the resolution of the LESs is determined for DNSs having resolutions up to triangular 504 wavenumber truncations. The subgrid parameterizations are developed for typical large-scale atmospheric flows and for different strengths and spectra of kinetic energy within a quasigeostrophic spectral model. LESs using the stochastic and deterministic subgrid parameterizations are shown to replicate the kinetic energy spectra of the reference DNS at the scales of the LESs. It is found that the maximum strengths of the drain, net, and backscatter viscosities satisfy scaling laws dependent on the LES truncation wavenumber and that the dependence of these eddy viscosities on total wavenumber can also be written as essentially universal functions that depend on flow strength and resolution. The scaling laws make the subgrid-scale parameterizations more generally applicable in LESs and remove the need to generate them from reference DNSs.
APA, Harvard, Vancouver, ISO, and other styles
10

Verrelle, Antoine, Didier Ricard, and Christine Lac. "Evaluation and Improvement of Turbulence Parameterization inside Deep Convective Clouds at Kilometer-Scale Resolution." Monthly Weather Review 145, no. 10 (October 2017): 3947–67. http://dx.doi.org/10.1175/mwr-d-16-0404.1.

Full text
Abstract:
A challenge for cloud-resolving models is to make subgrid schemes suitable for deep convective clouds. A benchmark large-eddy simulation (LES) was conducted on a deep convective cloud with 50-m grid spacing. The reference turbulence fields for horizontal grid spacings of 500 m, 1 km, and 2 km were deduced by coarse graining the 50-m LES outputs, allowing subgrid fields to be characterized. The highest values of reference subgrid turbulent kinetic energy (TKE) were localized in the updraft core, and the production of subgrid TKE was dominated by thermal effects at coarser resolution (2 and 1 km) and by dynamical effects at finer resolution than 500 m. Countergradient areas due to nonlocal mixing appeared on the subgrid vertical thermodynamical fluxes in the updraft core and near the cloud top. The subgrid dynamical variances were anisotropic but the difference between vertical and horizontal variances diminished with increasing resolution. Then offline and online evaluations were conducted for this deep convective case with two different parameterization approaches at kilometer-scale resolution and gave the same results. A commonly used eddy-diffusivity turbulence scheme underestimated the thermal production of subgrid TKE and did not enable the countergradient structures to be reproduced. In contrast, the approach proposed by Moeng, parameterizing the subgrid vertical thermodynamical fluxes in terms of horizontal gradients of resolved variables, reproduced these characteristics and limited the overestimation of vertical velocity.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Subgrid"

1

Quaas, Johannes, Verena Grützun, Vera Schemann, and Torsten Weber. "Evaluating parameterisations of subgrid-scale variability." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189788.

Full text
Abstract:
Parameterisations of fractional cloudiness in large-scale atmospheric models rely on information about the subgrid-scale variablity of the total water specific humidity, qt , provided in form of a probability density function (PDF). In this contribution, four different approaches to evaluate such total-water PDFs are discussed: (i) Satellite spectroradiometers with high spatial resolution allow to construct at the scale of model grid boxes a histogram, and subsequently to derive the moments of the PDF, of the vertical integral of qt . This can be compared to the same quantity diagnosed from the model parameterisation. Although the vertical integral mostly focuses on the boundary layer, and involves issues in grid-boxes with orographic variability, it allowed nevertheless in the example presented to pinpoint deficiencies of a model parameterisation. (ii) Assuming a simple PDF shape and saturation within clouds, the simple “critical relative humidity” metric can be derived from infrared sounders and/or cloud lidar in combination with reanalysis data with a vertical resolution. It allows to evaluate the underlying PDF of any cloud scheme, but is sensitive to the assumptions. (iii) Supersites with a combination of ground-based lidar, radar and microwave data provide high-resolution high-quality reference data. In a “virtual reality” framework, we showed, however, that it is difficult to evaluate higher moments of a spatial PDF with this temporally-varying data. (iv) From a hierarchy of models from general circulation models to direct numerical simulations, we find that the variance of the qt follows a power-law scaling with an exponent of about -2. This information is very useful to improve the parameterisations.
APA, Harvard, Vancouver, ISO, and other styles
2

Quaas, Johannes, Verena Grützun, Vera Schemann, and Torsten Weber. "Evaluating parameterisations of subgrid-scale variability." European Centre for Medium-Range Weather Forecasts, 2013. https://ul.qucosa.de/id/qucosa%3A13993.

