Academic literature on the topic 'Student-t'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Student-t.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Student-t"
Mason, David M., and Qi-Man Shao. "Bootstrapping the Student t -Statistic." Annals of Probability 29, no. 4 (October 2001): 1435–50. http://dx.doi.org/10.1214/aop/1015345757.
Full textIngrand, P. "Le test t de Student." Journal d'imagerie diagnostique et interventionnelle 1, no. 2 (April 2018): 81–83. http://dx.doi.org/10.1016/j.jidi.2018.02.001.
Full textMoreno-Arenas, Germán, Guillermo Martínez-Flórez, and Heleno Bolfarine. "Power Birnbaum-Saunders Student t distribution." Revista Integración 35, no. 1 (August 10, 2017): 51–70. http://dx.doi.org/10.18273/revint.v35n1-2017004.
Full textGriffin, Philip. "Tightness of the Student $t$-Statistic." Electronic Communications in Probability 7 (2002): 181–90. http://dx.doi.org/10.1214/ecp.v7-1059.
Full textPeng, Chien-Yu, and Ya-Shan Cheng. "Student-t Processes for Degradation Analysis." Technometrics 62, no. 2 (July 22, 2019): 223–35. http://dx.doi.org/10.1080/00401706.2019.1630008.
Full textZhihua Zhang, Gang Wu, and E. Y. Chang. "Semiparametric Regression Using Student $t$ Processes." IEEE Transactions on Neural Networks 18, no. 6 (November 2007): 1572–88. http://dx.doi.org/10.1109/tnn.2007.899736.
Full textDumas, Catherine, and Abebe Rorissa. "ASIS&T: The student perspective." Bulletin of the Association for Information Science and Technology 40, no. 5 (June 2014): 23–27. http://dx.doi.org/10.1002/bult.2014.1720400507.
Full textWallace-Spurgin, Mekca. "Implementing Technology: Measuring Student Cognitive Engagement." International Journal of Technology in Education 3, no. 1 (November 13, 2019): 24. http://dx.doi.org/10.46328/ijte.v3i1.13.
Full textNugroho, Didit Budi, Agus Priyono, and Bambang Susanto. "SKEW NORMAL AND SKEW STUDENT-T DISTRIBUTIONS ON GARCH(1,1) MODEL." MEDIA STATISTIKA 14, no. 1 (April 16, 2021): 21–32. http://dx.doi.org/10.14710/medstat.14.1.21-32.
Full textRahayu, Puji, and Ani Widayati. "EFFECTIVENESS OF THINK PAIR SHARE AND SPONTANEOUS GROUP DISCUSSION TOWARDS PROBLEM SOLVING SKILL STUDENT OF X ACCOUNTING GRADERS SMK NEGERI 1 WONOSARI." Jurnal Pendidikan Akuntansi Indonesia 17, no. 2 (December 9, 2019): 117–30. http://dx.doi.org/10.21831/jpai.v17i2.28698.
Full textDissertations / Theses on the topic "Student-t"
Lopes, Jocely Nascimento. "Misturas de distribuições T de student assimétricas." Universidade Federal do Amazonas, 2008. http://tede.ufam.edu.br/handle/tede/5226.
Full textApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-09-30T13:46:06Z (GMT) No. of bitstreams: 1 Dissertação - Jocely Lopes.pdf: 2989672 bytes, checksum: 6e22a80fdd1f21213e48a66c75d7c923 (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-09-30T13:46:22Z (GMT) No. of bitstreams: 1 Dissertação - Jocely Lopes.pdf: 2989672 bytes, checksum: 6e22a80fdd1f21213e48a66c75d7c923 (MD5)
Made available in DSpace on 2016-09-30T13:46:22Z (GMT). No. of bitstreams: 1 Dissertação - Jocely Lopes.pdf: 2989672 bytes, checksum: 6e22a80fdd1f21213e48a66c75d7c923 (MD5) Previous issue date: 2008-12-22
Não informada
In this work we consider the estimation of parameters of a nite mixture of skew Student-t distributions, via EM algorithm. The main goals of this dissertation is to show a detailed description of the EM algorithm applied to this model and to evaluate the consistency of the estimator. A data set concerning the Gross Domestic Product per capita (Human Development Report), previously studied in the related literature, is analyzed.
Este trabalho trata do problema de estimar parâmetros de uma mistura nita de densidades t-assimétricas. Como ferramenta para a estimação foi usado o algoritmo EM. Foi avaliada a consistência desses estimadores e realizado um experimento de aplicação da teoria desenvolvida para uma modelagem com dados reais utilizando um conjunto analisado anteriormente na literatura, relativo ao PIB per capita. Os objetivos centrais desse trabalho são apresentar uma descrição detalhada do método de estimação, via algoritmo EM, dos parâmetros do modelo nito de mistura de densidades t-assimétricas e avaliar através de um estudo de simulação se o estimador obtido é consistente.
Englund, Jonas. "Another Student´s T-test : Proposal and evaluation of a modified T-test." Thesis, Örebro universitet, Handelshögskolan vid Örebro Universitet, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-37501.
Full textRama, Vishal. "Estimating stochastic volatility models with student-t distributed errors." Master's thesis, Faculty of Science, 2020. http://hdl.handle.net/11427/32390.
Full textPaczkowski, Remi. "Monte Carlo Examination of Static and Dynamic Student t Regression Models." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/38691.
Full textPh. D.
Busato, Erick Andrade. "Função de acoplamento t-Student assimetrica : modelagem de dependencia assimetrica." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305857.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-12T14:00:24Z (GMT). No. of bitstreams: 1 Busato_ErickAndrade_M.pdf: 4413458 bytes, checksum: b9c4c39b4639c19e685bae736fc86c4f (MD5) Previous issue date: 2008
Resumo: A família de distribuições t-Student Assimétrica, construída a partir da mistura em média e variância da distribuição normal multivariada com a distribuição Inversa Gama possui propriedades desejáveis de flexibilidade para as mais diversas formas de assimetria. Essas propriedades são exploradas na construção de funções de acoplamento que possuem dependência assimétrica. Neste trabalho são estudadas as características e propriedades da distribuição t-Student Assimétrica e a construção da respectiva função de acoplamento, fazendo-se uma apresentação de diferentes estruturas de dependência que pode originar, incluindo assimetrias da dependência nas caudas. São apresentados métodos de estimação de parâmetros das funções de acoplamento, com aplicações até a terceira dimensão da cópula. Essa função de acoplamento é utilizada para compor um modelo ARMA-GARCHCópula com marginais de distribuição t-Student Assimétrica, que será ajustado para os logretornos de preços do Petróleo e da Gasolina, e log-retornos do Índice de Óleo AMEX, buscando o melhor ajuste, principalmente, para a dependência nas caudas das distribuições de preços. Esse modelo será comparado, através de medidas de Valor em Risco e AIC, além de outras medidas de bondade de ajuste, com o modelo de Função de Acoplamento t-Student Simétrico.
Abstract: The Skewed t-Student distribution family, constructed upon the multivariate normal mixture distribution, known as mean-variance mixture, composed with the Inverse-Gamma distribution, has many desirable flexibility properties for many distribution asymmetry structures. These properties are explored by constructing copula functions with asymmetric dependence. In this work the properties and characteristics of the Skewed t-Student distribution and the construction of a respective copula function are studied, presenting different dependence structures that the copula function generates, including tail dependence asymmetry. Parameter estimation methods are presented for the copula, with applications up to the 3rd dimension. This copula function is used to compose an ARMAGARCH- Copula model with Skewed t-Student marginal distribution that is adjusted to logreturns of Petroleum and Gasoline prices and log-returns of the AMEX Oil Index, emphasizing the return's tail distribution. The model will be compared, by the means of the VaR (Value at Risk) and Akaike's Information Criterion, along with other Goodness-of-fit measures, with models based on the Symmetric t-Student Copula.
Mestrado
Mestre em Estatística
Rahman, Azizur. "Bayesian prediction distributions for some linear models under student-t errors." University of Southern Queensland, Faculty of Sciences, 2007. http://eprints.usq.edu.au/archive/00003581/.
Full textAssumpção, Rosangela Aparecida Botinha. "Influência local em modelos geoestatísticos T-Student com aplicações a dados agrícolas." Universidade Estadual do Oeste do Parana, 2010. http://tede.unioeste.br:8080/tede/handle/tede/374.
Full textThe presence of inconsistent observations make it improper to consider the gaussian process, as it is found in the literature. This process should be replaced by models of the symmetric distribution classes, such as the t-student distribution, which incorporates additional parameters to reduce the influence of inconsistent points. This work has developed the EM algorithm for estimating the structure of the spatial dependence of the parameters and of the spatial linear model, assuming that the process shows t-student n-varied distribution. This distribution has the degree of freedom v as the additional parameter, which has been considered to be fixed in this research. Techniques to diagnose influence are used after the estimation of parameters, in order to assess the quality of the adjustment of the model by the assumptions made and for the robustness of the results of the estimates when there are disturbances in the model or data. In the present work, diagnostic techniques for the assessment of local influence in linear spatial models have been developed, considering the process with t-student n-varied distribution. The usual diagnostic technique evaluates the withdrawing of the likelihood rate by the function of the likelihood logarithm. In this proposal, in addition to considering the usual technique, we use the withdrawing of the likelihood by Q-displacement of the complete likelihood. The application of the usual technique and of the one proposed here are illustrated through the analyses of both simulated and real data, provenient of agricultural experiments.
A presença de observações discrepantes torna imprópria a análise do processo gaussiano, sendo assim, como é encontrado na literatura, esse processo deve ser substituído por modelos da classe das distribuições simétricas, tal como a distribuição t-student, que incorpora parâmetros adicionais para reduzir a influência dos pontos discrepantes. Neste trabalho, assumiu-se que o processo apresenta distribuição t-student n-variada. Essa distribuição tem como parâmetro adicional o grau de liberdade v, que aqui considerou-se fixo. Dessa forma, desenvolveu-se o algoritmo EM e o algoritmo de NR para a estimação dos parâmetros da estrutura de dependência espacial e do modelo espacial linear. Após a estimação dos parâmetros, utilizou-se duas técnicas de diagnósticos de influência local, ambas com o intuito de avaliar a qualidade do ajuste do modelo pelas suposições feitas e pela robustez dos resultados das estimativas quando há perturbações no modelo ou nos dados. A primeira técnica, denominada "usual", já utilizada por diversos autores, avalia o afastamento da verossimilhança pela função do logaritmo da verossimilhança e a segunda técnica que aqui apresentamos propõe a análise de influência local pelo Q-afastamento da função de verossimilhança para dados completos. Essas técnicas permitiram verificar a influência no afastamento da verossimilhança, na matriz de covariância, no preditor linear e nos valores preditos por meio da análise gráfica. Para ilustrar a aplicação da técnica usual e da nossa proposta, realizou-se a análise de dados simulados e dados reais provenientes de experimentos agrícolas.
Macerau, Walkiria Maria de Oliveira. "Comparação das distribuições α-estável, normal, t de student e Laplace assimétricas." Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/4555.
Full textFinanciadora de Estudos e Projetos
Abstract The asymmetric distributions has experienced great development in recent times. They are used in modeling financial data, medical, genetics and other applications. Among these distributions, the Skew normal (Azzalini, 1985) has received more attention from researchers (Genton et al., (2001), Gupta et al., (2004) and Arellano-Valle et al., (2005)). We present a comparative study of _-stable distributions, Skew normal, Skew t de Student and Skew Laplace. The _-stable distribution is studied by Nolan (2009) and proposed by Gonzalez et al., (2009) in the context of genetic data. For some real datasets, in areas such as financial, genetics and commodities, we test which distribution best fits the data. We compare these distributions using the model selection criteria AIC and BIC.
As distribuições assimétricas tem experimentado grande desenvolvimento nos tempos recentes. Elas são utilizadas na modelagem de dados financeiros, médicos e genéticos entre outras aplicações. Dentre essas distribuições, a normal assimétrica (Azzalini, 1985) tem recebido mais atenção dos pesquisadores (Genton et al., (2001), Gupta et al., (2004) e Arellano-Valle et al., (2005)). Nesta dissertação, apresentamos um estudo comparativo das distribuições _-estável, normal , t de Student e Laplace assimétricas. A distribuição _-estável estudada por Nolan (2009) é proposta por Gonzalez et al., (2009) no contexto de dados genéticos. Neste trabalho, também apresentamos como verificar a assimetria de uma distribuição, descrevemos algumas características das distribuições assimétricas em estudo, e comparamos essas distribuições utilizando os critérios de seleção de modelos AIC e BIC..
Cintra, Flávia Maria Ravagnani Neves. "Aplicação do modelo t-student para análise dos resultados de ensaios de proficiência." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012018-171250/.
Full textThe proficiency essays by interlaboratorial comparison have been an important mechanism to control the consistency of the measurements of the laboratories. Government institutions, such as INMETRO, have used such mechanisms to monitor the quality of the laboratories services supplied by the Laboratories Brazilian Network (RBL) and by the Calibration Brazilian Network (RBC). Currently. the statistical methods used to analyze the results of the Proficiency Essays are described in technical norms, like the ISO/IEC Guide 43-1. Recently, Leão, Aoki and Silva (2002) proposed a regression method to test the laboratories ability, using the multivariate normal distribution to fit the data and to establish statistical tests. Like in measurements the presence of extreme values is constant, we are modelling the data using the multivariate t-student distribution, to accommodate such extreme values. In this model, we are interested in estimating the degrees of freedom and the tendency parameter of the laboratory measurement relating to the reference value, since the laboratories are using similar measurements systems to measure the same item, with standard deviation determined by a calibration process. We are finding the maximum likelihood and moments estimators for these two parameters and are developing a test to evaluate the laboratories measurements consistency. At the end, we are analyzing the obtained data for the REMESP (São Paulo Metrology Network) in the electrical area, where we are measuring the digital multimeter DC tension.
Souza, Aline Campos Reis de. "Modelos de regressão linear heteroscedásticos com erros t-Student : uma abordagem bayesiana objetiva." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7540.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T19:59:56Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T20:00:01Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Made available in DSpace on 2016-09-27T20:00:08Z (GMT). No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) Previous issue date: 2016-02-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Je reys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Je reys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models.
Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuicões a priori de Je reys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposicão de heteoscedasticidade. Mostramos que a distribuiçãoo a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori e própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber e desenvolvida com analidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais e utilizado para o ajuste do modelo proposto.
Books on the topic "Student-t"
Ahsanullah, Mohammad, B. M. Golam Kibria, and Mohammad Shakil. Normal and Student´s t Distributions and Their Applications. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-061-4.
Full textLu, Qiaoping. Medienkompetenz von Studierenden an chinesischen Hochschulen. Wiesbaden: VS, Verl. fu r Sozialwiss., 2008.
Find full textCeuster, Marc de. Diagnostic checking of estimation with a Student-t error density. Antwerpen: Universiteit Antwerpen, 1992.
Find full textHinderliter. Student Workbook t/a Elementary Statistics for Psychology Students. McGraw-Hill Primis Custom Publishing, 1996.
Find full textLial. Text & Student Solution Manual T/A Algebra/Coll Students. Not Avail, 1998.
Find full textStudent Workbook t/a Elementary Statistics for Psychology Students. McGraw-Hill Primis Custom Publishing, 1996.
Find full textBallman, Terry L., Bill VanPatten, and James F. Lee. Student Audiocassette Program t/a Vistazos. McGraw-Hill Humanities/Social Sciences/Languages, 2001.
Find full textMagnan, Sally Sieloff. Student Video Manual T/A Paroles. Wiley, 1998.
Find full textMcDaniel, Carl Jr. Market Research Essentials Student T/A. Wiley, 2000.
Find full textColander, David C. Student Problem Set t/a Economics. 6th ed. McGraw-Hill/Irwin, 2006.
Find full textBook chapters on the topic "Student-t"
Frost, Irasianty. "Beispiel: Student-t-Test." In essentials, 13–15. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16258-0_4.
Full textAhsanullah, Mohammad, B. M. Golam Kibria, and Mohammad Shakil. "Student’s $$t$$ t Distribution." In Normal and Student´s t Distributions and Their Applications, 51–62. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-061-4_3.
Full textTowndrow, Phillip Alexander, and Galyna Kogut. "Student T. Rushing, Busy, Crowded." In Studies in Singapore Education: Research, Innovation & Practice, 111–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8727-6_11.
Full textLi, Xiaoyan, and Jinwen Ma. "Non-central Student-t Mixture of Student-t Processes for Robust Regression and Prediction." In Intelligent Computing Theories and Application, 499–511. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84522-3_41.
Full textGrigelionis, Bronius. "Student-Lévy Processes." In Student’s t-Distribution and Related Stochastic Processes, 41–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31146-8_4.
Full textGrigelionis, Bronius. "Student Diffusion Processes." In Student’s t-Distribution and Related Stochastic Processes, 57–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31146-8_6.
Full textSchmidt, Daniel F., and Enes Makalic. "Robust Lasso Regression with Student-t Residuals." In AI 2017: Advances in Artificial Intelligence, 365–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63004-5_29.
Full textFrieden, B. Roy. "The Student t-Test on the Mean." In Probability, Statistical Optics, and Data Testing, 307–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97289-8_12.
Full textFrieden, B. Roy. "The Student t-Test on the Mean." In Probability, Statistical Optics, and Data Testing, 321–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56699-8_12.
Full textAhsanullah, Mohammad, B. M. Golam Kibria, and Mohammad Shakil. "Product of the Normal and Student’s $$t$$ t Densities." In Normal and Student´s t Distributions and Their Applications, 103–11. Paris: Atlantis Press, 2014. http://dx.doi.org/10.2991/978-94-6239-061-4_7.
Full textConference papers on the topic "Student-t"
Tang, Qingtao, Li Niu, Yisen Wang, Tao Dai, Wangpeng An, Jianfei Cai, and Shu-Tao Xia. "Student-t Process Regression with Student-t Likelihood." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/393.
Full textChen, Yang, Feng Chen, Jing Dai, T. Charles Clancy, and Yao-Jan Wu. "Student-t Based Robust Spatio-temporal Prediction." In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.135.
Full textGayen, Atin, and M. Ashok Kumar. "Generalized Estimating Equation for the Student-t Distributions." In 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437622.
Full textBerntorp, Karl, and Stefano Di Cairano. "Approximate Noise-Adaptive Filtering Using Student-t Distributions." In 2018 Annual American Control Conference (ACC). IEEE, 2018. http://dx.doi.org/10.23919/acc.2018.8430902.
Full textTakahashi, Hiroshi, Tomoharu Iwata, Yuki Yamanaka, Masanori Yamada, and Satoshi Yagi. "Student-t Variational Autoencoder for Robust Density Estimation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/374.
Full textFORBES, ALISTAIR B. "ASYMPTOTIC LEAST SQUARES AND STUDENT-T SAMPLING DISTRIBUTIONS." In Advanced Mathematical and Computational Tools in Metrology. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774187_0036.
Full textTzikas, Dimitris, Aristidis Likas, and Nikolaos Galatsanos. "Variational Bayesian Blind Image Deconvolution with Student-T Priors." In 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4378903.
Full textImran, Muahmmad, Zahid Manzoor, Sajid Ali, and Qamar Abbas. "Modified Particle Swarm Optimization with student T mutation (STPSO)." In 2011 International Conference on Computer Networks and Information Technology (ICCNIT). IEEE, 2011. http://dx.doi.org/10.1109/iccnit.2011.6020944.
Full textMairgiotis, Antonis, Lisimachos P. Kondi, and Yongyi Yang. "Dct/dwt blind multiplicative watermarking through student-t distribution." In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296335.
Full textTang, Qingtao, Tao Dai, Li Niu, Yisen Wang, Shu-Tao Xia, and Jianfei Cai. "Robust Survey Aggregation with Student-t Distribution and Sparse Representation." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/394.
Full textReports on the topic "Student-t"
Gibbons, Robert D., Donald Hedeker, and R. D. Bock. Multivariate Generalizations of Student's t-Distribution. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada229128.
Full textRoschelle, Jeremy, Britte Haugan Cheng, Nicola Hodkowski, Julie Neisler, and Lina Haldar. Evaluation of an Online Tutoring Program in Elementary Mathematics. Digital Promise, April 2020. http://dx.doi.org/10.51388/20.500.12265/94.
Full textT he formation of the student’s psychological health in the context of competence - based approach. O.V. Lebedeva, June 2015. http://dx.doi.org/10.14526/01_1111_13.
Full text