Academic literature on the topic 'Sturm-Liouville type'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sturm-Liouville type.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sturm-Liouville type"
Goktas, Sertac. "A New Type of Sturm-Liouville Equation in the Non-Newtonian Calculus." Journal of Function Spaces 2021 (October 31, 2021): 1–8. http://dx.doi.org/10.1155/2021/5203939.
Full textCernea, Aurelian. "Variational inclusions for a Sturm-Liouville type differential inclusion." Mathematica Bohemica 135, no. 2 (2010): 171–78. http://dx.doi.org/10.21136/mb.2010.140694.
Full textBas, Erdal, Ramazan Ozarslan, and Dumitru Baleanu. "Sturm-Liouville difference equations having Bessel and hydrogen atom potential type." Open Physics 16, no. 1 (December 26, 2018): 801–9. http://dx.doi.org/10.1515/phys-2018-0100.
Full textLi, Shuang, Jinming Cai, and Kun Li. "Matrix Representations for a Class of Eigenparameter Dependent Sturm–Liouville Problems with Discontinuity." Axioms 12, no. 5 (May 15, 2023): 479. http://dx.doi.org/10.3390/axioms12050479.
Full textButerin, Sergey, and G. Freiling. "Inverse spectral-scattering problem for the Sturm-Liouville operator on a noncompact star-type graph." Tamkang Journal of Mathematics 44, no. 3 (September 30, 2013): 327–49. http://dx.doi.org/10.5556/j.tkjm.44.2013.1422.
Full textKarahan, D., and K. R. Mamedov. "ON A q-BOUNDARY VALUE PROBLEM WITH DISCONTINUITY CONDITIONS." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 13, no. 4 (2021): 5–12. http://dx.doi.org/10.14529/mmph210401.
Full textRynne, Bryan P. "The asymptotic distribution of the eigenvalues of right definite multiparameter Sturm-Liouville systems." Proceedings of the Edinburgh Mathematical Society 36, no. 1 (February 1993): 35–47. http://dx.doi.org/10.1017/s0013091500005873.
Full textPorter, D., and D. S. G. Stirling. "Integral operators of Sturm-Liouville type." Integral Equations and Operator Theory 38, no. 1 (March 2000): 51–65. http://dx.doi.org/10.1007/bf01192301.
Full textJOHNSON, RUSSELL, and LUCA ZAMPOGNI. "SOME REMARKS CONCERNING REFLECTIONLESS STURM–LIOUVILLE POTENTIALS." Stochastics and Dynamics 08, no. 03 (September 2008): 413–49. http://dx.doi.org/10.1142/s0219493708002391.
Full textButerin, Sergey. "An inverse spectral problem for Sturm-Liouville-type integro-differential operators with robin boundary conditions." Tamkang Journal of Mathematics 50, no. 3 (September 2, 2019): 207–21. http://dx.doi.org/10.5556/j.tkjm.50.2019.3347.
Full textDissertations / Theses on the topic "Sturm-Liouville type"
Alici, Haydar. "A General Pseudospectral Formulation Of A Class Of Sturm-liouville Systems." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612435/index.pdf.
Full textdinger form may be transformed into a more tractable form. This tractable form will be called here a weighted equation of hypergeometric type with a perturbation (WEHTP) since the non-weighted and unperturbed part of it is known as the equation of hypergeometric type (EHT). It is well known that the EHT has polynomial solutions which form a basis for the Hilbert space of square integrable functions. Pseudospectral methods based on this natural expansion basis are constructed to approximate the eigenvalues of WEHTP, and hence the energy eigenvalues of the Schrö
dinger equation. Exemplary computations are performed to support the convergence numerically.
Navarro, Sepúlveda Gustavo Estéban. "Singular Limits in Liouville Type Equations With Exponential Neumann Data." Tesis, Universidad de Chile, 2010. http://www.repositorio.uchile.cl/handle/2250/103684.
Full textMarcel, Patrick. "Nouvelle série de supralgébres de Lie généralisant l'algébre de Virasoro et opérateurs différentiels de type Sturm-Liouville." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11005.
Full textMtiri, Foued. "Études des solutions de quelques équations aux dérivées partielles non linéaires via l'indice de Morse." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0150/document.
Full textThe main concern of this thesis deals with the study of solutions of several elliptic partial differential equations via the Morse index, including the stable solutions, i.e. when the Morse index is zero. The thesis has two independent parts. In the first part, under suplinear and subcritical assumptions on f, we establish firstly some explicit estimation for the L1 norms of solutions to -Δu = f(u) avec u = 0 on the boundary, via its Morse index. We propose an approach more transparent and easier than the work of Yang [1998], which allow us to treat some nonlinearities very close to the critical growth. These results motivated us to consider the polyharmonic equations (-Δ)ku = f(x; u) with especially k = 2 and 3. With the hypothesis on f similar to Yang [1998] and appropriate boundary conditions, we obtain for the _rst time some explicit estimations of solution via its Morse index, for the polyharmonic equations.In the second part, we consider a Lane-Emden system -Δu = ρ(x)vp; -Δv = ρ(x)u_; u; v > 0; in RN; with 1 < p< θ and a radial positive weight ρ. We prove the non-existence of stable solution in small dimension case. Our results improve the previous works Cowan & Fazly [2012]; Fazly [2012]; Hu [2015], especially we prove some general Liouville type results for stable solutions in small dimension which hold true for any 1 < ρ min(4 3 ; θ)
LIN, JI-TIAN, and 林吉田. "On the eigenvalues of the sturm-liouville type differential equations." Thesis, 1990. http://ndltd.ncl.edu.tw/handle/58164804038595731403.
Full textBhat, Srivatsa K. "On the isospectrals of Rayleigh and Timoshenko beams and a new version of Bresse-Timoshenko equations." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5399.
Full textBook chapters on the topic "Sturm-Liouville type"
Bandle, Catherine. "Extremal Problems for Eigenvalues of the Sturm-Liouville Type." In General Inequalities 5, 319–36. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7192-1_26.
Full textWeidmann, Joachim. "Appendix to section 6: Semi-boundedness of Sturm-Liouville type operators." In Spectral Theory of Ordinary Differential Operators, 104–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077970.
Full textAbramovich, Shoshana. "Bounds of Jensen’s Type Inequality and Eigenvalues of Sturm–Liouville System." In Springer Optimization and Its Applications, 1–11. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3498-6_1.
Full textAleroev, Temirkhan, and Hedi Aleroeva. "Problems of Sturm–Liouville type for differential equations with fractional derivatives." In Fractional Differential Equations, edited by Anatoly Kochubei and Yuri Luchko, 21–46. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571660-002.
Full textVladimirov, A. A., and I. A. Sheipak. "On Spectral Periodicity for the Sturm–Liouville Problem: Cantor Type Weight, Neumann and Third Type Boundary Conditions." In Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, 509–16. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0648-0_32.
Full textMuratbekov, Mussakan B., Madi M. Muratbekov, and Asijat N. Dadaeva. "A Sturm-Liouville Operator with a Negative Parameter and Its Applications to the Study of Differential Properties of Solutions for a Class of Hyperbolic Type Equations." In Springer Proceedings in Mathematics & Statistics, 258–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67053-9_24.
Full text"13. A primer on equations of Sturm–Liouville type." In Differential Equations, 201–20. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110652864-013.
Full text"8. The Calculation of Eigenvalues for Sturm-Liouville Type Systems." In An Introduction to Invariant Imbedding, 133–46. Society for Industrial and Applied Mathematics, 1992. http://dx.doi.org/10.1137/1.9781611971279.ch8.
Full textYang, Chen Ning. "Generalization of Sturm-Liouville Theory to a System of Ordinary Differential Equations with Dirac Type Spectrum." In Selected Papers of Chen Ning Yang II, 106–17. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814449021_0015.
Full textConference papers on the topic "Sturm-Liouville type"
Şen, Erdoğan, Azad Bayramov, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "On a Discontinuous Sturm—Liouville Type Problem with Retarded Argument." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637824.
Full textShokouhmand, Hossein, Seyed Reza Mahmoudi, and Kaveh Habibi. "Analytical Solution of Hyperbolic Heat Conduction Equation for a Finite Slab With Arbitrary Boundaries, Initial Condition, and Stationary Heat Source." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62058.
Full textKrikkis, Rizos N., Stratis V. Sotirchos, and Panagiotis Razelos. "Bifurcation Analysis for Horizontal Longitudinal Fins Under Multi-Boiling Conditions." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33632.
Full textMuratbekov, Mussakan B., and Madi M. Muratbekov. "Spectral properties of the Sturm-Liouville operator with a parameter that changes sign and their usage to the study of the spectrum of differential operators of mathematical physics belonging to different types." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5049078.
Full text