Full text
Abstract:
Parameterisations of fractional cloudiness in large-scale atmospheric models rely on information about the subgrid-scale variablity of the total water specific humidity, qt , provided in form of a probability density function (PDF). In this contribution, four different approaches to evaluate such total-water PDFs are discussed: (i) Satellite spectroradiometers with high spatial resolution allow to construct at the scale of model grid boxes a histogram, and subsequently to derive the moments of the PDF, of the vertical integral of qt . This can be compared to the same quantity diagnosed from the model parameterisation. Although the vertical integral mostly focuses on the boundary layer, and involves issues in grid-boxes with orographic variability, it allowed nevertheless in the example presented to pinpoint deficiencies of a model parameterisation. (ii) Assuming a simple PDF shape and saturation within clouds, the simple “critical relative humidity” metric can be derived from infrared sounders and/or cloud lidar in combination with reanalysis data with a vertical resolution. It allows to evaluate the underlying PDF of any cloud scheme, but is sensitive to the assumptions. (iii) Supersites with a combination of ground-based lidar, radar and microwave data provide high-resolution high-quality reference data. In a “virtual reality” framework, we showed, however, that it is difficult to evaluate higher moments of a spatial PDF with this temporally-varying data. (iv) From a hierarchy of models from general circulation models to direct numerical simulations, we find that the variance of the qt follows a power-law scaling with an exponent of about -2. This information is very useful to improve the parameterisations.
APA, Harvard, Vancouver, ISO, and other styles
3

Candy, Adam S. "Subgrid scale modelling of transport processes." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/5496.

Full text
Abstract:
Consideration of stabilisation techniques is essential in the development of physical models if they are to faithfully represent processes over a wide range of scales. Careful application of these techniques can significantly increase flexibility of models, allowing the computational meshes used to discretise the underlying partial differential equations to become highly nonuniform and anisotropic, for example. This exibility enables a model to capture a wider range of phenomena and thus reduce the number of parameterisations required, bringing a physically more realistic solution. The next generation of fluid flow and radiation transport models employ unstructured meshes and anisotropic adaptive methods to gain a greater degree of flexibility. However these can introduce erroneous artefacts into the solution when, for example, a process becomes unresolvable due to an adaptive mesh change or advection into a coarser region of mesh in the domain. The suppression of these effects, caused by spatial and temporal variations in mesh size, is one of the key roles stabilisation can play. This thesis introduces new explicit and implicit stabilisation methods that have been developed for application in fluid and radiation transport modelling. With a focus on a consistent residual-free approach, two new frameworks for the development of implicit methods are presented. The first generates a family of higher-order Petrov-Galerkin methods, and the example developed is compared to standard schemes such as streamline upwind Petrov-Galerkin and Galerkin least squares in accurate modelling of tracer transport. The dissipation generated by this method forms the basis for a new explicit fourth-order subfilter scale eddy viscosity model for large eddy simulation. Dissipation focused more sharply on unresolved scales is shown to give improved results over standard turbulence models. The second, the inner element method, is derived from subgrid scale modelling concepts and, like the variational multiscale method and bubble enrichment techniques, explicitly aims to capture the important under-resolved fine scale information. It brings key advantages to the solution of the Navier-Stokes equations including the use of usually unstable velocity-pressure element pairs, a fully consistent mass matrix without the increase in degrees of freedom associated with discontinuous Galerkin methods and also avoids pressure filtering. All of which act to increase the flexibility and accuracy of a model. Supporting results are presented from an application of the methods to a wide range of problems, from simple one-dimensional examples to tracer and momentum transport in simulations such as the idealised Stommel gyre, the lid-driven cavity, lock-exchange, gravity current and backward-facing step. Significant accuracy improvements are demonstrated in challenging radiation transport benchmarks, such as advection across void regions, the scattering Maynard problem and demanding source-absorption cases. Evolution of a free surface is also investigated in the sloshing tank, transport of an equatorial Rossby soliton, wave propagation on an aquaplanet and tidal simulation of the Mediterranean Sea and global ocean. In combination with adaptive methods, stabilising techniques are key to the development of next generation models. In particular these ideas are critical in achieving the aim of extending models, such as the Imperial College Ocean Model, to the global scale.
APA, Harvard, Vancouver, ISO, and other styles
4

Chakravarthy, Veerathu Kalyana. "Stochastic subgrid modeling of turbulent premixed flames." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/12934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pietarila, Graham Jonathan. "Regularizations as subgrid models for turbulent flows." Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3273737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

El-Asrag, Hossam Abd El-Raouf. "Large Eddy Simulation Subgrid Model for Soot Prediction." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14652.

Full text
Abstract:
Soot prediction in realistic systems is one of the most challenging problems in theoretical and applied combustion. Soot formation as a chemical process is very complicated and not fully understood up to the moment. The major difficulty stems from the chemical complexity of the soot formation processes as well as its strong coupling with the other thermochemical and fluid processes that occur simultaneously. Soot is a major byproduct of incomplete combustion, having a strong impact on the environment, as well as the combustion efficiency. Therefore, it needs to be predicted in realistic configurations in an accurate and yet computationally efficient way. In the current study, a new soot formation subgrid model is developed and reported here. The new model is designed to be used within the context of the Large Eddy Simulation (LES) framework, combined with Linear Eddy Mixing (LEM) as a subgrid combustion model. The final model can be applied equally to premixed and non-premixed flames over any required geometry and flow conditions in the free, the transition, and the continuum regimes. The soot dynamics is predicted using a Method of Moments approach with Lagrangian Interpolative Closure (MOMIC) for the fractional moments. Since, no prior knowledge of the particles distribution is required, the model is generally applicable. The effect of radiation is introduced as an optically thin model. As a validation the model is first applied to a non-premixed non-sooting flame, then a set of canonically premixed flames. Finally, the model is validated against a non-premixed jet sooting flame. Good results are predicted with reasonable accuracy.
APA, Harvard, Vancouver, ISO, and other styles
7

Calhoon, William Henry Jr. "On subgrid combustion modeling for large-eddy simulations." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Príncipe, Ricardo Javier. "Subgrid scale stabilized finite elements for low speed flows." Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6870.

Full text
Abstract:
La descripción del flujo de fluidos involucra la solución de las ecuaciones de Navier-Stokes compresible, un problema muy complejo cuya estructura matemática no es del todo comprendida. Por lo tanto, mediante análisis asintótico, se pueden derivar modelos simplificados bajo ciertas hipótesis sobre el problema hechas en términos de parámetros adimensionales que miden la importancia relativa de los diferentes procesos físicos. Los flujos a baja velocidad se pueden describir por diferentes modelos que incluyen las ecuaciones de Navier Stokes incompresible cuya matemática es mucho mas conocida. Sin embargo, algunos flujos importantes no se pueden considerar incompresibles debido a la presencia de efectos térmicos. En esta clase de problemas se pueden derivar otra clase de ecuaciones simplificadas: las ecuaciones de Boussinesq y las ecuaciones de bajo numero de Mach.

La complejidad de estos problemas matemáticos hace que su solución numérica sea muy difícil. En estos problemas el método de los elementos finitos es inestable, lo que en la práctica implica soluciones numéricas que presentan oscilaciones nodo a nodo de naturaleza no física. En las ecuaciones de Navier Stokes incompresible, dos fuentes bien conocidas de inestabilidad son la condición de incompresibilidad y la presencia del término convectivo. Muchas técnicas de estabilización utilizadas hoy en día se basan en la separación de escalas, descomponiendo la incógnita en una parte gruesa inducida por la discretización del domino y una parte fina de subescala. Modelar la subescala y su influencia conduce a un problema modificado para la escala gruesa que resulta estable.

Aunque las técnicas de estabilización son ampliamente utilizadas hoy en día, importantes problemas permanecen abiertos. Contribuyendo a su comprensión, en este trabajo se analizan varios aspectos del modelado de las subescalas. Para problemas escalares de segundo orden, se encuentra la dependencia de la subescala con el tamaño de la malla en el caso general de mallas anisótropas. Estas ideas son extendidas a sistemas de ecuaciones para considerar el problema de Oseen. También se analiza el modelado de las subescalas en problemas transitorios, obteniendo un mejor esquema de integración temporal para el problema de escala gruesa. Para considerar flujos a baja velocidad, se presenta la extensión de estas técnicas a problemas no lineales acoplados, lo que esta íntimamente relacionado con el problema del modelado de la turbulencia, que es un tema en si mismo.

Los flujos acoplados térmicamente, aparte del interés intrínseco que merecen, son importantes desde un punto de vista ingenieril. Una solución precisa del problema de flujo es necesaria para definir las cargas térmicas sobre las estructuras, que en muchos casos responden fuertemente, haciendo el problema acoplado. Esta clase de problemas, que motivaron este trabajo, incluyen la respuesta estructural en el caso de un incendio.
A general description of a fluid flow involves the solution of the compressible Navier-Stokes equations, a very complex problem whose mathematical structure is not well understood. Therefore, simplified models can be derived by asymptotic analysis under some assumptions on the problem, made in terms of dimensionless parameters that measure the relative importance of different physical processes. Low speed flows can be described by several models including the incompressible Navier Stokes equations whose mathematical structure is much better understood. However many important flows cannot be considered as incompressible, even at low speed, due to the presence of thermal effects. In such kind of problems another class of simplified equations can be derived: the Boussinesq equations and the Low Mach number equations.
The complexity of these mathematical problems makes their numerical solution very difficult. For these problems the standard finite element method is unstable, what in practice means that node to node oscillations of non physical nature may appear in the numerical solution. In the incompressible Navier Stokes equations, two well known sources of numerical instabilities are the incompressibility constraint and the presence of the convective terms. Many stabilization techniques used nowadays are based on scale separation, splitting the unknown into a coarse part induced by the discretization of the domain and a fine subgrid part. The modelling of the subgrid scale and its influence leads to a modified coarse scale problem that now can be shown to be stable.
Although stabilization techniques are nowadays widely used, important problems remain open. Contributing to their understanding, several aspects of the subgrid scale modelling are analyzed in this work. For second order scalar problems, the dependence of the subgrid scale on the mesh size, in the general anisotropic case, is clarified. These ideas are extended to systems of equations to consider the Oseen problem. The modelling of the subgrid scales in transient problems is also analyzed, leading to an improved time discretization scheme for the coarse scale problem. To consider low speed flow models, the extension of these techniques to nonlinear and coupled problems is presented, something that is intimately related to the problem of turbulence modelling, which a entire subject on its own right.
Thermally coupled flow problems, despite the intrinsic interest they deserve, are important from an engineering point of view. An accurate solution of a flow problem is needed to define thermal loads on structures which, in many cases have a strong response, making the problem coupled. This kind of problems, that motivated this work, include the problem of a structural response in the case of fires.
APA, Harvard, Vancouver, ISO, and other styles
9

Hinneburg, Detlef, and Nicole Mölders. "Dry deposition by an atmospheric model with horizontal subgrid." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-215342.

Full text
Abstract:
Two modules have been developed which qualify mesoscale atmospheric models for simulating the chemical transport at resolutions much higher than the model grid. Compared with total fine-grid application this method proves to be nearly so efficient but more economic. The modules solve the chemical transport equations (a) and submit the horizontal subgrid (b) for the meteorological and chemical calculations: (a) The chemical transport module considers the triad NO-N02-03 together with a simplified hydrocarbon chemistry. Involved are chemical reactions, anthropogenic and biogenic emission, dry deposition, passive transport, and turbulent diffusion. For these calculations a special vertical subgrid was introduced within the lowest atmospheric model layer. lt eliminates the frequently used approach of constant vertical particle fluxes near the surface. (b) The horizontal-subgrid module splits the horizontal model grid equidistantly into subgrid cells. The vertical surface fluxes of momentum, sensible and latent heat, radiation, soil heat and wetness, and chemical components are explicitly treated on this subgrid. The subgrid-averaged surface fluxes are employed for the (coarser) normal-grid calculations of the atmospheric meteorological variables. In contrast to the meteorological quantities, the chemical components and processes are perf ormed at all model layers on the horizontal subgrid. Several results are compared to conventional simulations of variable model resolution
Zwei Programm-Module für mesoskalige Atmosphärenmodelle sind entwickelt worden, die Chemie-Transport-Vorgänge in höherer als der normalen Modellgitter-Auflösung simulieren. Im Vergleich zu hochaufgelösten Standardmodell-Anwendungen erweist sich diese Methode als effizienter. Die Module lösen die Chemie-Transport-Gleichungen (a) und schaffen das horizontale Untergitter für die meteorologischen und chemischen Berechnungen (b): (a) Im Chemie-Transport-Modul wird die Triade NO-N02-03 gemeinsam mit einer vereinfachten Kohlenwasserstoff-Chemie betrachtet. Berücksichtigt werden chemische Reaktionen, anthropogene und biogene Emissionen, trockene Deposition, passiver Transport und turbulente Diffusion. Für diese Berechnungen wurde innerhalb der untersten Modellschicht ein spezielles vertikales Untergitter eingeführt, um die in Oberflächennähe häufig angewendete Näherung konstanter Stoffflüsse zu eliminieren. (b) Das Untergitter-Modul unterteilt das horizontale Modellgitter in Unterzellen, auf welche die Berechnung der Boden- und Oberflächenflüsse bezogen wird. Die vertikalen Oberflächenflüsse von Impuls, sensibler und latenter Wärme, Strahlung, Bodenwärme und -feuchte sowie der chemischen Komponenten werden explizit im Untergitter bestimmt. Die über die Unterzellen gemittelten Flüsse werden für die im (gröberen) Modellgitter ablaufenden Berechnungen der meteorologischen Größen genutzt. Im Gegensatz dazu werden die chemischen Komponenten und Prozesse in allen Modellschichten vollständig auf dem Untergitter behandelt. Einige Ergebnisse dieser Methode werden im Vergleich mit Standard-Simulationen unterschiedlichen Auflösungsgrades gezeigt
APA, Harvard, Vancouver, ISO, and other styles
10

Hinneburg, Detlef, and Nicole Mölders. "Dry deposition by an atmospheric model with horizontal subgrid." Wissenschaftliche Mitteilungen des Leipziger Instituts für Meteorologie ; 17 = Meteorologische Arbeiten aus Leipzig ; 5 (2000), S. 18-28, 2000. https://ul.qucosa.de/id/qucosa%3A15146.

Full text
Abstract:
Two modules have been developed which qualify mesoscale atmospheric models for simulating the chemical transport at resolutions much higher than the model grid. Compared with total fine-grid application this method proves to be nearly so efficient but more economic. The modules solve the chemical transport equations (a) and submit the horizontal subgrid (b) for the meteorological and chemical calculations: (a) The chemical transport module considers the triad NO-N02-03 together with a simplified hydrocarbon chemistry. Involved are chemical reactions, anthropogenic and biogenic emission, dry deposition, passive transport, and turbulent diffusion. For these calculations a special vertical subgrid was introduced within the lowest atmospheric model layer. lt eliminates the frequently used approach of constant vertical particle fluxes near the surface. (b) The horizontal-subgrid module splits the horizontal model grid equidistantly into subgrid cells. The vertical surface fluxes of momentum, sensible and latent heat, radiation, soil heat and wetness, and chemical components are explicitly treated on this subgrid. The subgrid-averaged surface fluxes are employed for the (coarser) normal-grid calculations of the atmospheric meteorological variables. In contrast to the meteorological quantities, the chemical components and processes are perf ormed at all model layers on the horizontal subgrid. Several results are compared to conventional simulations of variable model resolution.
Zwei Programm-Module für mesoskalige Atmosphärenmodelle sind entwickelt worden, die Chemie-Transport-Vorgänge in höherer als der normalen Modellgitter-Auflösung simulieren. Im Vergleich zu hochaufgelösten Standardmodell-Anwendungen erweist sich diese Methode als effizienter. Die Module lösen die Chemie-Transport-Gleichungen (a) und schaffen das horizontale Untergitter für die meteorologischen und chemischen Berechnungen (b): (a) Im Chemie-Transport-Modul wird die Triade NO-N02-03 gemeinsam mit einer vereinfachten Kohlenwasserstoff-Chemie betrachtet. Berücksichtigt werden chemische Reaktionen, anthropogene und biogene Emissionen, trockene Deposition, passiver Transport und turbulente Diffusion. Für diese Berechnungen wurde innerhalb der untersten Modellschicht ein spezielles vertikales Untergitter eingeführt, um die in Oberflächennähe häufig angewendete Näherung konstanter Stoffflüsse zu eliminieren. (b) Das Untergitter-Modul unterteilt das horizontale Modellgitter in Unterzellen, auf welche die Berechnung der Boden- und Oberflächenflüsse bezogen wird. Die vertikalen Oberflächenflüsse von Impuls, sensibler und latenter Wärme, Strahlung, Bodenwärme und -feuchte sowie der chemischen Komponenten werden explizit im Untergitter bestimmt. Die über die Unterzellen gemittelten Flüsse werden für die im (gröberen) Modellgitter ablaufenden Berechnungen der meteorologischen Größen genutzt. Im Gegensatz dazu werden die chemischen Komponenten und Prozesse in allen Modellschichten vollständig auf dem Untergitter behandelt. Einige Ergebnisse dieser Methode werden im Vergleich mit Standard-Simulationen unterschiedlichen Auflösungsgrades gezeigt.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Subgrid"

1

Speziale, Charles G. On the subgrid-scale modeling of compressible turbulence. Hampton, Va: ICASE, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burkhardt, Thomas. Subgrid-scale vertical energy fluxes over the African-Atlantic region. Bonn: Dümmler, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

El-Hady, Nabil M. Large-eddy simulation of laminar-turbulent breakdown at high speeds with dynamic subgrid-scale modeling. Hampton, Va: Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Crovetti, James A. Comprehensive subgrade deflection acceptance criteria. Madison, WI: Wisconsin Dept. of Transportation, Division of Transportation Infrastructure Development, Bureau of Highway Construction, Technology Advancement Unit, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Hanhua, Zhijun Wu, Mengchong Chen, and Yongli Zhao. Controlling Differential Settlement of Highway Soft Soil Subgrade. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-0722-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Widger, Allan. Subgrade shear failures: Joint C-SHRP/Saskatchewan Bayesian application. Ottawa: Canadian Strategic Highway Research Program, Transportation Association of Canada, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Newcomb, David E. Measuring in situ mechanical properties of pavement subgrade soils. Washington, D.C: National Academy Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Edwards, M. R. Interaction of a warehouse floor slab with a subgrade. Birmingham: University of Birmingham, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bushman, William H. Final report: Stabilization techniques for unpaved roads. Charlottesville, Va: Virginia Transportation Research Council, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Puppala, Anand J. Estimating stiffness of subgrade and unbound materials for pavement design. Washington, D.C: Transportation Research Board, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Subgrid"

1

Roos Launchbury, David. "Subgrid Models." In Unsteady Turbulent Flow Modelling and Applications, 7–14. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-11912-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Uliasz, Marek. "Subgrid-Scale Parameterizations." In Mesoscale Modeling of the Atmosphere, 13–19. Boston, MA: American Meteorological Society, 1994. http://dx.doi.org/10.1007/978-1-935704-12-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshizawa, Akira. "Subgrid-Scale Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 145–72. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davidson, Lars, Davor Cokljat, Jochen Fröhlich, Michael A. Leschziner, Chris Mellen, and Wolfgang Rodi. "Task 1: Subgrid models." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), 9–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36457-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Domaradzki, J. Andrzej, and Kuo-Chieh Loh. "The Subgrid-Scale Estimation Model." In Recent Advances in DNS and LES, 121–31. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4513-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brezzi, Franco, and Donatella Marini. "Subgrid Phenomena and Numerical Schemes." In Lecture Notes in Computational Science and Engineering, 73–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56288-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brezzi, Franco, and Donatella Marini. "Subgrid Phenomena and Numerical Schemes." In Universitext, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55692-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

El-Hady, Nabil M. "Structure Function Dynamic Subgrid-Scale Model." In Transition, Turbulence and Combustion, 343–54. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brasseur, James G., Hungrui Gong, and Shiyi Chen. "Subgrid-Resolved Scale Dynamics in Isotropic Turbulence." In Advances in Turbulence VI, 201–4. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0297-8_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Trias, F. X., A. Gorobets, and A. Oliva. "A New Subgrid Characteristic Length for LES." In Direct and Large-Eddy Simulation XI, 135–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04915-7_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Subgrid"

1

Gs, Sidharth. "A multiscale subgrid decomposition." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-0820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arbogast, Todd, and Steven L. Bryant. "Numerical Subgrid Upscaling for Waterflood Simulations." In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2001. http://dx.doi.org/10.2118/66375-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reveillon, J., L. Vervisch, J. Reveillon, and L. Vervisch. "Subgrid-scale mixing - A dynamic approach." In 35th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Railton, Chris J. "A rotated subgrid for 3D FDTD." In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015. http://dx.doi.org/10.1109/aps.2015.7304551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

FREDERIKSEN, JORGEN S., and TERENCE J. O'KANE. "TURBULENCE CLOSURES AND SUBGRID-SCALE PARAMETERIZATIONS." In Proceedings of the COSNet/CSIRO Workshop on Turbulence and Coherent Structures in Fluids, Plasmas and Nonlinear Media. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812771025_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wong, Alfred K. K., and Lars W. Liebmann. "Asymmetric biasing for subgrid pattern adjustment." In 26th Annual International Symposium on Microlithography, edited by Christopher J. Progler. SPIE, 2001. http://dx.doi.org/10.1117/12.435697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Madsen, P. A., M. Rugbjerg, and I. R. Warren. "Subgrid Modelling in Depth Integrated Flows." In 21st International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1989. http://dx.doi.org/10.1061/9780872626874.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van Antwerpen, Vincent V., Wim A. Mulder, and Gérard C. Herman. "Subgrid elastic modeling in cracked media." In SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Portela, Lui´s M., and Rene´ V. A. Oliemans. "Subgrid Particle-Fluid Coupling Evaluation in Large-Eddy Simulations of Particle-Laden Flows." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33113.

Full text
Abstract:
Point-particle Eulerian-Lagrangian DNS/LES simulations allow us to deal with a large number of small particles, using relatively modest computer resources. When doing LES, one can consider the subgrid particle-fluid coupling, using a subgrid model, or simply ignore it. We present a criterion to evaluate the importance of the subgrid particle-fluid coupling on: (i) the particle motion, and (ii) the resolved fluid-motion. The criterion assumes that the particles can be treated as point-particles, from the perspective of both the resolved and subgrid motions, and it is based on simple “local equilibrium” models for the interaction between the particles and the subgrid fluid-motion. The criterion was applied to a high-resolution channel flow LES, with a moderate particle-loading. The results indicate that: (i) for heavy particles, the common practice of ignoring the subgrid particle-fluid coupling is adequate, (ii) for very-light particles a model for the subgrid-driven particle-velocity fluctuations might be important.
APA, Harvard, Vancouver, ISO, and other styles
10

Labryer, Allen, Peter Attar, and Prakash Vedula. "Subgrid-scale dynamics for a nonlinear beam." In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1711.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Subgrid"

1

Novikov, Evgeny. Structure of Turbulence and Subgrid-Scale Modeling. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada325561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Givi, P., and M. R. Sheikhi. Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada498253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bessac, Julie, William Pringle, Steven Brus, Yan Feng, Beth Drewniak, Virendra Ghate, Romit Maulik, and Johann Rudi. AI-Automated Detection of Subgrid-scale Processes for Adaptivity Guidance. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carniel, Sandro. Subgrid-Scale Parameterization in 3-D Models: The Role of Turbulent Mixing. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada631065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carniel, Sandro. Subgrid-Scale Parameterization in 3-D Models: The Role of Turbulent Mixing. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dickinson, Robert Earl. Final Report: Systematic Development of a Subgrid Scaling Framework to Improve Land Simulation. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1261106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Menon, Suresh. A New Approach to Validate Subgrid Models in Complex High Reynolds Number Flows. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada282340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Menon, Suresh. A New Approach to Validate Subgrid Models in Complex High Reynolds Number Flows. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada317103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Menon, Suresh. A New Approach to Validate Subgrid Models in Complex High Reynolds Number Flows. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada342640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Perot, Blair. Large Eddy Simulation Using a Transport Equation for the Subgrid-Scale Stress Tensor. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada469740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography