To see the other types of publications on this topic, follow the link: Sub-synaptic localization.

Journal articles on the topic 'Sub-synaptic localization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 journal articles for your research on the topic 'Sub-synaptic localization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rodrigues, Diana I., Jessié Gutierres, Anna Pliássova, Catarina R. Oliveira, Rodrigo A. Cunha, and Paula Agostinho. "Synaptic and Sub-Synaptic Localization of Amyloid-β Protein Precursor in the Rat Hippocampus." Journal of Alzheimer's Disease 40, no. 4 (May 19, 2014): 981–92. http://dx.doi.org/10.3233/jad-132030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rosenbrock, Holger, Katja Kroker, Birgit Stierstorfer, Scott Hobson, Roberto Arban, and Cornelia Dorner-Ciossek. "S31. ENHANCEMENT OF SYNAPTIC PLASTICITY BY COMBINATION OF PDE2 AND PDE9 INHIBITION PRESUMABLY VIA PRE- AND POST-SYNAPTIC MECHANISMS." Schizophrenia Bulletin 46, Supplement_1 (April 2020): S43. http://dx.doi.org/10.1093/schbul/sbaa031.097.

Full text
Abstract:
Abstract Background Evidence from clinical and preclinical studies has led to the hypothesis that impaired glutamatergic transmission and NMDA receptor hypofunction play an important role in cognitive impairment associated with schizophrenia (CIAS). Second messenger pathways depending on cAMP and/or cGMP are key regulators of glutamatergic transmission and NMDA receptor related pathways. Therefore, the specific cyclic nucleotide phosphodiesterases (PDEs) PDE2 and PDE9, expressed in cognition relevant brain regions such as cortex and hippocampus, are putative targets for cognition enhancement in neuropsychiatric disorders (Dorner-Ciossek et al., 2017; Zhang et al., 2017). In fact, it has previously been shown that either PDE2 or PDE9 inhibition increases synaptic plasticity, as determined by hippocampal long-term potentiation (LTP), and improves memory performance in animal cognition tasks. However, the exact sub-cellular localization of PDE2 and PDE9 enzymes in neurons is not fully established. Thus, in the present study, co-localization studies of PDE2 and PDE9 with pre- and post-synaptic markers were performed by double immunofluorescence staining. Moreover, the PDE2 inhibitor PF-05180999 (Helal et al., 2018) was characterized regarding enhancement of hippocampal LTP and further investigated in combination with the PDE9 inhibitor Bay 73–6691 (Wunder et al., 2005) for potential synergistic effects on LTP. Methods Brains of adult rats were fixed with formalin and sliced for double immunofluorescence staining of PDE2 or PDE9 enzymes with pre-/post-synaptic markers. Analysis of staining was performed by confocal microscopy. Effects of the PDE2 inhibitor PF-05180999 alone and in combination with the PDE9 inhibitor Bay 73–6691 on synaptic plasticity were evaluated in rat hippocampal slices by using a protein-synthesis independent early LTP paradigm. Results Double immunofluorescence analysis revealed co-localization of PDE2 predominantly with pre-synaptic, but not post-synaptic, markers and mainly in glutamatergic neurons. In contrast, PDE9 showed co-localization with post-synaptic markers. Inhibition of PDE2 by PF-05180999 led to a concentration-dependent enhancement of early LTP. Combination of PF-05180999 with a subthreshold concentration of the PDE9 inhibitor Bay 73–6691 caused a transformation from early LTP into protein-synthesis dependent late LTP. Discussion Immunofluorescence staining suggests that PDE2 is localized pre-synaptically in glutamatergic neurons. This might indicate an involvement of PDE2 in neurotransmitter release via regulating cGMP/cAMP levels at pre-synaptic terminals, whereas PDE9 is located post-synaptically presumably involved in the NMDA receptor signaling cascade via regulation of cGMP. Corroborating previous findings, PDE2 inhibition improves synaptic plasticity as shown by enhanced LTP. Moreover, for the first time, we could show that the combination of a PDE2 with a PDE9 inhibitor acts synergistically on improvement of synaptic plasticity as demonstrated by the shift from early into late LTP, which is considered to be a crucial mechanism for memory formation. References
APA, Harvard, Vancouver, ISO, and other styles
3

Bustos, Rodrigo, E. Robert Kolen, Lelita Braiterman, Anthony J. Baines, Fred S. Gorelick, and Ann L. Hubbard. "Synapsin I is expressed in epithelial cells: localization to a unique trans-Golgi compartment." Journal of Cell Science 114, no. 20 (October 15, 2001): 3695–704. http://dx.doi.org/10.1242/jcs.114.20.3695.

Full text
Abstract:
Synapsin I is abundant in neural tissues. Its phosphorylation is thought to regulate synaptic vesicle exocytosis in the pre-synaptic terminal by mediating vesicle tethering to the cytoskeleton. Using anti-synapsin antibodies, we detected an 85 kDa protein in liver cells and identified it as synapsin I. Like brain synapsin I, non-neuronal synapsin I is phosphorylated in vitro by protein kinase A and yields identical 32P-peptide maps after limited proteolysis. We also detected synapsin I mRNA in liver by northern blot analysis. These results indicate that the expression of synapsin I is more widespread than previously thought. Immunofluorescence analysis of several non-neuronal cell lines localizes synapsin I to a vesicular compartment adjacent to trans-elements of the Golgi complex, which is also labeled with antibodies against myosin II; no sub-plasma membrane synapsin I is evident. We conclude that synapsin I is present in epithelial cells and is associated with a trans-Golgi network-derived compartment; this localization suggests that it plays a role in modulating post-TGN trafficking pathways.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Erdong, Jean-Francois Paré, Thomas Wichmann, and Yoland Smith. "Sub-synaptic localization of Cav3.1 T-type calcium channels in the thalamus of normal and parkinsonian monkeys." Brain Structure and Function 222, no. 2 (June 2, 2016): 735–48. http://dx.doi.org/10.1007/s00429-016-1242-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Xiaojuan, and Wim Annaert. "The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication." Membranes 11, no. 4 (March 30, 2021): 248. http://dx.doi.org/10.3390/membranes11040248.

