Academic literature on the topic 'Subcontinental mantle dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Subcontinental mantle dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Subcontinental mantle dynamics"

1

Pari, Giovanni, and W. Richard Peltier. "The free-air gravity constraint on subcontinental mantle dynamics." Journal of Geophysical Research: Solid Earth 101, B12 (December 10, 1996): 28105–32. http://dx.doi.org/10.1029/96jb02099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tegner, Christian, Sandra A. T. Michelis, Iain McDonald, Eric L. Brown, Nasrrddine Youbi, Sara Callegaro, Sofie Lindström, and Andrea Marzoli. "Mantle Dynamics of the Central Atlantic Magmatic Province (CAMP): Constraints from Platinum Group, Gold and Lithophile Elements in Flood Basalts of Morocco." Journal of Petrology 60, no. 8 (August 1, 2019): 1621–52. http://dx.doi.org/10.1093/petrology/egz041.

Full text
Abstract:
Abstract Mantle melting dynamics of the Central Atlantic Magmatic Province (CAMP) is constrained from new platinum group element (PGE), gold (Au), rare earth element (REE), and high field strength element (HFSE) data and geochemical modelling of flood basalts in Morocco. The PGE are enriched similarly to flood basalts of other large igneous provinces. The magmas did not experience sulphide saturation during fractionation and were therefore fertile. The CAMP is thus prospective for PGE and gold mineralization. The Pt/Pd ratio of the Moroccan lavas indicates that they originated by partial melting of the asthenospheric mantle, not the subcontinental lithospheric mantle. Mantle melting modelling of PGE, REE and HFSE suggests the following: (1) the mantle source for all the lavas was dominated by primitive mantle and invariably included a small proportion of recycled continental crust (<8%); (2) the mantle potential temperature was moderately elevated (c. 1430°C) relative to ambient mantle; (3) intra-lava unit compositional variations are probably a combined result of variable amounts of crust in the mantle source (heterogeneous source) and fractional crystallization; (4) mantle melting initially took place at depths between c. 110 and c. 55 km and became shallower with time (c. 110 to c. 32 km depth); (5) the melting region appears to have changed from triangular to columnar with time. These results are best explained by melting of asthenospheric mantle that was mixed with continental sediments during the assembly of Pangaea, then heated and further mixed by convection while insulated under the Pangaea supercontinent, and subsequently melted in multiple continental rift systems associated with the breakup of Pangaea. Most probably the CAMP volcanism was triggered by the arrival of a mantle plume, although plume material apparently was not contributing directly (chemically) to the magmas in Morocco, nor to many other areas of CAMP.
APA, Harvard, Vancouver, ISO, and other styles
3

Pari, Giovanni, and W. Richard Peltier. "Subcontinental mantle dynamics: A further analysis based on the joint constraints of dynamic surface topography and free-air graviy." Journal of Geophysical Research: Solid Earth 105, B3 (March 10, 2000): 5635–62. http://dx.doi.org/10.1029/1999jb900349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sato, Yuto, and Kazuhito Ozawa. "Reconstruction of the lithosphere-asthenosphere boundary zone beneath Ichinomegata maar, Northeast Japan, by geobarometry of spinel peridotite xenoliths." American Mineralogist 104, no. 9 (September 1, 2019): 1285–306. http://dx.doi.org/10.2138/am-2019-6858.

Full text
Abstract:
Abstract Accurate estimation of the depths of spinel peridotite xenoliths for which reliable geobarometers are not available is imperative to be able to reconstruct the precise structures of the lithosphereasthenosphere boundary (LAB). The LAB can be defined based on thermal, chemical, rheological, and petrological contrasts, and knowing its depth is crucial to understanding mantle dynamics. We attack this problem by examining spinel peridotite xenoliths from Ichinomegata maar in the back-arc side of Northeast Japan Arc. Extensive mineral compositions of nine xenolith samples revealed various patterns of chemical zoning in pyroxenes, suggesting diverse thermal histories. We examined the timescales of development of each zoning pattern and identified minerals, grain portions, and components closely approached equilibrium just before xenolith extraction as orthopyroxene and clinopyroxene, the outermost rims, and Ca-Mg-Fe components, respectively. Applying the best pair of geothermobarometers to the chosen analyses, plausible derivation depths of eight samples were obtained. They range from 0.72–1.6 GPa in pressure and from 830–1080 °C in temperature, which defines a high thermal gradient of 10 K/km or 290 K/GPa. There is an intimate correlation between the zoning patterns of pyroxenes and the depth estimates: pyroxenes in the deeper samples have zoning indicating cooling followed by heating just before xenolith extraction, and those of the shallower samples have zoning indicating monotonic cooling. Depth variations of rock microstructures, grain size of olivine, chemical compositions of minerals, and phase assemblage, including the presence or absence of glass or fluid phase, show that the mantle beneath Ichinomegata consists of two distinct layers. The shallower (28–32 km) layer is granular, less oxidized, amphibole- and plagioclase-bearing, and subsolidus, whereas the deeper (41–55 km) layer is porphyroclastic, amphibole- and plagioclase-free, oxidized, and partially molten. The contrasts between the two layers suggest that the upper layer represents a lithospheric mantle and the lower layer a LAB zone. These layers are similar to those reported from the bottom of subcontinental lithospheric mantle in various aspects, but the LAB beneath Ichinomegata is much shallower (40–60 km) and cooler (~1100 °C). The coincidence of (1) the depth of a rheological transition, marked granular to porphyroclastic textures, and (2) the depth of a phase transition, from subsolidus hydrous peridotite to a hydrous mantle with melt in localized pockets, is the remarkable feature of the LAB beneath Ichinomegata. This suggests that a rheological boundary zone in arc settings is governed by melting of the hydrous mantle and that the underlying asthenosphere is partially molten. The depth-dependent thermal history shown by chemical zoning in pyroxenes and the presence of melt as pockets suggest that the LAB beneath Ichinomegata was in a transient state that was affected by thermal and material transport.
APA, Harvard, Vancouver, ISO, and other styles
5

Huong, Tran Thi, and Nguyen Hoang. "Petrology, geochemistry, and Sr, Nd isotopes of mantle xenolith in Nghia Dan alkaline basalt (West Nghe An): implications for lithospheric mantle characteristics beneath the region." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 3 (June 4, 2018): 207–27. http://dx.doi.org/10.15625/0866-7187/40/3/12614.

Full text
Abstract:
Study of petrological and geochemical characteristics of mantle peridotite xenoliths in Pliocene alkaline basalt in Nghia Dan (West Nghe An) was carried out. Rock-forming clinopyroxenes, the major trace element containers, were separated from the xenoliths to analyze for major, trace element and Sr-Nd isotopic compositions. The data were interpreted for source geochemical characteristics and geodynamic processes of the lithospheric mantle beneath the region. The peridotite xenoliths being mostly spinel-lherzolites in composition, are residual entities having been produced following partial melting events of ultramafic rocks in the asthenosphere. They are depleted in trace element abundance and Sr-Nd isotopic composition. Some are even more depleted as compared to mid-ocean ridge mantle xenoliths. Modelled calculation based on trace element abundances and their corresponding solid/liquid distribution coefficients showed that the Nghia Dan mantle xenoliths may be produced of melting degrees from 8 to 12%. Applying various methods for two-pyroxene temperature- pressure estimates, the Nghia Dan mantle xenoliths show ranges of crystallization temperature and pressure, respectively, of 1010-1044°C and 13-14.2 kbar, roughly about 43km. A geotherm constructed for the mantle xenoliths showed a higher geothermal gradient as compared to that of in the western Highlands (Vietnam) and a conductive model, implying a thermal perturbation under the region. The calculated Sm-Nd model ages for the clinopyroxenes yielded 127 and 122 Ma. If the age is meaningful it suggests that there was a major geodynamic process occurred beneath Western Nghe An in the middle- Early Cretaceous that was large enough to cause perturbation in the evolutional trend of the Sm-Nd isotopic system.ReferencesAn A-R., Choi S.H., Yu Y-g., Lee D-C., 2017. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos, 272-273 (2017), 192-204.Anders E., Grevesse N., 1989. Abundances of the elements: meteorite and solar. Geochimica et Cosmochimica Acta, 53, 197-214.Anderson D.L, 1994. The subcontinental mantle as the source of continental flood basalts; the case against the continental lithosphere mantle and plume hear reservoirs. Earth and Planetary Science Letter, 123, 269-280.Arai S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology, 113, 191-204.Ballhaus C., Berry R.G., Green D.H., 1991. High pressure experimental calibration of the olivine orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 27-40.Barr S.M. and MacDonald A.S., 1981. Geochemistry and geochronology of late Cenozoic basalts of southeast Asia: summary. Geological Society of America Bulletin, 92, 508-512.Brey G.P., Köhler T., 1990. Geothermobarometry in four-phase lherzolite II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378.Briais A., Patriat P., Tapponnier P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea, implications for the Tertiary tectonics of SE Asia. Journal of Geophysical Research, 98, 6299-6328.Carlson R.W., Irving A.J., 1994. Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. Earth and Planetary Science Letters, 126, 457-472.Carlson R.W., Lugmair G.W., 1979. Sm-Nd constraints on early lunar differentiation and the evolution of KREEP. Earth and Planetary Science Letters, 45, 123-132.Carlson R.W., Lugmair G.W., 1981. Sm-Nd age of lherzolite 67667: implications for the processes involved in lunar crustal formation. Earth and Planetary Science Letters, 56, 1-8.Choi H.S., Mukasa S.B., Zhou X-H., Xian X-G.H., Andronikov A.V., 2008. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology, 248, 40-61.Choi S.H., Jwa Y.-J., Lee H.Y., 2001. Geothermal gradient of the upper mantle beneath Jeju Island, Korea: evidence from mantle xenoliths. Island Arc, 10, 175-193.Choi S.H., Kwon S-T., Mukasa S.B., Sagon H., 2005. Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology, 22, 40-64.Cox K.G., Bell J.D., Pankhurst R.J., 1979. The Interpretation of Igneous Rocks. George Allen & Unwin.Cung Thuong Chi, Dorobek S.L., Richter C., Flower M., Kikawa E., Nguyen Y.T., McCabe R., 1998. Paleomagnetism of Late Neogene basalts in Vietnam and Thailand: Implications for the Post-Miocene tectonic history of Indochina. In: Flower M.F.J., Chung, S.L., Lo, C.H., (Eds.). Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Ser, American Geophysical Union, 27, 289-299.De Hoog J.C.M., Gall L., Cornell D.H., 2010. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geology, 270, 196-215.DePaolo D. J., 1981. Neodymium isotopes in the Colorado Front Range and crust - mantle evolution in the Proterozoic. Nature, 291, 193-197.DePaolo D.J., Wasserburg G.J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3(5), 249-252. Doi: https://doi.org/10.2113/gselements.13.1.11.Embey-Isztin A., Dobosi G., Meyer H.-P., 2001. Thermal evolution of the lithosphere beneath the western Pannonian Basin: evidence from deep-seat xenoliths. Tectonophysics, 331, 285-306.Fedorov P.I., Koloskov A.V., 2005. Cenozoic volcanism of Southeast Asia. Petrologiya, 13(4), 289-420.Frey F.A., Prinz M., 1978. Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemical data bearing on their Petrogenesis. Earth and Planetary Science Letters, 38, 129-176.Garnier V., Ohmenstetter D., Giuliani G., Fallick A.E., Phan T.T., Hoang Q.V., Pham V.L., Schawarz D., 2005. Basalt petrology, zircon ages and sapphire genesis from Dak Nong, southern Vietnam. Mineralogical Magazine, 69(1), 21-38.Gast P.W., 1968. Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta, 32, 1057-1086.Gorshkov A.P, Ivanenko A.N., Rashidov V.A., 1984. Hydro-magnetic investigations of submarine volcanic zones in the marginal seas of Pacific Ocean (Novovineisky and Bien Dong seas). Pacific Ocean Geology, 1, 13-20.Gorshkov A.P., 1981. Investigation of submarine volcanoes during the 10th course of scientific research vessel ‘Volcanolog’. Volcanology and Seismology, 6, 39-45 (in Russian).Hart S.R., 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90, 273-296.Hirose K., Kushiro I., 1993. Partial melting of dry peridotites at high pressures: determination of composition of melts segregated from peridotite using aggregate of diamond. Earth Planet Science Letters, 114, 477-489.Hoang-Thi H.A., Choi S.H., Yongjae Yu Y-g., Pham T.H., Nguyen K.H., Ryu J-S., 2018. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam. Lithos, 296-299 (2018), 382-395.Izokh A.E., Smirnov S.Z., Egorova V.V., Tran T.A., Kovyazin S.V., Ngo T.P., Kalinina V.V., 2010. The conditions of formation of sapphire and zircon in the areas of alkali-basaltoid volcanism in Central Vietnam. Russian Geology and Geophysics, 51(7), 719-733.Johnson K.T., Dick H.J.B. and Shimizu N., 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research (solid earth), 95, 2661-2678.Kölher T.P., Brey G.P., 1990. Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta, 54(9), 2375-2388.Kushiro I., 1996. Partial melting of a fertile mantle peridotite at high pressure: An experimental study using aggregates of diamond. In: A. Basu and S.R. Hart (Eds.), Earth Processes: Reading the Isotopic Code. AGU Monograph, 95, 109-122.Kushiro I., 1998. Compositions of partial melts formed in mantle peridotites at high pressures and their relation to those of primitive MORB. Physics of Earth and Planetary Interiors, 107, 103-110.Latin D., White N., 1990. Generating melt during lithospheric extension: Pure shear vs. simple shear. Geology, 18, 327-331.Lee T.-y. and Lawver L., 1995. Cenozoic plate reconstruction of Southeast Asia. In: M.F.J. Flower, R.J. McCabe and T.W.C. Hilde (Editors), Southeast Asia Structure, Tectonics, and Magmatism. Tectonophysics, 85-138.Li C-F., et al., 2015. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research (solid earth), 120, 1377-1399. Doi:10.1002/2014JB011686.Li C.-F., et al., 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 Geochemistry, Geophysics, Geosystems, 14, 4958-4983.Malinovsky A.I., Rashidov V.A., 2015. Compositional characteristics of sedimentary and volcano-sedimentary rocks of Phu Quy-Catwick island group in the continental shelf of Vietnam. Bulletin of Kamchatka Regional Association of ‘Educational - Scientific’ Center, Earth Sciences, 27(3), 12-34 (in Russian with English summary).McCulloch M.T., Wasserburg G.J., 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science, 200(4345), 1003-1011.Menzies M.A., Arculus R.L., Best M.G., et al., 1987. A record of subduction process and within-plate volcanism in lithospheric xenoliths of the southwestern USA. In P.H. Nixon (Editor), Mantle Xenoliths, John Wiley & Sons, Chichester, 59-74.Nguyen Hoang, Ogasawara M., Tran Thi Huong, Phan Van Hung, Nguyen Thi Thu, Cu Sy Thang, Pham Thanh Dang, Pham Tich Xuan, 2014. Geochemistry of Neogene Basalts in the Nghia Dan district, western Nghe An. J. Sci. of the Earth, 36, 403 -412.Nguyen Kinh Quoc, Nguyen Thu Giao, 1980. Cenozoic volcanic activity in Viet Nam. Geology and Mineral Resources, 2, 137-151 (in Vietnamese with English abstract).Nixon P.H., 1987 (Editor). Mantle xenoliths. John Wiley and Sons, 844p.Norman M.D. and Garcia M.O., 1999. Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth and Planetary Science Letters, 168, 27-44.Pollack H.N., Chapman D.S., 1977. On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 38, 279-296.Putirka K., 2008. Thermometers and Barometers for Volcanic Systems. In: Putirka, K., Tepley, F. (Eds.), Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and Geochemistry, Mineralogical Soc. Am., 69, 61-120. Putirka K.D., 2017. Down the craters: where magmas stored and why they erupt. Methods and Further Reading. Supplement to February 2017 issue of Elements, 3(1), 11-16.Putirka K.D., Johnson M., Kinzler R., Longhi J., Walker D., 1996. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 123, 92-108. Putirka K.D., Mikaelian H., Ryerson F., Shaw H., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88, 1542-1554. Qi Q., Taylor L.A., Zhou X., 1995. Petrology and geochemistry of mantle peridotite xenoliths from SE China. Journal of Petrology, 36, 55-79.Sachtleben T.H., Seck H.A., 1981. Chemical control on the Al-solubility in orthopyroxene and its implications on pyroxene geothermometry. Contributions to Mineralogy and Petrology, 78, 157-65.Shaw D.M., 1970. Trace element fractionation during anataxis. Geochimica et Cosmochimica Acta, 34, 237-243.Sun S-S, McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders A.D. and Norry, M.J. (eds) Magmatism in the Ocean Basins. Geological Society Special Publication, 42, 313-345.Takahashi E., 1986. Melting of a dry peridotite KLB-1 up to 14 Gpa: implications on the origin of peridotite upper mantle. J. Geophysical Research, 91, 9367-9382.Takahashi E., Kushiro I., 1983. Melting of a dry peridotite at high pressure and basalt magma genesis. American Mineralogist, 68, 859-879.Tamaki K., 1995. Upper mantle extrusion tectonics of southeast Asia and formation of western Pacific backarc basins. In: International Workshop: Cenozoic Evolution of the Indochina Peninsula, Hanoi/Do Son, April, p.89 (Abstract with Programs).Tapponnier P., Lacassin R., Leloup P.H., Shärer U., Dalai Z., Haiwei W., Xiaohan L., Shaocheng J., Lianshang Z., Jiayou Z., 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343(6257), 431-437.Tapponnier P., Peltzer G., La Dain A.Y., Armijo R., Cobbold P., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 7, 611-616.Tatsumoto M., Basu A.R., Huang W., Wang J., Xie G., 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci. Letters, 113, 107-128.Taylor S.R., McLennan S.M., 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London, 301, 381-399.Tu K., Flower M.F.J., Carlson R.W., Xie G-H., 1991. Sr, Nd, and Pb isotopic compositions of Hainan basalt (south China): Implications for a subcontinental lithosphere Dupal source. Geology, 19, 567-569.Tu K., Flower M.F.J., Carlson R.W., Xie G-H., Zhang M., 1992. Magmatism in the South China Basin 1. Isotopic and trace-element evidence for an endogenous Dupal component. Chemical Geology, 97, 47-63.Warren J.M., 2016. Global variations in abyssal peridotite compositions. Lithos, 248-251, 193-219.Webb S.A., Wood B.J., 1986. Spinel pyroxene- garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92, 471-480.Wells P.R.A., 1977. Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62, 129-139.Whitford-Stark J.L., 1987. A survey of Cenozoic olcanism on mainland Asia, special paper, 213. Geological Society of America, 74p.Workman R.K., Hart S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53-72.Zhou P., Mukasa S., 1997. Nd-Sr-Pb isotopic, and major- and trace-element geochemistry of Cenozoic lavas from the Khorat Plateau, Thailand, sources and petrogenesis. Chemical Geology, 137, 175-193.Zindler A., Hart S.R., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571.
APA, Harvard, Vancouver, ISO, and other styles
6

Dilek, Yildirim, and Limei Tang. "Magmatic record of the Mesozoic geology of Hainan Island and its implications for the Mesozoic tectonomagmatic evolution of SE China: effects of slab geometry and dynamics in continental tectonics." Geological Magazine 158, no. 1 (December 10, 2020): 118–42. http://dx.doi.org/10.1017/s0016756820001211.

Full text
Abstract:
AbstractOur field-based geochemical studies of the Triassic, Jurassic and Cretaceous granitoids on Hainan Island indicate that their magmas had different geochemical affinities, changing from alkaline in the Triassic through ocean island basalt (OIB) in the Jurassic, to calc-alkaline in the Cretaceous. We show that these changes in the geochemical affinities of the Mesozoic granitoids on Hainan and in SE China reflect different melt sources and melt evolution patterns through time. Our new geodynamic model suggests that: (1) Triassic geology was controlled by flat-slab subduction of the palaeo-Pacific plate beneath SE China. This slab dynamics resulted in strong coupling between the lower and upper plates, causing push-over tectonics and contractional deformation in SE China. Flat subduction-induced edge flow and aesthenospheric uprising led to the production of high-K granites, syenites and mafic rocks. (2) Slab foundering, accelerated subduction rates and subduction hinge retreat in the Early Jurassic caused rapid rollback of the downgoing slab. Strong decoupling of the upper and lower plates resulted in pull-away tectonics, producing extensional deformation in SE China. Decompression melting of the upwelling aesthenosphere produced OIB-type melts, which interacted with the subcontinental lithospheric mantle (SCLM) to form A- and I-type granitoids. (3) Segmentation of the palaeo-Pacific plate in the Early Cretaceous resulted in steeply dipping slabs and their faster rollback, facilitating lithospheric-scale extension and oceanward migration of calc-alkaline magmatism. This extensional deformation played a significant role in the formation of metamorphic core complexes, widespread crustal melting and development of a Basin and Range-type tectonics and landscape evolution in SE China.
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Hoang, Ryuichi Shinjo, Thi Huong Tran, Duc Luong Le, and Duc Anh Le. "Mantle geodynamics and source domain of the East Vietnam Sea opening- induced volcanism in Vietnam and neighboring regions." Tạp chí Khoa học và Công nghệ biển 21, no. 4 (December 31, 2021): 393–417. http://dx.doi.org/10.15625/1859-3097/16856.

Full text
Abstract:
The spreading of the East Vietnam Sea (EVS, also known as Bien Dong, or the South China Sea), leading to the occurrence of syn-spreading (33-16 Ma) and post-spreading (< 16 to present) volcanism. Syn-spreading magma making up thick layers of tholeiitic basalt with a geochemical composition close to the refractory and depleted mid-ocean ridge basalt (MORB) is mainly distributed inside the EVS basin. The post-spreading magma is widely distributed inside the basin and extended to South and SE China, Hainan island, Southern Laos (Bolaven), Khorat Plateau (Thailand), and Vietnam, showing the typical intraplate geochemistry. Basaltic samples were collected at many places in Indochina countries, Vietnam’s coastal and continental shelf areas, to analyze for eruption age, petrographical, geochemical, and isotopic composition to understand the similarities and differences in the mantle sources between regions. The results reveal that basalts from some areas show geochemical features suggesting they were derived subsequently by spinel peridotite and garnet peridotite melting, forming high-Si, low-Mg, and low-Ti tholeiitic basalt to low-Si, high-Mg, and high-Ti alkaline basalt with the trace element enrichment increasing over time. Other basalts have geochemical and isotopic characteristics unchanged over a long period. The post-spreading basalt’s radiogenic Sr-Nd-Hf-Pb isotopic compositions show different regional basalts distribute in the various fields regardless of eruption age, suggesting that their mantle source feature is space-dependent. The post-EVS spreading basalts expose the regional heterogeneity, reflecting the mixture of at least three components, including a depleted mantle (DM) represented by the syn-EVS spreading source, similar to the DUPAL-bearing Indian MORB source; an enriched mantle type 1 (EM1), and type 2 (EM2). The DM may interact and acquire either EM1 or EM2 in the sub-continental lithospheric mantle; as a result, different eruption at different area acquires distinct isotopic signature, reflecting the heterogeneous nature of the subcontinental lithospheric mantle. The study proposes a suitable mantle dynamic model that explains the EVS spreading kinematics and induced volcanism following the India - Eurasian collision from the Eocene based on the research outcomes.
APA, Harvard, Vancouver, ISO, and other styles
8

Fan, Xingli, Qi-Fu Chen, Yinshuang Ai, Ling Chen, Mingming Jiang, Qingju Wu, and Zhen Guo. "Quaternary sodic and potassic intraplate volcanism in northeast China controlled by the underlying heterogeneous lithospheric structures." Geology, July 15, 2021. http://dx.doi.org/10.1130/g48932.1.

Full text
Abstract:
The origin and mantle dynamics of the Quaternary intraplate sodic and potassic volcanism in northeast China have long been intensely debated. We present a high-resolution, three-dimensional (3-D) crust and upper-mantle S-wave velocity (Vs) model of northeast China by combining ambient noise and earthquake two-plane wave tomography based on unprecedented regional dense seismic arrays. Our seismic images highlight a strong correlation between the basalt geochemistry and upper-mantle seismic velocity structure: Sodic volcanoes are all characterized by prominent low seismic velocities in the uppermost mantle, while potassic volcanoes still possess a normal but thin upper-mantle “lid” depicted by high seismic velocities. Combined with previous petrological and geochemical research findings, we propose that the rarely erupted Quaternary potassic volcanism in northeast China results from the interaction between asthenospheric low-degree melts and the overlying subcontinental lithospheric mantle. In contrast, the more widespread Quaternary sodic volcanism in this region is predominantly sourced from the upwelling asthenosphere without significant overprinting from the subcontinental lithospheric mantle.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Yang, Zhong‐Hai Li, and Pengpeng Huangfu. "Continental Deep Subduction Versus Subduction Cessation: The Fate of Collisional Orogens." Tectonics, August 10, 2023. http://dx.doi.org/10.1029/2022tc007695.

Full text
Abstract:
AbstractThe contrasting fates of collisional orogens, i.e., continental deep subduction or subduction cessation, are widely recognized by petrological, paleomagnetic and geophysical observations. However, the mechanisms of such different collisional modes, especially the dynamics of continental deep subduction, are controversial. In this study, we integrate the phase transition‐induced density evolution into a thermo‐mechanical numerical model. Combing the systematic petrological‐thermo‐mechanical models with force balance analyses, we find that the high metamorphic transformation degree, mildly depleted mantle composition of the subcontinental lithosphere, and a long preceding oceanic slab, increase the driving force for continental deep subduction. Additionally, the rheologically weak continental crust and asthenospheric mantle decrease the resistance force and promote deep subduction. Otherwise, the continental subduction cessation mode is favored. The calculations of slab negative buoyancy indicate that the phase transition‐induced metamorphic densification of the subducted continental crust and the mildly to moderately depleted lithospheric mantle can provide a great slab pull force to sustain the continued continental deep subduction; however, the positive buoyancy of highly depleted Archean lithospheric mantle impedes deep subduction and causes subduction cessation. Based on systematic numerical models, we also evaluate the crustal mass balance or deficit in continental collisional system, which indicates that ∼12%‐47% of pre‐collisional felsic crust could be subducted deeply with the sinking slab in the regime of continental deep subduction. In contrast, the recycled felsic crust is negligible in the regime of subduction cessation. Thus, the different modes of continental collision play a crucial role in the global crustal recycling and related mantle heterogeneities.This article is protected by copyright. All rights reserved.
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Jin-Hua, Fan Huang, and Deng-Hong Wang. "Batholith recorded mesozoic multistage tectonic evolution of the South china block: A case study of the guandimiao intrusions." Frontiers in Earth Science 10 (August 9, 2022). http://dx.doi.org/10.3389/feart.2022.948723.

Full text
Abstract:
South China is a well-known grand felsic igneous rocks province. However, it is still controversial and not well understood whether the Mesozoic tectono-magmatic pattern is dominated by the subduction of the paleo-Pacific oceanic plate. In this study, we address this question by concentrating on the long-term evolutionary Guandimiao batholith, which has complex lithofacies with different formation ages and can be a superb record of the Mesozoic tectonic evolution in South China. Geochronologically, four stages of magmatism can be identified combined with previous reports: granodiorite (G1, 239 Ma), biotite monzogranite (G2-1) and two-mica monzogranite (G2-2) (230–203 Ma), granite porphyry (G3, 211–190 Ma), and lamprophyre (L4, 121 Ma). G1 and G2-1 have an affinity with I-type granite and were derived from metabasaltic to metatonalitic sources, whereas G2 and G3 show S-type granite characteristics and were derived from the para-metamorphic basement of the Cathaysia block. The L4 was derived from partial melting of garnet and spinel lherzolite and underwent mixing between Mesoproterozoic pelagic and/or terrigenous sediments and the subcontinental lithosphere mantle (SCLM) of South China. The granitoids of the Guandimiao batholith underwent intensely fractional crystallization of feldspar, Ti-bearing minerals, allanite and monazite. The zircon U–Pb dating of L4 in the Guandimiao batholith completely records the six stages of pre-Mesozoic tectonic events in the SCB. During the Mesozoic, the main body of the Guandimiao batholith (G1, G2-1 and G2-2) recorded the closure of the paleo-Tethys Ocean in the Triassic and the subsequent regional extension of the postcollision. G-3 and L4 of the Guandimiao batholith documented the transition of tectonic and dynamic regimes in the early Yanshanian and the rollback and steep subduction of the paleo-Pacific Ocean in the late Yanshanian.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography