Journal articles on the topic 'Subgradient descent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 46 journal articles for your research on the topic 'Subgradient descent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Krutikov, Vladimir, Svetlana Gutova, Elena Tovbis, Lev Kazakovtsev, and Eugene Semenkin. "Relaxation Subgradient Algorithms with Machine Learning Procedures." Mathematics 10, no. 21 (October 25, 2022): 3959. http://dx.doi.org/10.3390/math10213959.
Full textTovbis, Elena, Vladimir Krutikov, Predrag Stanimirović, Vladimir Meshechkin, Aleksey Popov, and Lev Kazakovtsev. "A Family of Multi-Step Subgradient Minimization Methods." Mathematics 11, no. 10 (May 11, 2023): 2264. http://dx.doi.org/10.3390/math11102264.
Full textLi, Gang, Minghua Li, and Yaohua Hu. "Stochastic quasi-subgradient method for stochastic quasi-convex feasibility problems." Discrete & Continuous Dynamical Systems - S 15, no. 4 (2022): 713. http://dx.doi.org/10.3934/dcdss.2021127.
Full textChu, Wenqing, Yao Hu, Chen Zhao, Haifeng Liu, and Deng Cai. "Atom Decomposition Based Subgradient Descent for matrix classification." Neurocomputing 205 (September 2016): 222–28. http://dx.doi.org/10.1016/j.neucom.2016.03.069.
Full textBedi, Amrit Singh, and Ketan Rajawat. "Network Resource Allocation via Stochastic Subgradient Descent: Convergence Rate." IEEE Transactions on Communications 66, no. 5 (May 2018): 2107–21. http://dx.doi.org/10.1109/tcomm.2018.2792430.
Full textNedić, Angelia, and Soomin Lee. "On Stochastic Subgradient Mirror-Descent Algorithm with Weighted Averaging." SIAM Journal on Optimization 24, no. 1 (January 2014): 84–107. http://dx.doi.org/10.1137/120894464.
Full textCui, Yun-Ling, Lu-Chuan Ceng, Fang-Fei Zhang, Cong-Shan Wang, Jian-Ye Li, Hui-Ying Hu, and Long He. "Modified Mann-Type Subgradient Extragradient Rules for Variational Inequalities and Common Fixed Points Implicating Countably Many Nonexpansive Operators." Mathematics 10, no. 11 (June 6, 2022): 1949. http://dx.doi.org/10.3390/math10111949.
Full textMontonen, O., N. Karmitsa, and M. M. Mäkelä. "Multiple subgradient descent bundle method for convex nonsmooth multiobjective optimization." Optimization 67, no. 1 (October 12, 2017): 139–58. http://dx.doi.org/10.1080/02331934.2017.1387259.
Full textBeck, Amir, and Marc Teboulle. "Mirror descent and nonlinear projected subgradient methods for convex optimization." Operations Research Letters 31, no. 3 (May 2003): 167–75. http://dx.doi.org/10.1016/s0167-6377(02)00231-6.
Full textCeng, Lu-Chuan, Li-Jun Zhu, and Tzu-Chien Yin. "Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints." AIMS Mathematics 8, no. 2 (2023): 2961–94. http://dx.doi.org/10.3934/math.2023154.
Full textAuslender, A., and M. Teboulle. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization." Mathematics of Operations Research 29, no. 1 (February 2004): 1–26. http://dx.doi.org/10.1287/moor.1030.0062.
Full textCui, Yun-Ling, Lu-Chuan Ceng, Fang-Fei Zhang, Liang He, Jie Yin, Cong-Shan Wang, and Hui-Ying Hu. "Mann Hybrid Deepest-Descent Extragradient Method with Line-Search Process for Hierarchical Variational Inequalities for Countable Nonexpansive Mappings." Journal of Mathematics 2023 (May 15, 2023): 1–18. http://dx.doi.org/10.1155/2023/6177912.
Full textPanup, Wanida, and Rabian Wangkeeree. "Stochastic Subgradient for Large-Scale Support Vector Machine Using the Generalized Pinball Loss Function." Symmetry 13, no. 9 (September 8, 2021): 1652. http://dx.doi.org/10.3390/sym13091652.
Full textBoţ, Radu Ioan, and Axel Böhm. "An incremental mirror descent subgradient algorithm with random sweeping and proximal step." Optimization 68, no. 1 (June 14, 2018): 33–50. http://dx.doi.org/10.1080/02331934.2018.1482491.
Full textGokbayrak, Kagan, and Omer Selvi. "A Subgradient Descent Algorithm for Optimization of Initially Controllable Flow Shop Systems." Discrete Event Dynamic Systems 19, no. 2 (February 4, 2009): 267–82. http://dx.doi.org/10.1007/s10626-009-0061-z.
Full textArachie, Chidubem, and Bert Huang. "Adversarial Label Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 3183–90. http://dx.doi.org/10.1609/aaai.v33i01.33013183.
Full textGebken, Bennet, and Sebastian Peitz. "An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems." Journal of Optimization Theory and Applications 188, no. 3 (January 13, 2021): 696–723. http://dx.doi.org/10.1007/s10957-020-01803-w.
Full textStonyakin, Fedor Sergeevich, Aleksej N. Stepanov, Alexander Vladimirovich Gasnikov, and Alexander A. Titov. "Mirror descent for constrained optimization problems with large subgradient values of functional constraints." Computer Research and Modeling 12, no. 2 (April 2020): 301–17. http://dx.doi.org/10.20537/2076-7633-2020-12-2-301-317.
Full textKorablev, A. I., and V. V. Eisman. "A general method of finding the direction of descent in ε-subgradient methods." Journal of Mathematical Sciences 74, no. 6 (May 1995): 1327–31. http://dx.doi.org/10.1007/bf02367719.
Full textRobinson, Stephen M. "Linear convergence of epsilon-subgradient descent methods for a class of convex functions." Mathematical Programming 86, no. 1 (September 1, 1999): 41–50. http://dx.doi.org/10.1007/s101070050078.
Full textWang, Ximing, Neng Fan, and Panos M. Pardalos. "Stochastic subgradient descent method for large-scale robust chance-constrained support vector machines." Optimization Letters 11, no. 5 (March 15, 2016): 1013–24. http://dx.doi.org/10.1007/s11590-016-1026-4.
Full textHand, Paul, Oscar Leong, and Vladislav Voroninski. "Optimal sample complexity of subgradient descent for amplitude flow via non-Lipschitz matrix concentration." Communications in Mathematical Sciences 19, no. 7 (2021): 2035–47. http://dx.doi.org/10.4310/cms.2021.v19.n7.a11.
Full textLi, Liping, Wei Xu, Tianyi Chen, Georgios B. Giannakis, and Qing Ling. "RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1544–51. http://dx.doi.org/10.1609/aaai.v33i01.33011544.
Full textCeng, Lu-Chuan, Ching-Feng Wen, Yeong-Cheng Liou, and Jen-Chih Yao. "On Strengthened Inertial-Type Subgradient Extragradient Rule with Adaptive Step Sizes for Variational Inequalities and Fixed Points of Asymptotically Nonexpansive Mappings." Mathematics 10, no. 6 (March 17, 2022): 958. http://dx.doi.org/10.3390/math10060958.
Full textCeng, Lu-Chuan, Xiaolong Qin, Yekini Shehu, and Jen-Chih Yao. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings." Mathematics 7, no. 10 (September 22, 2019): 881. http://dx.doi.org/10.3390/math7100881.
Full textLuo, Songting, Shingyu Leung, and Jianliang Qian. "An Adjoint State Method for Numerical Approximation of Continuous Traffic Congestion Equilibria." Communications in Computational Physics 10, no. 5 (November 2011): 1113–31. http://dx.doi.org/10.4208/cicp.020210.311210a.
Full textXu, Hang, Song Li, and Junhong Lin. "Low rank matrix recovery with adversarial sparse noise*." Inverse Problems 38, no. 3 (January 18, 2022): 035001. http://dx.doi.org/10.1088/1361-6420/ac44dc.
Full textПеревозчиков, Александр Геннадьевич, Валерий Юрьевич Решетов, and Александра Ильинична Лесик. "The ''attack-defense'' model on networks with the initial residuals of the parties." Herald of Tver State University. Series: Applied Mathematics, no. 2 (July 21, 2021): 68–81. http://dx.doi.org/10.26456/vtpmk618.
Full textChen, Lin, Ji-Ting Jia, Qiong Zhang, Wan-Yu Deng, and Wei Wei. "Online Sequential Projection Vector Machine with Adaptive Data Mean Update." Computational Intelligence and Neuroscience 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/5197932.
Full textBaillon, J. B., and R. Cominetti. "A Convergence Result for Nonautonomous Subgradient Evolution Equations and Its Application to the Steepest Descent Exponential Penalty Trajectory in Linear Programming." Journal of Functional Analysis 187, no. 2 (December 2001): 263–73. http://dx.doi.org/10.1006/jfan.2001.3828.
Full textПеревозчиков, Александр Геннадьевич, Валерий Юрьевич Решетов, and Александра Ильинична Лесик. "The ``attack-defense'' game with restrictions on the intake capacity of points." Herald of Tver State University. Series: Applied Mathematics, no. 3 (November 30, 2020): 78–92. http://dx.doi.org/10.26456/vtpmk600.
Full textXia, Zun-quan. "Finding subgradients or descent directions of convex functions by external polyhedral approximation of subdifferentials." Optimization Methods and Software 1, no. 3 (January 1992): 253–64. http://dx.doi.org/10.1080/10556789208805523.
Full textGriewank, Andreas, and Andrea Walther. "Polyhedral DC Decomposition and DCA Optimization of Piecewise Linear Functions." Algorithms 13, no. 7 (July 11, 2020): 166. http://dx.doi.org/10.3390/a13070166.
Full textDick, Josef, Guoyin Li, and Dinh Duy Tran. "A new regularization for sparse optimization." ANZIAM Journal 62 (February 7, 2022): C176—C191. http://dx.doi.org/10.21914/anziamj.v62.16076.
Full textGu, Bin, Yingying Shan, Xin Quan, and Guansheng Zheng. "Accelerating Sequential Minimal Optimization via Stochastic Subgradient Descent." IEEE Transactions on Cybernetics, 2019, 1–9. http://dx.doi.org/10.1109/tcyb.2019.2893289.
Full textSchechtman, S. "Stochastic proximal subgradient descent oscillates in the vicinity of its accumulation set." Optimization Letters, May 6, 2022. http://dx.doi.org/10.1007/s11590-022-01884-8.
Full textKrygin, V., and R. Khomenko. "Self-Driven Algorithm for Solving Supermodular (max,+) Labeling Problems Based on Subgradient Descent*." Cybernetics and Systems Analysis, October 21, 2022. http://dx.doi.org/10.1007/s10559-022-00485-8.
Full textGez, Tamir L. S., and Kobi Cohen. "Subgradient Descent Learning over Fading Multiple Access Channels with Over-the-Air Computation." IEEE Access, 2023, 1. http://dx.doi.org/10.1109/access.2023.3291023.
Full textCeng, Lu-Chuan, and Qing Yuan. "Composite inertial subgradient extragradient methods for variational inequalities and fixed point problems." Journal of Inequalities and Applications 2019, no. 1 (October 26, 2019). http://dx.doi.org/10.1186/s13660-019-2229-x.
Full textBoţ, Radu Ioan, Minh N. Dao, and Guoyin Li. "Extrapolated Proximal Subgradient Algorithms for Nonconvex and Nonsmooth Fractional Programs." Mathematics of Operations Research, December 7, 2021. http://dx.doi.org/10.1287/moor.2021.1214.
Full textChen, Jia, and Ioannis D. Schizas. "Multimodal correlations-based data clustering." Foundations of Data Science, 2022, 0. http://dx.doi.org/10.3934/fods.2022011.
Full textLatz, Jonas. "Gradient flows and randomised thresholding: sparse inversion and classification." Inverse Problems, October 19, 2022. http://dx.doi.org/10.1088/1361-6420/ac9b84.
Full textJianhong, Wang, and Ricardo A. Ramirez-Mendoza. "Synthesis cascade estimation for aircraft system identification." Aircraft Engineering and Aerospace Technology, June 13, 2022. http://dx.doi.org/10.1108/aeat-03-2022-0093.
Full textDutta, Haimonti. "A Consensus Algorithm for Linear Support Vector Machines." Management Science, August 30, 2021. http://dx.doi.org/10.1287/mnsc.2021.4042.
Full textWen, Jiajun, Wai Keung Wong, Xiao-Li Hu, Honglin Chu, and Zhihui Lai. "Restricted subgradient descend method for sparse signal learning." International Journal of Machine Learning and Cybernetics, April 26, 2022. http://dx.doi.org/10.1007/s13042-022-01551-5.
Full textWen, Jiajun, Wai Keung Wong, Xiao-Li Hu, Honglin Chu, and Zhihui Lai. "Restricted subgradient descend method for sparse signal learning." International Journal of Machine Learning and Cybernetics, April 26, 2022. http://dx.doi.org/10.1007/s13042-022-01551-5.
Full text