Full text
Abstract:
Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimulated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules. In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains at the membranes. These nanodomains are dynamic functional units, playing important roles in mediating signal transmission through synapses. Herein, we discuss our current knowledge on the super-resolution nanoscopic architecture of synapses and their functional implications, with a particular focus on the neuronal synapses and immune synapses.
APA, Harvard, Vancouver, ISO, and other styles
6

Najafi, Tahereh, Rosmina Jaafar, Rabani Remli, Asyraf W. Zaidi, and Kalaivani Chellappan. "The Role of Brain Signal Processing and Neuronal Modelling in Epilepsy – A Review." Jurnal Kejuruteraan 33, no. 4 (November 30, 2021): 801–15. http://dx.doi.org/10.17576/jkukm-2021-33(4)-03.

Full text
Abstract:
Epilepsy is a neurological disorder characterized by recurrent seizures due to spontaneous changes of chemical synaptic coupling within the central nervous system. Numerous studies have been done in order to increase the level of cognition in epilepsy. Electroencephalography (EEG) as a non-invasive technique with the ability of presenting potentials on the head surface due to neural activity is widely used in epilepsy studies. The signals have been analyzed by brain signal processing techniques which mainly are categorized in feature extraction, feature dimensionally reduction and classification. The limitations such as inapproachability to intracranial in vivo and few seizure occurrences during sampling led to investigate on a model of signals and neural activity. This paper reviews the fundamentals of epilepsy toward using brain signal processing and neuronal modeling in three major branches; detection, prediction and source localization. It resulted a rare number of investigations on seizure epilepsy prediction due to the lack of long-term epilepsy EEG recording ending to the seizure. Subsequently, this review paper suggests to consider brain signal processing techniques in sub-branches of epilepsy detection; status, type, markers and surface localization, whilst it plays a remarkable role targeting to the source localization by neuronal modeling.
APA, Harvard, Vancouver, ISO, and other styles
7

Schöpf, Clemens L. "Calcium channel α2δ subunits: sub-synaptic localization in cultured hippocampal neurons and phenotypic characterization of α2δ-1/-3 knockout mice." Intrinsic Activity 1, Suppl. 1 (October 1, 2013): A1.47. http://dx.doi.org/10.25006/ia.1.s1-a1.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van Lookeren Campagne, M., A. B. Oestreicher, T. P. van der Krift, W. H. Gispen, and A. J. Verkleij. "Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: suitability for immunogold ultrastructural localization of neural antigens." Journal of Histochemistry & Cytochemistry 39, no. 9 (September 1991): 1267–79. http://dx.doi.org/10.1177/39.9.1833448.

Full text
Abstract:
We examined the suitability of freeze-substitution and Lowicryl HM20 embedding of aldehyde-fixed rat brain to localize several neural antigens at the ultrastructural level. The following rabbit polyclonal and mouse monoclonal antibodies were used: affinity-purified polyclonal immunoglobulins G raised to B-50/GAP43 (a membrane-anchored, growth-associated protein); affinity-purified polyclonal immunoglobulins G to human glial fibrillary acidic protein (GFAP; a subunit of glial filaments); a polyclonal antiserum raised to adrenocorticotropic hormone[25-39] (a neuropeptide present in dense-core granules); a polyclonal antiserum raised to myelin basic protein (a protein present in compact myelin of the central nervous system); and mouse monoclonal antibodies to synaptophysin (an integral membrane protein of small synaptic vesicles). Rat mesencephalon was fixed by perfusion with buffered 2% glutaraldehyde and 4% paraformaldehyde, cryoprotected, and frozen in liquid nitrogen. Freeze-substitution of tissue was performed with anhydrous methanol and 0.5% uranyl acetate at -90 degrees C. Semi-thin Lowicryl sections were used for light microscopic visualization of B-50 in the ventromedial mesencephalic central gray substance. The procedure preserves well the ultrastructure of this region and the immunoreactivity of the selected antigens. This study shows that dehydration by freeze-substitution, combined with Lowicryl HM20 embedding at sub-zero temperature, provides a successful method of preparation of fixed brain tissue for ultrastructural studies, allowing immunogold localization of several neural antigens by double labeling in the same section and in serial sections.
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, Eugenia M. C. "Na+ - and Cl−-dependent neurotransmitter transporters in bovine retina: Identification and localization by in situ hybridization histochemistry." Visual Neuroscience 12, no. 6 (November 1995): 1135–42. http://dx.doi.org/10.1017/s0952523800006775.

Full text
Abstract:
AbstractThe physiological actions of biogenic amine and amino-acid neurotransmitters are terminated by their removal from the synaptic cleft by specific high-affinity transport proteins. The members of the Na+- and Cl−-dependent neurotransmitter transporter family expressed in bovine retina and responsible for the uptake of biogenic amine and amino-acid neurotransmitters were identified using a reverse transcriptase-polymerase chain reaction-based approach. cDNA clones encoding bovine homologues of glycine (GLYT-1), γ-aminobutyric acid (GAT-1) creatine (CreaT), and orphan (NTT4) transporters were identified using this strategy. The expression pattern of mRNAs encoding these proteins in the retina was determined by in situ hybridization histochemistry GLYT-1 CreaT NTT4 and GAT-1 mRNAs were expressed in the retina by cells in the inner nuclear inner plex, iform and ganglion cell layers They were not expressed at detectable levels in the photoreceptor cells whose cell bodies are in the outer nuclear layer and are the most abundant cell type in the retina GLYT-1 mRNA was present exclusively in the proximal inner nuclear layer GAT-1 mRNA was localized to both the inner nuclear and ganglion cell layers CreaT mRNA was expressed in all cell types in the retina except photoreceptors and NTT4 mRNA was expressed by a sub subpoulation of cells in the ganglion cell laver. Elucidation of the expression pattern of these neurotransmitter transporter mRNAs in the retina provides a basis for studies of the role of glycine γ-aminobutyric acid and creatine transporters in retinal function.
APA, Harvard, Vancouver, ISO, and other styles
10

Marshall, Misty R., Varsha Pattu, Bin Qu, Marcus Hoth, and Jens Rettig. "Characterization of SNARE proteins involved in granule exocytosis of cytotoxic T lymphocytes (35.25)." Journal of Immunology 182, no. 1_Supplement (April 1, 2009): 35.25. http://dx.doi.org/10.4049/jimmunol.182.supp.35.25.

Full text
Abstract:
Abstract Cytotoxic T lymphocytes (CTLs) exert their cytotoxic activity through the polarized secretion of cytotoxic granules at the immunological synapse (IS). Because soluble NSF attachment receptor (SNARE) proteins mediate numerous intra- and intercellular fusion events and are essential effectors of exocytosis of synaptic granules in neurons, we examined the contribution of specific SNARE proteins to the formation of the IS. To determine the functional significance of specific SNAREs, our lab has examined the expression profile of more than 40 SNARE proteins by RT-PCR and quantitated various protein levels of these SNAREs in resting and activated CTLs. We have found that the expression profile of some SNARE proteins is up or down-regulated upon CTL maturation. In conjunction with these studies, we have also analyzed the sub-cellular localization and mobilization following IS formation of all SNAREs that are expressed in CD8+ T-cells for which specific antibodies are available. Some but not all SNARE proteins are translocated towards the immunological synapse and some co-localized with cytotoxic lytic granules at the immunological synapse. We found that syntaxin 4, syntaxin 6, VAMP 3, and VAMP 8, among other proteins, seem to polarize and colocalize with cytotoxic granule markers at the immune synapse suggesting they play important roles in cytotoxic granule secretion. Grant/ other support: DFG RE 1092/6-1
APA, Harvard, Vancouver, ISO, and other styles
11

Bhandari, Sudhir, Ajit Singh Shaktawat, Bhoopendra Patel, Amitabh Dube, Shivankan Kakkar, Amit Tak, Jitendra Gupta, and Govind Rankawat. "The sequel to COVID-19: the antithesis to life." Journal of Ideas in Health 3, Special1 (October 1, 2020): 205–12. http://dx.doi.org/10.47108/jidhealth.vol3.issspecial1.69.

Full text
Abstract:
The pandemic of COVID-19 has afflicted every individual and has initiated a cascade of directly or indirectly involved events in precipitating mental health issues. The human species is a wanderer and hunter-gatherer by nature, and physical social distancing and nationwide lockdown have confined an individual to physical isolation. The present review article was conceived to address psychosocial and other issues and their aetiology related to the current pandemic of COVID-19. The elderly age group has most suffered the wrath of SARS-CoV-2, and social isolation as a preventive measure may further induce mental health issues. Animal model studies have demonstrated an inappropriate interacting endogenous neurotransmitter milieu of dopamine, serotonin, glutamate, and opioids, induced by social isolation that could probably lead to observable phenomena of deviant psychosocial behavior. Conflicting and manipulated information related to COVID-19 on social media has also been recognized as a global threat. Psychological stress during the current pandemic in frontline health care workers, migrant workers, children, and adolescents is also a serious concern. Mental health issues in the current situation could also be induced by being quarantined, uncertainty in business, jobs, economy, hampered academic activities, increased screen time on social media, and domestic violence incidences. The gravity of mental health issues associated with the pandemic of COVID-19 should be identified at the earliest. Mental health organization dedicated to current and future pandemics should be established along with Government policies addressing psychological issues to prevent and treat mental health issues need to be developed. References World Health Organization (WHO) Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ [Accessed on 23 August 2020] Sim K, Chua HC. The psychological impact of SARS: a matter of heart and mind. CMAJ. 2004; 170:811e2. https://doi.org/10.1503/cmaj.1032003. Wu P, Fang Y, Guan Z, Fan B, Kong J, Yao Z, et al. The psychological impact of the SARS epidemic on hospital employees in China: exposure, risk perception, and altruistic acceptance of risk. Can J Psychiatr. 2009; 54:302e11. https://doi.org/10.1177/070674370905400504. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet. 2020; 395:912e20. https://doi.org/10.1016/S0140-6736(20)30460-8. Robertson E, Hershenfield K, Grace SL, Stewart DE. The psychosocial effects of being quarantined following exposure to SARS: a qualitative study of Toronto health care workers. Can J Psychiatr. 2004; 49:403e7. https://doi.org/10.1177/070674370404900612. Barbisch D, Koenig KL, Shih FY. Is there a case for quarantine? Perspectives from SARS to Ebola. Disaster Med Public Health Prep. 2015; 9:547e53. https://doi.org/10.1017/dmp.2015.38. Jeong H, Yim HW, Song YJ, Ki M, Min JA, Cho J, et al. Mental health status of people isolated due to Middle East Respiratory Syndrome. Epidemiol Health. 2016;38: e2016048. https://doi.org/10.4178/epih.e2016048. Liu X, Kakade M, Fuller CJ, Fan B, Fang Y, Kong J, et al. Depression after exposure to stressful events: lessons learned from the severe acute respiratory syndrome epidemic. Compr Psychiatr. 2012; 53:15e23. https://doi.org/10.1016/j.comppsych.2011.02.003 Chadda RK, Deb KS. Indian family systems, collectivistic society and psychotherapy. Indian J Psychiatry. 2013;55: S299‑ https://dx.doi.org/10.4103%2F0019-5545.105555. Grover S, Sahoo S, Mehra A, Avasthi A, Tripathi A, Subramanyan A, et al. Psychological impact of COVID‑19 lockdown: An online survey from India. Indian J Psychiatry. 2020; 62:354-62. https://doi.org/ 10.4103/psychiatry.IndianJPsychiatry _427_20. Hawkley LC, Cacioppo JT. Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Ann Behav Med. 2010; 40: 218–27. https://dx.doi.org/10.1007%2Fs12160-010-9210-8. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7. Bhandari S, Sharma R, Singh Shaktawat A, Banerjee S, Patel B, Tak A, et al. COVID-19 related mortality profile at a tertiary care centre: a descriptive study. Scr Med. 2020;51(2):69-73. https://doi.org/10.5937/scriptamed51-27126. Baumeister RF, Leary MR. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol Bull. 1995; 117: 497–529. https://doi.org/10.1037/0033-2909.117.3.497. Caspi A, Harrington H, Moffitt TE, Milne BJ, Poulton R. Socially isolated children 20 years later: risk of cardiovascular disease. Arch Pediatr Adolesc Med. 2006; 160(8):805-11. https://doi.org/10.1001/archpedi.160.8.805. Eaker ED, Pinsky J, Castelli WP. Myocardial infarction and coronary death among women: psychosocial predictors from a 20-year follow-up of women in the Framingham Study. Am J Epidemiol. 1992; 135(8):854-64. https://doi.org/10.1093/oxfordjournals.aje.a116381. Luo Y, Hawkley LC, Waite LJ, Cacioppo JT. Loneliness, health, and mortality in old age: a national longitudinal study. Soc Sci Med. 2012 Mar; 74(6):907-14. https://dx.doi.org/10.1016%2Fj.socscimed.2011.11.028. Olsen RB, Olsen J, Gunner-Svensson F, Waldstrøm B. Social networks and longevity. A 14-year follow-up study among elderly in Denmark. Soc Sci Med. 1991; 33(10):1189-95. https://doi.org/10.1016/0277-9536(91)90235-5. Patterson AC, Veenstra G. Loneliness and risk of mortality: a longitudinal investigation in Alameda County, California. Soc Sci Med. 2010; 71(1):181-6. https://doi.org/10.1016/j.socscimed.2010.03.024. Savikko N, Routassalo P, Tilvis RS, Strandberg TE, Pitkalla KH. Predictors and subjective causes of loneliness in an aged population. Arch Gerontol Geriatrics. 2005; 41:3;223-33. https://doi.org/10.1016/j.archger.2005.03.002. Health Advisory for Elderly Population of India during COVID19. Available at: https://www.mohfw.gov.in/pdf/AdvisoryforElderlyPopulation.pdf [Accessed on 13 August 2020]. Dicks D, Myers R, Kling A. Uncus and amygdala lesions: effects on social behavior in the free-ranging rhesus monkey. Science. 1969; 165:69–71. https://doi.org/10.1126/science.165.3888.69. Kanai R, Bahrami B, Duchaine B, Janik A, Banissy MJ, Rees G. Brain structure links loneliness to social perception. Curr Biol. 2012; 22(20):1975-9. https://dx.doi.org/10.1016%2Fj.cub.2012.08.045. Bender AR, Daugherty A, Raz N. Vascular risk moderates associations between hippocampal subfield volumes and memory. J Cogn Neurosci. 2013; 25:1851–62. https://doi.org/10.1162/jocn_a_00435. Raz N. Diabetes: brain, mind, insulin–what is normal and do we need to know? Nat Rev Endocrinol. 2011; 7:636–7. https://doi.org/10.1038/nrendo.2011.149. Colcombe SJ, Erickson KI, Naftali R, Andrew GW, Cohen NJ, McAuley E, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003; 58:176–80. https://doi.org/10.1093/gerona/58.2.m176. Maass A, Düzel S, Goerke M, Becke A, Sobieray U, Neumann K, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015; 20, 585–93. https://doi.org/10.1038/mp.2014.114. Wilson RS, Krueger KR, Arnold SE, Schneider JA, Kelly JF, Barnes LL, et al. Loneliness and Risk of Alzheimer Disease. Arch Gen Psychiatry. 2007;64(2):234–240. https://doi.org/10.1001/archpsyc.64.2.234. Kogan JH, Frankland PW, Silva AJ. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus. 2000;10(1):47-56. https://doi.org/10.1002/(sici)1098-1063(2000)10:1%3C47::aid-hipo5%3E3.0.co;2-6. Yorgason JT, España RA, Konstantopoulos JK, Weiner JL, Jones SR. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats. Eur J Neurosci. 2013;37(6):1022-31. https://doi.org/10.1111/ejn.12113. Bledsoe AC, Oliver KM, Scholl JL, Forster GL. Anxiety states induced by post-weaning social isolation are mediated by CRF receptors in the dorsal raphe nucleus. Brain Res Bull. 2011;85(3-4):117-22. https://dx.doi.org/10.1016%2Fj.brainresbull.2011.03.003. Lukkes JL, Engelman GH, Zelin NS, Hale MW, Lowry CA. Post-weaning social isolation of female rats, anxiety-related behavior, and serotonergic systems. Brain Res. 2012; 1443:1-17. https://dx.doi.org/10.1016%2Fj.brainres.2012.01.005. Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, et al. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology. 2013; 38(8):1535-47. https://doi.org/10.1038/npp.2013.52. Veenema AH. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol. 2009;30(4):497-518. https://doi.org/10.1016/j.yfrne.2009.03.003. Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, et al. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(7):1173-1177. https://doi.org/10.1016/j.pnpbp.2009.06.016. Sciolino NR, Bortolato M, Eisenstein SA, Fu J, Oveisi F, Hohmann AG, et al. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience. 2010;168(2):371-86. https://dx.doi.org/10.1016%2Fj.neuroscience.2010.04.007. Ghasemi M, Phillips C, Trillo L, De Miguel Z, Das D, Salehi A. The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev. 2014; 47:336-358. https://doi.org/10.1016/j.neubiorev.2014.08.017. Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Fernández AP, Rodrigo J, et al. Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex. J Neurochem. 2000;74(2):785-791. https://doi.org/10.1046/j.1471-4159.2000.740785.x. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349-352. https://doi.org/10.1016/j.biopsych.2007.05.028. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008;7(8):742-755. https://dx.doi.org/10.1016%2FS1474-4422(08)70165-0. Waxman EA, Lynch DR. N-methyl-D-aspartate Receptor Subtypes: Multiple Roles in Excitotoxicity and Neurological Disease. The Neuroscientist. 2005; 11(1), 37–49. https://doi.org/10.1177/1073858404269012. Hermes G, Li N, Duman C, Duman R. Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats. Physiol Behav. 2011;104(2):354-9. https://dx.doi.org/10.1016%2Fj.physbeh.2010.12.019. Sestito RS, Trindade LB, de Souza RG, Kerbauy LN, Iyomasa MM, Rosa ML. Effect of isolation rearing on the expression of AMPA glutamate receptors in the hippocampal formation. J Psychopharmacol. 2011;25(12):1720-1729. https://doi.org/10.1177/0269881110385595. Toua C, Brand L, Möller M, Emsley RA, Harvey BH. The effects of sub-chronic clozapine and haloperidol administration on isolation rearing induced changes in frontal cortical N-methyl-D-aspartate and D1 receptor binding in rats. Neuroscience. 2010;165(2):492-499. https://doi.org/10.1016/j.neuroscience.2009.10.039. Alò R, Avolio E, Mele M, Storino F, Canonaco A, Carelli A et al. Excitatory/inhibitory equilibrium of the central amygdala nucleus gates anti-depressive and anxiolytic states in the hamster. Pharmacol Biochem Behav. 2014; 118:79-86. https://doi.org/10.1016/j.pbb.2014.01.007. St JP, Petkov VV. Changes in 5-HT1 receptors in different brain structures of rats with isolation syndrome. General pharmacology. 1990;21(2):223-5. https://doi.org/10.1016/0306-3623(90)90905-2. Miachon S, Rochet T, Mathian B, Barbagli B, Claustrat B. Long-term isolation of Wistar rats alters brain monoamine turnover, blood corticosterone, and ACTH. Brain Res Bull. 1993;32(6):611-614. https://doi.org/10.1016/0361-9230(93)90162-5. Van den Berg CL, Van Ree JM, Spruijt BM, Kitchen I. Effects of juvenile isolation and morphine treatment on social interactions and opioid receptors in adult rats: behavioural and autoradiographic studies. Eur J Neurosci. 1999;11(9):3023-3032. https://doi.org/10.1046/j.1460-9568.1999.00717.x. Vanderschuren LJ, Stein EA, Wiegant VM, Van Ree JM. Social play alters regional brain opioid receptor binding in juvenile rats. Brain Res. 1995;680(1-2):148-156. https://doi.org/10.1016/0006-8993(95)00256-p. Moles A, Kieffer BL, D'Amato FR. Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science. 2004;304(5679):1983-1986. https://doi.org/10.1126/science.1095943. Panksepp J, Herman BH, Vilberg T, Bishop P, DeEskinazi FG. Endogenous opioids and social behavior. Neurosci Biobehav Rev. 1980;4(4):473-487. https://doi.org/10.1016/0149-7634(80)90036-6. Gong JP, Onaivi ES, Ishiguro H, Liu Q, Tagliaferro PA, Brusco A, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 2006;1071(1):10-23. https://doi.org/10.1016/j.brainres.2005.11.035. Breivogel CS, Sim-Selley LJ. Basic neuroanatomy and neuropharmacology of cannabinoids. Int Rev Psychiatry 2009; 21:2:113-121. https://doi.org/10.1080/09540260902782760. Haj-Mirzaian A, Amini-Khoei H, Haj-Mirzaian A, Amiri S, Ghesmati M, Zahir M, et al. Activation of cannabinoid receptors elicits antidepressant-like effects in a mouse model of social isolation stress. Brain Res Bull. 2017; 130:200-210. https://doi.org/10.1016/j.brainresbull.2017.01.018. Banach M, Piskorska B, Czuczwar SJ, Borowicz KK. Nitric Oxide, Epileptic Seizures, and Action of Antiepileptic Drugs. CNS & Neurological Disorders - Drug Targets 2011;10: 808. https://doi.org/10.2174/187152711798072347. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 837a-837d. https://dx.doi.org/10.1093%2Feurheartj%2Fehr304. Hu Y, Wu D, Luo C, Zhu L, Zhang J, Wu H, et al. Hippocampal nitric oxide contributes to sex difference in affective behaviors. PNAS. 2012, 109 (35) 14224-14229. https://doi.org/10.1073/pnas.1207461109. Khan MI, Ostadhadi S, Zolfaghari S, Mehr SE, Hassanzadeh G, Dehpour, A et al. The involvement of NMDA receptor/NO/cGMP pathway in the antidepressant like effects of baclofen in mouse force swimming test. Neuroscience Letters. 2016; 612:52-61. https://doi.org/10.1016/j.neulet.2015.12.006. Matsumoto K, Puia G, Dong E, Pinna G. GABAA receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: Possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders. Stress. 2007; 10:1:3-12. https://doi.org/10.1080/10253890701200997. Zlatković J, Filipović D. Chronic social isolation induces NF-κB activation and upregulation of iNOS protein expression in rat prefrontal cortex. Neurochem Int. 2013;63(3):172-179. https://doi.org/10.1016/j.neuint.2013.06.002. Haj-Mirzaian A, Amiri S, Kordjazy N, Momeny M, Razmi A, Balaei MR, et al. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic-pituitary-adrenal axis function. Neuroscience. 2016; 315:271-285. https://doi.org/10.1016/j.neuroscience.2015.12.024. Larson HJ. The biggest pandemic risk? Viral misinformation. Nature 2018; 562:309. https://doi.org/10.1038/d41586-018-07034-4. Zarocostas J. How to fight an infodemic. Lancet 2020; 395:676. https://doi.org/10.1016/S0140-6736(20)30461-X. World Health Organization, 2019. Ebola Virus Disease – Democratic Republic of the Congo. Geneva, Switzerland: WHO. Available at: https://www.who.int/csr/don/28-november-2019-ebola-drc/en/ [Accessed on August 8, 2020] Times of India. Covid-19: doctors gone to collect samples attacked in Indore. Available at: https://timesofindia.indiatimes.com/videos/news/covid-19-doctors-goneto- collect-samples-attacked-in-indore/videoshow/74942153.cms; 2020 [Accessed on August 8, 2020]. Withnall A. Coronavirus: why India has had to pass new law against attacks on healthcare workers. The Independent. April 23, 2020. Semple K. “Afraid to be a nurse”: health workers under attack. The New York Times. 2020 Apr 27. The Economist. Health workers become unexpected targets during COVID-19. The Economist. May 11, 2020. Turan B, Budhwani H, Fazeli PL, Browning WR, Raper JL, Mugavero MJ, et al. How does stigma affect people living with HIV? The mediating roles of internalized and anticipated HIV stigma in the effects of perceived community stigma on health and psychosocial outcomes. AIDS Behav. 2017; 21: 283–291. https://doi.org/10.1007/s10461-016-1451-5. James PB, Wardle J, Steel A, Adams J. An assessment of Ebola-related stigma and its association with informal healthcare utilisation among Ebola survivors in Sierra Leone: a cross sectional study. BMC Public Health. 2020; 20: 182. https://doi.org/10.1186/s12889-020-8279-7. Aljazeera, 2020. Iran: Over 700 Dead after Drinking Alcohol to Cure Coronavirus. Aljazeera. Available at: https://www.aljazeera.com/ news/2020/04/iran-700-dead-drinking-alcohol-cure-coronavirus200427163529629.html. (Accessed June 4, 2020) Delirrad M, Mohammadi AB, 2020. New methanol poisoning outbreaks in Iran following COVID-19 pandemic. Alcohol Alcohol. 55: 347–348. https://doi.org/10.1093/alcalc/agaa036. Hassanian-Moghaddam H, Zamani N, Kolahi A-A, McDonald R, Hovda KE. Double trouble: methanol outbreak in the wake of the COVID-19 pandemic in Iran-a cross-sectional assessment. Crit Care. 2020; 24: 402. https://doi.org/10.1186/s13054-020-03140-w. Soltaninejad K. Methanol Mass Poisoning Outbreak: A Consequence of COVID-19 Pandemic and Misleading Messages on Social Media. Int J Occup Environ Med. 2020;11(3):148-150. https://dx.doi.org/10.34172%2Fijoem.2020.1983. Islam MS, Sarkar T, Khan SH, Kamal AM, Hasan SMM, Kabir A, et al. COVID-19–Related Infodemic and Its Impact on Public Health: A Global Social Media Analysis. Am J Trop Med Hyg. 2020; 00(0):1–9. https://doi.org/10.4269/ajtmh.20-0812. Hawryluck L, Gold W, Robinson S, Pogorski S, Galea S, Styra R. SARS control and psychological effects of quarantine, Toronto, Canada. Emerg Infect Dis. 2004;10(7):1206–1212. https://dx.doi.org/10.3201%2Feid1007.030703. Lee S, Chan LYY, Chau AAM, Kwok KPS, Kleinman A. The experience of SARS-related stigma at Amoy Gardens. Soc Sci Med. 2005; 61(9): 2038-2046. https://doi.org/10.1016/j.socscimed.2005.04.010. Yoon MK Kim SY Ko HS Lee MS. System effectiveness of detection, brief intervention and refer to treatment for the people with post-traumatic emotional distress by MERS: a case report of community-based proactive intervention in South Korea. Int J Ment Health Syst. 2016; 10: 51. https://doi.org/10.1186/s13033-016-0083-5. Reynolds DL, Garay JR, Deamond SL, Moran MK, Gold W, Styra R. Understanding, compliance and psychological impact of the SARS quarantine experience. Epidemiol Infect. 2008; 136: 997-1007. https://dx.doi.org/10.1017%2FS0950268807009156. Marjanovic Z, Greenglass ER, Coffey S. The relevance of psychosocial variables and working conditions in predicting nurses' coping strategies during the SARS crisis: an online questionnaire survey. Int J Nurs Stud. 2007; 44(6): 991-998. https://doi.org/10.1016/j.ijnurstu.2006.02.012. Bai Y, Lin C-C, Lin C-Y, Chen J-Y, Chue C-M, Chou P. Survey of stress reactions among health care workers involved with the SARS outbreak. Psychiatr Serv. 2004; 55: 1055-1057. https://doi.org/10.1176/appi.ps.55.9.1055. Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/Guidelinesforhomequarantine.pdf [Accessed on 25 August 2020]. Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/RevisedguidelinesforHomeIsolationofverymildpresymptomaticCOVID19cases10May2020.pdf [Accessed on 25 August 2020]. Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/AdvisoryformanagingHealthcareworkersworkinginCOVIDandNonCOVIDareasofthehospital.pdf (Accessed on 25 August 2020). Ministry of Health and Family Welfare. Available at: https://www.mohfw.gov.in/pdf/RevisedguidelinesforInternationalArrivals02082020.pdf [Accessed on 25 August 2020]. Cost of the lockdown? Over 10% of GDP loss for 18 states. Available at: https://timesofindia.indiatimes.com/india/cost-of-the-lockdown-over-10-of-gdp-loss-for-18-states/articleshow/76028826.cms [Accessed on 21 August 2020]. Jorda O, Singh SR, Taylor AM. Longer-Run Economic Consequences of Pandemics. Federal Reserve Bank of San Francisco Working Paper. 2020-09. https://doi.org/10.24148/wp2020-09. Firdaus G. Mental well‑being of migrants in urban center of India: Analyzing the role of social environment. Indian J Psychiatry. 2017; 59:164‑ https://doi.org/10.4103/psychiatry.indianjpsychiatry_272_15. National Crime Record Bureau. Annual Crime in India Report. New Delhi, India: Ministry of Home Affairs; 2018. 198 migrant workers killed in road accidents during lockdown: Report. Available at: https://www.hindustantimes.com/india-news/198-migrant-workers-killed-in-road-accidents-during-lockdown-report/story-hTWzAWMYn0kyycKw1dyKqL.html [Accessed on 25 August 2020]. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020; 20:689-96. https://doi.org/10.1016/S1473-3099(20)30198-5. Dalton L, Rapa E, Stein A. Protecting the psychological health of through effective communication about COVID-19. Lancet Child Adolesc Health. 2020;4(5):346-347. https://doi.org/10.1016/S2352-4642(20)30097-3. Centre for Disease Control. Helping Children Cope with Emergencies. Available at: https://www.cdc.gov/childrenindisasters/helping-children-cope.html [Accessed on 25 August 2020]. Liu JJ, Bao Y, Huang X, Shi J, Lu L. Mental health considerations for children quarantined because of COVID-19. Lancet Child & Adolesc Health. 2020; 4(5):347-349. https://doi.org/10.1016/S2352-4642(20)30096-1. Sprang G, Silman M. Posttraumatic Stress Disorder in Parents and Youth After Health-Related Disasters. Disaster Med Public Health Prep. 2013;7(1):105-110. https://doi.org/10.1017/dmp.2013.22. Rehman U, Shahnawaz MG, Khan NH, Kharshiing KD, Khursheed M, Gupta K, et al. Depression, Anxiety and Stress Among Indians in Times of Covid-19 Lockdown. Community Ment Health J. 2020:1-7. https://doi.org/10.1007/s10597-020-00664-x. Cao W, Fang Z, Hou, Han M, Xu X, Dong J, et al. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research. 2020; 287:112934. https://doi.org/10.1016/j.psychres.2020.112934. Wang C, Zhao H. The Impact of COVID-19 on Anxiety in Chinese University Students. Front Psychol. 2020; 11:1168. https://dx.doi.org/10.3389%2Ffpsyg.2020.01168. Kang L, Li Y, Hu S, Chen M, Yang C, Yang BX, et al. The mental health of medical workers in Wuhan, China dealing with the 2019 novel coronavirus. Lancet Psychiatry 2020;7(3): e14. https://doi.org/10.1016/s2215-0366(20)30047-x. Lai J, Ma S, Wang Y, Cai Z, Hu J, Wei N, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open 2020;3(3): e203976. https://doi.org/10.1001/jamanetworkopen.2020.3976. Lancee WJ, Maunder RG, Goldbloom DS, Coauthors for the Impact of SARS Study. Prevalence of psychiatric disorders among Toronto hospital workers one to two years after the SARS outbreak. Psychiatr Serv. 2008;59(1):91-95. https://dx.doi.org/10.1176%2Fps.2008.59.1.91. Tam CWC, Pang EPF, Lam LCW, Chiu HFK. Severe acute respiratory syndrome (SARS) in Hongkong in 2003: Stress and psychological impact among frontline healthcare workers. Psychol Med. 2004;34 (7):1197-1204. https://doi.org/10.1017/s0033291704002247. Lee SM, Kang WS, Cho A-R, Kim T, Park JK. Psychological impact of the 2015 MERS outbreak on hospital workers and quarantined hemodialysis patients. Compr Psychiatry. 2018; 87:123-127. https://dx.doi.org/10.1016%2Fj.comppsych.2018.10.003. Koh D, Meng KL, Chia SE, Ko SM, Qian F, Ng V, et al. Risk perception and impact of severe acute respiratory syndrome (SARS) on work and personal lives of healthcare workers in Singapore: What can we learn? Med Care. 2005;43(7):676-682. https://doi.org/10.1097/01.mlr.0000167181.36730.cc. Verma S, Mythily S, Chan YH, Deslypere JP, Teo EK, Chong SA. Post-SARS psychological morbidity and stigma among general practitioners and traditional Chinese medicine practitioners in Singapore. Ann Acad Med Singap. 2004; 33(6):743e8. Yeung J, Gupta S. Doctors evicted from their homes in India as fear spreads amid coronavirus lockdown. CNN World. 2020. Available at: https://edition.cnn.com/2020/03/25/asia/india-coronavirus-doctors-discrimination-intl-hnk/index.html. [Accessed on 24 August 2020] Violence Against Women and Girls: the Shadow Pandemic. UN Women. 2020. May 3, 2020. Available at: https://www.unwomen.org/en/news/stories/2020/4/statement-ed-phumzile-violence-against-women-during-pandemic. [Accessed on 24 August 2020]. Gearhart S, Patron MP, Hammond TA, Goldberg DW, Klein A, Horney JA. The impact of natural disasters on domestic violence: an analysis of reports of simple assault in Florida (1999–2007). Violence Gend. 2018;5(2):87–92. https://doi.org/10.1089/vio.2017.0077. Sahoo S, Rani S, Parveen S, Pal Singh A, Mehra A, Chakrabarti S, et al. Self-harm and COVID-19 pandemic: An emerging concern – A report of 2 cases from India. Asian J Psychiatr 2020; 51:102104. https://dx.doi.org/10.1016%2Fj.ajp.2020.102104. Ghosh A, Khitiz MT, Pandiyan S, Roub F, Grover S. Multiple suicide attempts in an individual with opioid dependence: Unintended harm of lockdown during the COVID-19 outbreak? Indian J Psychiatry 2020; [In Press]. The Economic Times. 11 Coronavirus suspects flee from a hospital in Maharashtra. March 16 2020. Available at: https://economictimes.indiatimes.com/news/politics-and-nation/11-coronavirus-suspects-flee-from-a-hospital-in-maharashtra/videoshow/74644936.cms?from=mdr. [Accessed on 23 August 2020]. Xiang Y, Yang Y, Li W, Zhang L, Zhang Q, Cheung T, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. The Lancet Psychiatry 2020;(3):228–229. https://doi.org/10.1016/S2215-0366(20)30046-8. Van Bortel T, Basnayake A, Wurie F, Jambai M, Koroma A, Muana A, et al. Psychosocial effects of an Ebola outbreak at individual, community and international levels. Bull World Health Organ. 2016;94(3):210–214. https://dx.doi.org/10.2471%2FBLT.15.158543. Kumar A, Nayar KR. COVID 19 and its mental health consequences. Journal of Mental Health. 2020; ahead of print:1-2. https://doi.org/10.1080/09638237.2020.1757052. Gupta R, Grover S, Basu A, Krishnan V, Tripathi A, Subramanyam A, et al. Changes in sleep pattern and sleep quality during COVID-19 lockdown. Indian J Psychiatry. 2020; 62(4):370-8. https://doi.org/10.4103/psychiatry.indianjpsychiatry_523_20. Duan L, Zhu G. Psychological interventions for people affected by the COVID-19 epidemic. Lancet Psychiatry. 2020;7(4): P300-302. https://doi.org/10.1016/S2215-0366(20)30073-0. Dubey S, Biswas P, Ghosh R, Chatterjee S, Dubey MJ, Chatterjee S et al. Psychosocial impact of COVID-19. Diabetes Metab Syndr. 2020; 14(5): 779–788. https://dx.doi.org/10.1016%2Fj.dsx.2020.05.035. Wright R. The world's largest coronavirus lockdown is having a dramatic impact on pollution in India. CNN World; 2020. Available at: https://edition.cnn.com/2020/03/31/asia/coronavirus-lockdown-impact-pollution-india-intl-hnk/index.html. [Accessed on 23 August 2020] Foster O. ‘Lockdown made me Realise What’s Important’: Meet the Families Reconnecting Remotely. The Guardian; 2020. Available at: https://www.theguardian.com/keep-connected/2020/apr/23/lockdown-made-me-realise-whats-important-meet-the-families-reconnecting-remotely. (Accessed on 23 August 2020) Bilefsky D, Yeginsu C. Of ‘Covidivorces’ and ‘Coronababies’: Life During a Lockdown. N. Y. Times; 2020. Available at: https://www.nytimes.com/2020/03/27/world/coronavirus-lockdown-relationships.html [Accessed on 23 August 2020]
APA, Harvard, Vancouver, ISO, and other styles
12

Wang, Gordon X., Stephen J. Smith, and Philippe Mourrain. "Sub-synaptic, multiplexed analysis of proteins reveals Fragile X related protein 2 is mislocalized in Fmr1 KO synapses." eLife 5 (October 22, 2016). http://dx.doi.org/10.7554/elife.20560.

Full text
Abstract:
The distribution of proteins within sub-synaptic compartments is an essential aspect of their neurological function. Current methodologies, such as electron microscopy (EM) and super-resolution imaging techniques, can provide the precise localization of proteins, but are often limited to a small number of one-time observations with narrow spatial and molecular coverage. The diversity of synaptic proteins and synapse types demands synapse analysis on a scale that is prohibitive with current methods. Here, we demonstrate SubSynMAP, a fast, multiplexed sub-synaptic protein analysis method using wide-field data from deconvolution array tomography (ATD). SubSynMAP generates probability distributions for that reveal the functional range of proteins within the averaged synapse of a particular class. This enables the differentiation of closely juxtaposed proteins. Using this method, we analyzed 15 synaptic proteins in normal and Fragile X mental retardation syndrome (FXS) model mouse cortex, and revealed disease-specific modifications of sub-synaptic protein distributions across synapse classes and cortical layers.
APA, Harvard, Vancouver, ISO, and other styles
13

Guo, Syuan-Ming, Remi Veneziano, Simon Gordonov, Li Li, Eric Danielson, Karen Perez de Arce, Demian Park, et al. "Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes." Nature Communications 10, no. 1 (September 26, 2019). http://dx.doi.org/10.1038/s41467-019-12372-6.

Full text
Abstract:
Abstract Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.
APA, Harvard, Vancouver, ISO, and other styles
14

Gala, Dalia Sara, Josh S. Titlow, Rita O. Teodoro, and Ilan Davis. "Far from home: the role of glial mRNA localization in synaptic plasticity." RNA, November 28, 2022, rna.079422.122. http://dx.doi.org/10.1261/rna.079422.122.

Full text
Abstract:
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses requiring mRNA transport and localized translation to regulate synaptic plasticity efficiently. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, this topic has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial sub-types, containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing for example synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed using cutting-edge tools already available for neurons.
APA, Harvard, Vancouver, ISO, and other styles
15

Hosokawa, Tomohisa, and Pin-Wu Liu. "Regulation of the Stability and Localization of Post-synaptic Membrane Proteins by Liquid-Liquid Phase Separation." Frontiers in Physiology 12 (December 16, 2021). http://dx.doi.org/10.3389/fphys.2021.795757.

Full text
Abstract:
Synaptic plasticity is a cellular mechanism of learning and memory. The synaptic strength can be persistently upregulated or downregulated to update the information sent to the neuronal network and form a memory engram. For its molecular mechanism, the stability of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate-type glutamate receptor (AMPAR), a glutamatergic ionotropic receptor, on the postsynaptic membrane has been studied for these two decades. Since AMPAR is not saturated on the postsynaptic membrane during a single event of neurotransmitter release, the number and nanoscale localization of AMPAR is critical for regulating the efficacy of synaptic transmission. The observation of AMPAR on the postsynaptic membrane by super-resolution microscopy revealed that AMPAR forms a nanodomain that is defined as a stable segregated cluster on the postsynaptic membrane to increase the efficacy of synaptic transmission. Postsynaptic density (PSD), an intracellular protein condensate underneath the postsynaptic membrane, regulates AMPAR dynamics via the intracellular domain of Stargazin, an auxiliary subunit of AMPAR. Recently, it was reported that PSD is organized by liquid-liquid phase separation (LLPS) to form liquid-like protein condensates. Furthermore, the calcium signal induced by the learning event triggers the persistent formation of sub-compartments of different protein groups inside protein condensates. This explains the formation of nanodomains via synaptic activation. The liquid-like properties of LLPS protein condensates are ideal for the molecular mechanism of synaptic plasticity. In this review, we summarize the recent progress in the properties and regulation of synaptic plasticity, postsynaptic receptors, PSD, and LLPS.
APA, Harvard, Vancouver, ISO, and other styles
16

Zaharieva, Emanuela, Irmgard U. Haussmann, Ulrike Bräuer, and Matthias Soller. "Concentration and localization of co-expressed ELAV/Hu proteins control specificity of mRNA processing." Molecular and Cellular Biology, June 29, 2015, MCB.00473–15. http://dx.doi.org/10.1128/mcb.00473-15.

Full text
Abstract:
Neuronally co-expressed ELAV/Hu proteins comprise a family of highly related RNA binding proteins, which bind to very similar cognate sequences. How this redundancy is linked to in vivo function and how gene specific regulation is achieved, has not been clear. Analysis of mutants inDrosophilaELAV/Hu family proteins ELAV, FNE and RBP9, and genetic interactions among them, indicates mostly independent roles in neuronal development and function, but convergence in the regulation of synaptic plasticity. Conversely, ELAV, FNE, RBP9 and human HuR bind ELAV target RNA in vitro with similar affinity. Likewise, all can regulate alternative splicing of ELAV target genes in non-neuronal wing-disc cells and substitute ELAV in eye development with artificially increased expression, but can also substantially restore ELAV's biological functions, when expressed under the control of theelavgene. Furthermore, ELAV related Sex-lethal can regulate ELAV targets and ELAV/Hu proteins can interfere with sexual differentiation. An ancient relationship to Sex-lethal is revealed by gonadal expression of RBP9 providing a maternal failsafe for dosage compensation. Our results indicate that highly related ELAV/Hu RNA binding proteins select targets for mRNA processing based on expression levels and sub-cellular localization, but only minimally by altered RNA binding specificity.
APA, Harvard, Vancouver, ISO, and other styles
17

Tsolias, Alexandra, and Maria Medalla. "Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey." Frontiers in Neural Circuits 15 (January 11, 2022). http://dx.doi.org/10.3389/fncir.2021.795325.

Full text
Abstract:
Acetylcholine (ACh) can act on pre- and post-synaptic muscarinic receptors (mAChR) in the cortex to influence a myriad of cognitive processes. Two functionally-distinct regions of the prefrontal cortex—the lateral prefrontal cortex (LPFC) and the anterior cingulate cortex (ACC)—are differentially innervated by ascending cholinergic pathways yet, the nature and organization of prefrontal-cholinergic circuitry in primates are not well understood. Using multi-channel immunohistochemical labeling and high-resolution microscopy, we found regional and laminar differences in the subcellular localization and the densities of excitatory and inhibitory subpopulations expressing m1 and m2 muscarinic receptors, the two predominant cortical mAChR subtypes, in the supragranular layers of LPFC and ACC in rhesus monkeys (Macaca mulatta). The subset of m1+/m2+ expressing SMI-32+ pyramidal neurons labeled in layer 3 (L3) was denser in LPFC than in ACC, while m1+/m2+ SMI-32+ neurons co-expressing the calcium-binding protein, calbindin (CB) was greater in ACC. Further, we found between-area differences in laminar m1+ dendritic expression, and m2+ presynaptic localization on cortico-cortical (VGLUT1+) and sub-cortical inputs (VGLUT2+), suggesting differential cholinergic modulation of top-down vs. bottom-up inputs in the two areas. While almost all inhibitory interneurons—identified by their expression of parvalbumin (PV+), CB+, and calretinin (CR+)—expressed m1+, the localization of m2+ differed by subtype and area. The ACC exhibited a greater proportion of m2+ inhibitory neurons compared to the LPFC and had a greater density of presynaptic m2+ localized on inhibitory (VGAT+) inputs targeting proximal somatodendritic compartments and axon initial segments of L3 pyramidal neurons. These data suggest a greater capacity for m2+-mediated cholinergic suppression of inhibition in the ACC compared to the LPFC. The anatomical localization of muscarinic receptors on ACC and LPFC micro-circuits shown here contributes to our understanding of diverse cholinergic neuromodulation of functionally-distinct prefrontal areas involved in goal-directed behavior, and how these interactions maybe disrupted in neuropsychiatric and neurological conditions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography