To see the other types of publications on this topic, follow the link: Struts (Engineering) Dynamics.

Dissertations / Theses on the topic 'Struts (Engineering) Dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Struts (Engineering) Dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Aharon, Ofer S. M. Massachusetts Institute of Technology. "Stress distributions around hydrofoils using computational fluid dynamics." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46382.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (leaf 108).
This research describes the reciprocal influence between two foils, vertically and horizontally oriented, on each other for different gaps between them. Those cases are the focus part of a bigger process of lowering significantly the drag of a ship when hydrofoils are attached to its hull. The research results are based on CFD analyses using the ADINA software. In order to verify the CFD process, a comparison was made between analytical, experimental and ADINA?s results for a single foil. The chosen foil was the famous Clark-Y foil; however a correction to its geometry was made using the Unigraphics software. Using the corrected geometry with an analytical solution well detailed and explained, the results of the CFD model were compared to experimental and analytical solutions. The matching of the results and the obtained accuracy are very high and satisfactory. In addition, the research contains an examination of the results when one of the boundary conditions is changed. Surprisingly, it was discovered that the FREE slip condition along the foil is much closer to reality than the NO slip condition. Another examination was stretching horizontally the foil and checking the pressure distribution behavior. Those results met exactly the expectations. As for the main core of this research, both the bi-plane case and the stagger case were found to be less effective than using a single foil. The conclusion of those investigations is that using those cases a few decades ago was for a structural reason rather than stability or speed. Since this research is very wide but also deep in its knowledge, references and academic work, many future research works may be based on it or go on from its detailed stages.
by Ofer Aharon.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
2

Yi, Jun 1959. "Stress compatible bimaterial interface elements with application to transient dynamic stress analysis." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22842.

Full text
Abstract:
Conventional displacement-based finite element programs do not yield unique values of stress components which ought to be continuous at element interfaces. The errors, being the differences from the correct unique values, become unacceptably large at a bimaterial interface when the moduli of the two materials are significantly different.
This thesis formulates and implements new finite elements for obtaining the correct values of the stress components, both continuous and discontinuous ones, at bimaterial interface points under general dynamic loading, assuming linear, isotropic, elastic material behaviour.
The constructed finite elements programs, suitable for analyzing two-dimensional and axisymmetric three-dimensional problems, have been validated by comparing the predicted responses with the exact analytical solutions of some non-trivial impact loading (wave-propagation) problems.
The work provides a necessary tool for analyzing and designing composite structures, for example prosthetic knee and hip joints in the biomechanics field.
APA, Harvard, Vancouver, ISO, and other styles
3

Maksym, Geoffrey N. "Computer controlled oscillator for dynamic testing of biological soft tissue strips." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69742.

Full text
Abstract:
A computer controlled tissue strip oscillator has been constructed for the advanced study of lung parenchyma mechanics. The data acquisition and control are facilitated on a 486 personal computer. The tissue is maintained by a continuously circulating bath of Krebs-Ringer solution at 37$ sp circ$C bubbled with a 95% O$ sb2$ and 5% CO$ sb2$ gas mixture. The oscillator has a useful bandwidth to 20 Hz at 0.5 cm amplitude and step response with no overshoot at all amplitudes. The movement range of the motor is 5 cm with resolution 13.6 $ mu$m. The force resolution is 66 $ mu$N with a range of 0.25 N. A tissue preconditioning protocol was developed as a standard maneuver to be conducted prior to applying length perturbations about specific operating stresses. The tissue strip oscillator has been successfully tested on dog lung tissue strips.
APA, Harvard, Vancouver, ISO, and other styles
4

Rashedi, Ahmadreza. "The Design and Flow Dynamics of Non-Brownian Suspensions." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1598018383854045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shim, Sang-Hea. "The effect of fluid flow on the stress corrosion cracking of sensitized type 304 stainless steel in 0.01 M Na₂SO₄ solution at 250⁰C /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487264603216315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mikucka, Vita. "Dynamic problems for interface cracks under harmonic loading." Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=228606.

Full text
Abstract:
This thesis is devoted to solution of the two-dimensional elastodynamic problem for a cracked bimaterial loaded by harmonic waves. The system of boundary integral equations for displacements and tractions at the interface is obtained from Somigliana identity with the allowance for the contact interaction of the opposite crack faces. Full expressions of the integral kernels derived by the consecutive differentiation of the Green's displacement tensor are given. Due to the contact that takes place between the faces of the crack under the applied external loading, the resulting process is a steady-state periodic, but not a harmonic one. Thus, components of the stress-strain state are expanded into exponential Fourier series. The collocation method with a piecewise constant approximation on each linear continuous boundary element is used for the numerical solution. The problem is solved using the iterative algorithm. The solution is refined during the iteration process until the distribution of physical values satisfies the imposed constraints. The results are obtained for the interface crack subject to normal tension-compression, normal shear, or oblique tension-compression waves with different values of the angle of the wave incidence and the wide range of the dimensionless wave number. The distributions of the normal and tangential components of the contact forces and displacement discontinuities on the surface of the crack are investigated. The stress intensity factors are computed and analyzed for various values of the wave frequency, the friction coefficient, and material properties. The maximal stress intensity factors at the trailing crack tip differ from the SIF values at the leading crack tip showing non-symmetry of solution with respect the space and time variables. It is concluded that the crack closure and friction effect change the solution both qualitatively and quantitatively, as the difference between comparable results can achieve 30-50%.
APA, Harvard, Vancouver, ISO, and other styles
7

Marks, Christopher R. "Surface Stress Sensors for Closed Loop Low Reynolds Number Separation Control." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1309998636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Massahi, Aidin. "Multi-resolution Modeling of Dynamic Signal Control on Urban Streets." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3349.

Full text
Abstract:
Dynamic signal control provides significant benefits in terms of travel time, travel time reliability, and other performance measures of transportation systems. The goal of this research is to develop and evaluate a methodology to support the planning for operations of dynamic signal control utilizing a multi-resolution analysis approach. The multi-resolution analysis modeling combines analysis, modeling, and simulation (AMS) tools to support the assessment of the impacts of dynamic traffic signal control. Dynamic signal control strategies are effective in relieving congestions during non-typical days, such as those with high demands, incidents with different attributes, and adverse weather conditions. This research recognizes the need to model the impacts of dynamic signal controls for different days representing, different demand and incident levels. Methods are identified to calibrate the utilized tools for the patterns during different days based on demands and incident conditions utilizing combinations of real-world data with different levels of details. A significant challenge addressed in this study is to ensure that the mesoscopic simulation-based dynamic traffic assignment (DTA) models produces turning movement volumes at signalized intersections with sufficient accuracy for the purpose of the analysis. Although, an important aspect when modeling incident responsive signal control is to determine the capacity impacts of incidents considering the interaction between the drop in capacity below demands at the midblock urban street segment location and the upstream and downstream signalized intersection operations. A new model is developed to estimate the drop in capacity at the incident location by considering the downstream signal control queue spillback effects. A second model is developed to estimate the reduction in the upstream intersection capacity due to the drop in capacity at the midblock incident location as estimated by the first model. These developed models are used as part of a mesoscopic simulation-based DTA modeling to set the capacity during incident conditions, when such modeling is used to estimate the diversion during incidents. To supplement the DTA-based analysis, regression models are developed to estimate the diversion rate due to urban street incidents based on real-world data. These regression models are combined with the DTA model to estimate the volume at the incident location and alternative routes. The volumes with different demands and incident levels, resulting from DTA modeling are imported to a microscopic simulation model for more detailed analysis of dynamic signal control. The microscopic model shows that the implementation of special signal plans during incidents and different demand levels can improve mobility measures.
APA, Harvard, Vancouver, ISO, and other styles
9

Farooque, Tanya Mahbuba. "Biochemical and mechanical stimuli for improved material properties and preservation of tissue-engineered cartilage." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26710.

Full text
Abstract:
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Boyan, Barbara; Committee Chair: Wick, Timothy; Committee Member: Brockbank, Kelvin; Committee Member: Nenes, Athanasios; Committee Member: Sambanis, Athanassios. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
10

Tadevosyan, Davit. "System dynamic framework for analyzing organizational stress : United States Postal Service case study." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/100365.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 102-106).
Stress, both individual and organizational, appears to be an increasing problem in any society, and more so in organizations. It already is taking a significant toll on corporate and national levels. Slow recovering economy and pressures on bottom lines, especially for financially constrained organizations, further emphasize the problem and call for new solutions. This paper explores two aspects of stress - individual and organizational. Our goal was to provide a systems dynamic framework that organizations, as well as individuals, can use to improve the understanding of the physiological and psychological stress loads, as well as understand their relationship to organizational key performance indicators. Like many natural systems, human body is the ultimate limited system. The main benefit of the proposed framework will be the ability to monitor cumulative variables of the functional capacity of human body to process stressors, and the mental and emotional capacity of employees to carry out their duties.
by Davit Tadevosyan.
S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
11

Tucker, Russell P. "Validating a new in vitro model for dynamic fluid shear stress mechanobiology." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:0ea8b159-5cb6-4bf0-9a60-4c580824016a.

Full text
Abstract:
In vitro mechanotransduction studies, uncovering the basic science of the response of cells to mechanical forces, are essential for progress in tissue engineering and its clinical application. Many varying investigations have described a multitude of cell responses, however as the precise nature and magnitude of the stresses applied are infrequently reported and rarely validated, the experiments are often not comparable, limiting research progress. This thesis provides physical and biological validation of a widely available fluid stimulation device, a see-saw rocker, as an In vitro model for cyclic fluid shear stress mechanotransduction. This allows linkage between precisely characterised stimuli and cell monolayer response in a convenient six-well plate format. Computational fluid dynamic models of one well were analysed extensively to generate convergent, stable and consistent predictions of the cyclic fluid velocity vectors at a rocking frequency of 0.5 Hz, accounting for the free surface. Validation was provided by comparison with flow velocities measured experimentally using particle image velocimetry. Qualitative flow behaviour was matched and quantitative analysis showed good agreement at representative locations and time points. A maximum shear stress of 0.22Pa was estimated near the well edge, and time-average shear stress ranged between 0.029 and 0.068Pa, within the envelope of previous musculoskeletal In vitro fluid flow investigations. The CFD model was extended to explore changes in culture medium viscosity, rocking frequency and the robustness to position on the rocking platform. Shear stress magnitude was shown to increase almost linearly with an increase in the viscosity of culture medium. Compared with 0.5 Hz, models at 0.083 and 1:167 Hz, the operational limits of the see-saw rocker, indicated a change in shear stress patterns at the cell layer, and a reduction and increase in mean shear stress respectively. At the platform edge at 0.5 Hz, a 1.67-fold increase in time-average shear stress was identified. Extensive biological validations using human tenocytes underlined the versatility of the simple In vitro device. The application of fluid-induced shear stress at 0.5 Hz under varying regimes up to 0.714Pa caused a significant increase in secreted collagen (p < 0.05) compared to static controls. Tenocytes stimulated at a shear stress magnitude of 1.023Pa secreted significantly less collagen compared to static controls. The potential for a local maximum in the relationship between collagen secretion rate and shear stress was identified, indicating a change from anabolic to catabolic behaviour. Collagen biochemical assay results were echoed with antibody stains for proteins, where a co-localisation of connexin-32 with collagen type-I was also identified. A custom algorithm showed that four hours of fluid-induced shear stress of 0:033Pa intermittently applied to tenocytes encouraged alignment and elongation over an eight day period in comparison to static controls. Primary cilia were identified in human tenocyte cultures and bovine flexor tendon tissue; however primary cilium abrogation In vitro using chloral hydrate proved detrimental to cell viability. Collaborative investigations identified that ERK signalling and c-Fos transcription factor expression peaked after the application of 0.012Pa at 0.083 Hz for 20 minutes and anabolic collagen gene expression relative quantities increased after 48 hours of rocking at 0.083 Hz. In conclusion, validated shear stresses within a six-well plate, induced by cyclic flow from a see-saw rocker, provides an exceptional model for the In vitro study of dynamic fluid shear stress mechanobiology. Biological investigations have been linked to precise applied shear stress, creating a foundation for understanding the complex relationship between tenocytes and fluid-induced shear stress In vitro. Using this model, research is repeatable, comparable and accurately attributed to shear stress, accelerating the scientific advancement of musculoskeletal mechanobiology.
APA, Harvard, Vancouver, ISO, and other styles
12

Tu, Wei. "Response modelling of pavement subjected to dynamic surface loading based on stress-based multi-layered plate theory." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1188066023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Krishnamoorthy, Mahesh kumaar. "Investigations on Linkages Between Blood Flow Dynamics and Histological Endpoints in Dialysis Access Fistula." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1267718697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Johnson, Catherine E. "Fragmentation Analysis in the Dynamic Stress Wave Collision Regions in Bench Blasting." UKnowledge, 2014. http://uknowledge.uky.edu/mng_etds/16.

Full text
Abstract:
The first step in many mining operations is blasting, and the purpose of blasting is to fragment the rock mass in the most efficient way for that mine site and the material end use. Over time, new developments to any industry occur, and design and implementation of traditional techniques have to change as a consequence. Possibly the greatest improvement in blasting in recent years is that of electronic detonators. The improvements related to safety and increased fragmentation have been invaluable. There has been ongoing debate within the explosives industry regarding two possible theories for this. Shorter timing delays that allow interaction between adjacent shock waves or detonation waves, or the increase in accuracy associated with electronic detonators. Results exist on the improved accuracy of electronic detonators over that of electric or non-electric, but data on the relationship between the collision of dynamic stress waves and fragmentation is less understood. Publications stating that the area of greatest fragmentation will occur between points of detonation where shock waves collide exist, but experimental data to prove this fact is lacking. This dissertation looks extensively at the head on collision of shock (in the rock mass) and detonation (in the detonation column) waves with relation to fragmentation through a number of small scale tests in concrete. Timing is a vital tool for this collision to occur and is the variable utilized for the studies. Small scale tests in solid masonry blocks, 15 x 7⅞ x 7⅞ inches in size, investigated shock and detonation wave collisions with instantaneous detonation. Blocks were wrapped in geotextile fabric and a wire mesh to contain the fragments so that in situ tensile crack formations could be analyzed. Detonating cord was used as the explosive with no stemming to maintain the shock pressure but reduce the gas pressure phase of the fragmentation cycle. Model simulations of these blocks in ANSYS Autodyn looked at the stress and pressure wave patterns and corresponding damage contours for a direct comparison with the experimental investigation. Detonation wave collision in a single blast hole was found to positively influence the fragmentation and throw of the material. Mean fragment size decreased compared to tests with no detonation wave collision. Area of greatest throw occurred at the point of detonation collision where a buildup of gas pressure exited the block from one location. Head on collision of shock waves did not positively influence the muck pile. Largest fragments were located at the point of shock collision. The lack of particle velocity with relation to shock collision in previous literature could be attributed to the increased particle size here. Directional particle velocities could actually increase the strength and density of the rock at this location, decreasing the degree of fragmentation rather than increasing it.
APA, Harvard, Vancouver, ISO, and other styles
15

Anwar, Sohail. "Transient Stress and Strain Assessment of Marine Boiler : Fully Rigid Body Dynamics Coupled Finite Element Analyses." Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-95440.

Full text
Abstract:
Operationally, marine components and structures such as boiler in a Ship, are exposed to varying mechanically and thermally induced forces. High-frequency mechanical loading arises from the cyclic pressure, temperature transients, and six directional Rapid Amplitude Operator (RAOs). These types of loadings are mainly in the elastic region usually denoted as high cycle fatigue (HCF), most pronounced during the start-up, and the shut-down sequence of operation, which are responsible for an astronomically  reduction in Marine Boiler’s lifetime as compared to land boiler with same designed operating condition. Therefore, there is a need to determine the limitations of the engineering variables of the boiler with respect to Pressure, temperature, RAOs, and best locational point for the optimization of its designed lifetime during Operation. Detailed knowledge of this interaction between varying temperatures, RAOs and load cases is of considerable importance for precise lifetime calculations.  In order to understand and analyze the material behavior under contentious stress exposure, a general-purpose linear Finite Element (FE) code, LS-DYNA software is used as a pre-processor and solver during the simulation and data are post-processed using stress-based analysis method.
APA, Harvard, Vancouver, ISO, and other styles
16

Lontine, Derek Michael. "Stress Modulated Grain Boundary Mobility." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7348.

Full text
Abstract:
This thesis consists of a thermodynamically based kinetic model that more accurately predicts grain boundary mobility (GBM) over a large range of thermodynamic states including changes in temperature, pressure and shear stress. The form of the model was validated against calculated GBM values for Al bicrystals via molecular dynamics (MD) simulations. A total of 98,786 simulations were performed (164 different GBs, each with a minimum of 250 different thermodynamic states, and 2 different driving forces). Methodology for the computation of the GBM via MD simulations is provided. The model parameters are directly linked to extensive thermodynamic quantities and suggest potential mechanisms for GBM under combined thermal and triaxial loads. This thesis also discusses the influence of GB character on the thermodynamic mobility parameters. The resulting insights about GB character and thermodynamic state on GBM suggest an opportunity to achieve designed microstructures by controlling thermodynamic state during microstructure evolution.
APA, Harvard, Vancouver, ISO, and other styles
17

Nishii, Kenichiro. "MICRO-SCALE FLUID DYNAMICS AND ITS EFFECT ON HEPATIC PROGENITOR CELL REGENERATION ACTIVATION." Miami University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=miami1461945701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Peng, Shuzhi. "Acoustical wave propagator technique for structural dynamics." University of Western Australia. School of Mechanical Engineering, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0069.

Full text
Abstract:
[Truncated abstract] This thesis presents three different methods to investigate flexural wave propagation and scattering, power flow and transmission efficiencies, and dynamic stress concentration and fatigue failures in structural dynamics. The first method is based on the acoustical wave propagator (AWP) technique, which is the main part described in this thesis. Through the numerical implementation of the AWP, the complete information of the vibrating structure can be obtained including displacement, velocity, acceleration, bending moments, strain and stresses. The AWP technique has been applied to systems consisting of a one-dimensional stepped beam, a two-dimensional thin plate, a thin plate with a sharp change of section, a heterogeneous plate with multiple cylindrical patches, and a Mindlin?s plate with a reinforced rib. For this Mindlin?s plate structure, through the comparison of the results obtained by Mindlin?s thick plate theory and Kirchhoff?s classical thin plate theory, the difference of theoretical predicted results is investigated. As part of these investigations, reflection and transmission coefficients, power flow and transmission efficiencies in a onedimensional stepped beam, and power flow in a two-dimensional circular plate structure, are studied. In particular, this technique has been successfully extended to investigate wave propagation and scattering, and dynamic stress concentration at discontinuities. Potential applications are fatigue failure prediction and damage detection in complex structures. The second method is based on experimental techniques to investigate the structural response under impact loads, which consist of the waveform measuring technique in the time domain by using the WAVEVIEW software, and steady-state measurements by using the Polytec Laser Scanning Vibrometer (PLSV) in the frequency domain. The waveform measuring technique is introduced to obtain the waveform at different locations in the time domain. These experimental results can be used to verify the validity of predicted results obtained by the AWP technique. Furthermore, distributions of dynamic strain and stress in both near-field (close to discontinuities) and far-field regions are investigated for the study of the effects of the discontinuities on reflection and transmission coefficients in a one-dimensional stepped beam structure. Experimental results in the time domain can be easily transferred into those in the frequency domain by the fast Fourier transformation, and compared with those obtained by other researchers. This PLSV technique provides an accurate and efficient tool to investigate mode shape and power flow in some coupled structures, such as a ribbed plate. Through the finite differencing technique, autospectral and spatial of dynamic strain can be obtained. The third method considered uses the travelling wave solution method to solve reflection and transmission coefficients in a one-dimensional stepped beam structure in the time domain. In particular, analytical exact solutions of reflection and transmission coefficients under the given initial-value problem are derived. These analytical solutions together with experimental results can be used to compare with those obtained by the AWP technique.
APA, Harvard, Vancouver, ISO, and other styles
19

Lindström, Stefan B. "Simulations of the Dynamics of Fibre Suspension Flows." Licentiate thesis, Mid Sweden University, Department of Natural Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-53.

Full text
Abstract:

A new model for simulating non-Brownian flexible fibres suspended in a Newtonian fluid has been developed. Special attention has been given to include realistic flow conditions found in the industrial papermaking process in the key features of the model; it is the intention of the author to employ the model in simulations of the forming section of the paper machine in future studies.

The model considers inert fibres of various shapes and finite stiffness, interacting with each other through normal, frictional and lubrication forces, and with the surrounding fluid medium through hydrodynamic forces. Fibre-fluid interactions in the non-creeping flow regime are taken into account, and the two-way coupling between the solids and the fluid phase is included by enforcing momentum conservation between phases. The incompressible three-dimensional Navier-Stokes equations are employed to model the motion of the fluid medium.

The validity of the model has been tested by comparing simulation results with experimental data from the literature. It was demonstrated that the model predicts the motion of isolated fibres in shear flow over a wide range of fibre flexibilities. It was also shown that the model predicts details of the orientation distribution of multiple straight, rigid fibres in a sheared suspension. Model predictions of the viscosity and first normal stress difference were in good agreement with experimental data found in the literature. Since the model is based solely on first-principles physics, quantitative predictions could be made without any parameter fitting.


En ny modell för simulering av rörelserna hos icke-Brownska böjliga fibrer dispergerade i en Newtonsk vätska har utvecklats. Eftersom det är författarens avsikt att modellen skall kunna tillämpas vid simulering av arkformning under de förhållanden som råder i en modern pappersmaskin, har särskilt omsorg givits till att inkludera motsvarande flödesvillkor i modellens giltighetsområde.

Modellen hanterar fibrer av varierande form, massa och styvhet, som växelverkar sinsemellan via normal-, friktions- och smörjkrafter. Deras växelverkan med den omgivande vätskan sker via hydrodynamiska krafter vid finita Reynolds-tal. Den så kallade tvåvägskopplingen mellan fibrerna och vätskefasen har tagits i beaktande genom att kräva att rörelsemängden bevaras vid interaktionen mellan faserna. Vidare har Navier-Stokes ekvationer för inkompressibla vätskor använts för att beskriva mediets rörelser.

Modellens giltighet har undersökts genom att jämföra resultat från simuleringar med experimentella data från litteraturen. Det har påvisats att modellen förutsäger rörelsen hos ensamma fibrer i ett skjuvflöde, för vitt skilda fiberflexibiliteter. Det visades också att modellen förutsäger detaljer hos fiberorienteringsdistributionen i suspensioner utsatta för skjuvflöde. Det kunde också konstateras att modellens förutsägelser av fibersuspensioners viskositet och första normalspänningsdifferens under skjuvning väl överensstämde med experimentella data i litteraturen. Kvantitativa förutsägelser har kunnat göras utan någon parameteranpassning, då modellen bygger uteslutande på väletablerade fysikaliska samband inom klassisk mekanik och strömningslära.

APA, Harvard, Vancouver, ISO, and other styles
20

Salehian, Ali. "PREDICTING THE DYNAMIC BEHAVIOR OF COAL MINE TAILINGS USING STATE-OF-PRACTICE GEOTECHNICAL FIELD METHODS." UKnowledge, 2013. http://uknowledge.uky.edu/ce_etds/9.

Full text
Abstract:
This study is focused on developing a method to predict the dynamic behavior of mine tailings dams under earthquake loading. Tailings dams are a by-product of coal mining and processing activities. Mine tailings impoundments are prone to instability and failure under seismic loading as a result of the mechanical behavior of the tailings. Due to the existence of potential seismic sources in close proximity to the coal mining regions in the United States, it is necessary to assess the post-earthquake stability of these tailings dams. To develop the aforementioned methodology, 34 cyclic triaxial tests along with vane shear tests were performed on undisturbed mine tailings specimens from two impoundments in Kentucky. Therefore, the liquefaction resistance and the residual shear strength of the specimens were measured. The laboratory cyclic strength curves for the coal mine specimens were produced, and the relationship between plasticity, density, cyclic stress ratio, and number of cycles to liquefaction were identified. The samples from the Big Branch impoundment were generally loose samples, while the Abner Fork specimens were dense samples, older and slightly cemented. The data suggest that the number of loading cycles required to initiate liquefaction in mine tailings, NL, decreases with increasing CSR and with decreasing density. This trend is similar to what is typically observed in soil. For a number of selected specimens, using the results of a series of small-strain cyclic triaxial tests, the shear modulus reduction curves and damping ratio plots were created. The data obtained from laboratory experiments were correlated to the previously recorded geotechnical field data from the two impoundments. The field parameters including the SPT blow counts (N1)60, corrected CPT cone tip resistance (qt), and shear wave velocity (vs), were correlated to the laboratory measured cyclic resistance ratio (CRR). The results indicate that in general, the higher the (N1)60 and the tip resistance (qt), the higher the CSR was. Ultimately, practitioners will be able to use these correlations along with common state-of-practice geotechnical field methods to predict cyclic resistance in fine tailings to assess the liquefaction potential and post-earthquake stability of the impoundment structures.
APA, Harvard, Vancouver, ISO, and other styles
21

Giardina, Ronald J. Jr. "On The Ramberg-Osgood Stress-Strain Model And Large Deformations of Cantilever Beams." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2377.

Full text
Abstract:
In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are provided with a mixture of numerical techniques, which suggest strong mathematical consistency within the model for all theoretical assumptions made. A physical experiment was undertaken and the results prove to be inaccurate when using parameters derived from tensile tests, but when back calculating parameters from the beam test the model has a 14.40% error at its extreme against the experimental data suggesting the necessity for further testing.
APA, Harvard, Vancouver, ISO, and other styles
22

Wyman, Richard Durtschi. "Non-Schmid Effects and Criteria for Dislocation Nucleation on Different Slip Systems at Grain Boundaries." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6423.

Full text
Abstract:
Criteria for grain boundary dislocation nucleation are developed. A bicrystal containing two grain boundaries is placed under varying triaxial stress states using molecular dynamics. The local resolved shear, normal, and co-slip stresses needed for grain boundary dislocation nucleation are found. A framework is developed to detect the slip system grain boundary dislocation nucleation occurs on. A survey of the different ways grain boundary dislocation nucleation occurs in the sample shows a single grain boundary can nucleate dislocations in a rich variety of ways. Using the nucleation system and resolved stress values, criteria for grain boundary dislocation nucleation on different slip systems are developed. The proposed form of nucleation criterion suggests the activation stress has a linear dependence one the resolved shear, normal, and co-slip stresses. A residual analysis largely validates the efficacy of the proposed linear model. We show that the nucleation slip system cannot be predicted by a maximum Schmid factor analysis due to the non-Schmid resolved normal and co-slip terms. We show that a system's global pressure generally fails to predict nucleation; a local stress in the grain being nucleated into should be used. Using the nucleation criteria for each slip system, a yield surface for dislocation nucleation is built for the grain boundary used in this work.
APA, Harvard, Vancouver, ISO, and other styles
23

Sun, Allen Y. "An Experimental Study of the Dynamic Response of Spur Gears Having Tooth Index Errors." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1430749459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sarker, Pratik. "Investigation of the Quenching Characteristics of Steel Components by Static and Dynamic Analyses." ScholarWorks@UNO, 2014. http://scholarworks.uno.edu/td/1942.

Full text
Abstract:
Machine components made of steel are subjected to heat treatment processes for improving mechanical properties in order to enhance product life and is usually done by quenching. During quenching, heat is transferred rapidly from the hot metal component to the quenchant and that rapid temperature drop induces phase transformation in the metal component. As a result, quenching generates some residual stresses and deformations in the material. Therefore, to estimate the temperature distribution, residual stress, and deformation computationally; three-dimensional finite element models are developed for two different steel components – a spur gear and a circular tube by a static and a dynamic quenching analyses, respectively. The time-varying nodal temperature distributions in both models are observed and the critical regions are identified. The variations of stress and deformation after quenching along different pathways for both models are studied. The convergence for both models is checked and validations of the models are done.
APA, Harvard, Vancouver, ISO, and other styles
25

Moreno, Chan Julian. "Moisture content in radiata pine wood : implications for wood quality and water-stress response : a thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Forestry, School of Forestry, College of Engineering, University of Canterbury /." Thesis, University of Canterbury. School of Forestry, 2007. http://hdl.handle.net/10092/1217.

Full text
Abstract:
This thesis studied the influence of moisture content on the dynamic estimation of stiffness in wood of Pinus radiata D. Don. This is an important non-destructive measure for estimation of stiffness in standing trees, logs and lumber. Moisture content affects both acoustic velocity and density in the fundamental equation of dynamic MOE (DMOE = V²ρ, where V = acoustic velocity and ρ = density). Investigation included measurements with boards in the laboratory considering moisture contents below and above FSP as well as temperatures below and above 0°C. This also included field measurements of trees in contrasting climate sites and over different seasons including a long drought. Methods for measuring green density and moisture content and the patterns of variation of these parameters were also investigated. A secondary component of this thesis explored the wood quality and some mechanisms of tree response to water stress in two contrasting sites in terms or rainfall and water deficits in a region of Australia. The large increases in DMOE for frozen wood above the FSP (4.5 to 6 GPa) will limit the use of DMOE for grading logs in regions with freezing winters. Results from the experiment remeasuring young trees and the upper range of moisture content and temperatures above 0°C from the experiment with boards showed small to moderate variation in DMOE (0.1 to 1 GPa) which calls for further investigation on analytical procedures for adjustment of DMOE. Such procedures should consider that variations in acoustic velocity and density with changes in moisture content are not proportional and that there are counteracting effects between the two parameters. It remains to be investigated whether the typical variation (under normal climate conditions) in sapwood green density observed in our experiments has some implications for the use of DMOE. On the other hand, it is anticipated that the large differences along the stem and among stands in whole-section green density may bias DMOE measurements in logs for resource assessment. This also needs to be investigated. A comparison between acoustic velocity alone and DMOE for resource assessment under different scenarios is recommended. The study in two contrasting climate sites (high-altitude vs. warm-dry) in the Hume region of Forests NSW, Australia, including young (10-11 years) and mature trees (34 36 years) of radiata pine showed distinctive short and long-term responses of trees to cope with the water-limiting environment. In response to long-term water deficits the warm-dry site developed heartwood and thus reduced sapwood earlier and at faster rates than the high-altitude site. The onset of heartwood formation seemed to be triggered by some site threshold for water use as broadly indicated by the sapwood area/ha. The latter was consistently lower for the warm-dry site across the different stands. The warm-dry site also showed increased short-term responses to water stress and these were interpreted as seasonal mechanisms of the trees to cope with the limiting environment. The trees compensated for the lower available moisture and higher transpiration rates by lowering their saturation and disrupting water conduction at some points (cavitation). The inverse trends of cavitation spots and cavitation bands with height in the stem suggested the trees have different strategies to sacrifice conducting xylem depending on the position on the stem. Finally, it is suggested that saturation tended to fall to critical 'safe' levels as a result of water stress and this varied depending on age, site, and position in the stem. Significant decreases in DMOE and basic density were observed for the warm-dry site and were attributed to lower proportions of latewood due to lower rainfall for that site during the period of latewood formation. These showed no obvious association with any of the long-term water-stress traits (sapwood percentage and number of heartwood rings).
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Janet. "Design of a Novel Tissue Culture System to Subject Aortic Tissue to Multidirectional Bicuspid Aortic Valve Wall Shear Stress." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1527077368757049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Campbell, Jacob D. "Human Factors Study of Wrong-Way Driving Events." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1583926643197709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shar, Jason A. "Unraveling the Etiologies of Discrete Subaortic Stenosis: A Focus on Left Ventricular Outflow Tract Hemodynamics." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1621957266053636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Blanco, Mark Richard. "Design and Qualification of a Boundary-Layer Wind Tunnel for Modern CFD Validation Experiments." Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1559237473563483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zuanetti, Bryan. "Plate Impact Experiments for Studying the Dynamic Response of Commercial-Purity Aluminum at Temperatures Approaching Melt." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1557132337419911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fekrat, A. Qaium. "Calibration and Validation of EverFE2.24: A Finite Element Analysis Program for Jointed Plain Concrete Pavements." Ohio : Ohio University, 2010. http://www.ohiolink.edu/etd/view.cgi?ohiou1260557310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sharma, Abhinav. "ESTIMATING THE EFFECTS OF BLASTING VIBRATIONS ON THE HIGH-WALL STABILITY." UKnowledge, 2017. https://uknowledge.uky.edu/mng_etds/38.

Full text
Abstract:
The stability of the high-walls is one of the major concerns for open pit mines. Among the various factors affecting the stability of high-walls, blast vibrations can be an important one. In general, worldwide the established respective government regulations and industry standards are used as guidance to determine the maximum recommended levels of the peak particle velocity and frequency from the blast to avoid any effects on the structures around the mining project. However, most of the regulations are meant for buildings or houses and do not concern high-walls. This thesis investigates the response of high-walls under the effects of vibrations from mine blasting. In this research, the relationship between the high-wall response, the geometry of the slope, the frequency and the amplitude, of the ground vibration produced by blasting, is explored using numerical models in 3DEC. The numerical models were calibrated initially with data collected using seismographs installed in a surface mine operation and recording vibrations produced by an underground mine drill and blast operation. Once the calibration was accomplished, a parametric study was developed to explore the relationships between various parameters under study and its impact on the stability of high-walls.
APA, Harvard, Vancouver, ISO, and other styles
33

Gorgulu, Ilhan. "Numerical Simulation Of Turbine Internal Cooling And Conjugate Heat Transfer Problems With Rans-based Turbulance Models." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615000/index.pdf.

Full text
Abstract:
The present study considers the numerical simulation of the different flow characteristics involved in the conjugate heat transfer analysis of an internally cooled gas turbine blade. Conjugate simulations require full coupling of convective heat transfer in fluid regions to the heat diffusion in solid regions. Therefore, accurate prediction of heat transfer quantities on both external and internal surfaces has the uppermost importance and highly connected with the performance of the employed turbulence models. The complex flow on both surfaces of the internally cooled turbine blades is caused from the boundary layer laminar-to-turbulence transition, shock wave interaction with boundary layer, high streamline curvature and sequential flow separation. In order to discover the performances of different turbulence models on these flow types, analyses have been conducted on five different experimental studies each concerned with different flow and heat transfer characteristics. Each experimental study has been examined with four different turbulence models available in the commercial software (ANSYS FLUENT13.0) to decide most suitable RANS-based turbulence model. The Realizable k-&epsilon
model, Shear Stress Transport k-&omega
model, Reynolds Stress Model and V2-f model, which became increasingly popular during the last few years, have been used at the numerical simulations. According to conducted analyses, despite a few unreasonable predictions, in the majority of the numerical simulations, V2-f model outperforms other first-order turbulence models (Realizable k-&epsilon
and Shear Stress Transport k-&omega
) in terms of accuracy and Reynolds Stress Model in terms of convergence.
APA, Harvard, Vancouver, ISO, and other styles
34

Cruel, Magali. "Caractérisation et optimisation de l'environnement mécanique tridimensionnel des cellules souches au sein des bioréacteurs d'ingénierie tissulaire osseuse." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0011/document.

Full text
Abstract:
L’ingénierie tissulaire osseuse a récemment connu de nouveaux développements grâce à la prise en compte du phénomène de mécanotransduction dans la conception des bioréacteurs. Toutefois, des progrès restent à faire sur nos connaissances sur les mécanismes de la réponse des cellules souches mésenchymateuses (CSM) aux contraintes mécaniques en vue d’optimiser l’environnement mécanique tridimensionnel des cellules dans les bioréacteurs. L’objectif de cette thèse est double : déterminer le meilleur microenvironnement mécanique pour des CSM humaines et appliquer cet environnement au sein d’un bioréacteur. Pour cela, des CSM humaines ont été cultivées dans différentes conditions et soumises à des contraintes mécaniques. Leur réponse a été analysée via des marqueurs précoces de l’ostéogénèse. En parallèle, un modèle numérique a été développé pour simuler l’écoulement dans un bioréacteur à scaffold granulaire et déterminer le niveau et la répartition des contraintes ressentis par les cellules. Il a été mis en évidence que la réponse des cellules à une stimulation mécanique dépend très fortement de son environnement tridimensionnel. Ce travail à la fois mécanique et biologique permet de dégager des pistes d’amélioration des bioréacteurs et des scaffolds en vue de l’optimisation de l’environnement mécanique tridimensionnel des cellules en ingénierie tissulaire osseuse
Bone tissue engineering is currently in full development and a growing field of research. The consideration of the mechanotransduction process is a key factor in the optimization of bioreactors. Mesenchymal stem cells (MSC) used in bone tissue engineering are known to be mechanosensitive but our knowledge of the mechanisms of cell response to mechanical stress needs to be improved. This thesis has a double goal: determining the best possible mechanical microenvironment for human MSC, and apply this environment in a bioreactor. To that aim, human MSC were grown in different conditions and subjected to mechanical stresses. Their response was analyzed through osteogenesis markers. A numerical model was also implemented to simulate the flow in bioreactor with a granular scaffold and evaluate levels and distributions of stresses felt by cells. It was shown that cell response to mechanical stress is strongly dependent on the tridimensional environment. This biological and mechanical study highlights tracks of improvement for bioreactors and scaffolds to optimize the mechanical tridimensional environment of cells in bone tissue engineering
APA, Harvard, Vancouver, ISO, and other styles
35

Aminjikarai, Vedagiri Srinivasa Babu. "An Automated Dynamic Fracture Procedure and a Continuum Damage Mechanics Based Model for Finite Element Simulations of Delamination Failure in Laminated Composites." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1242963775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Anyanwu, Ezechukwu John. "The Effect of Flow on the Development and Retention of Iron Sulfide Corrosion ProductLayers." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1547118739941844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bunnell, Spencer Reese. "Real Time Design Space Exploration of Static and Vibratory Structural Responses in Turbomachinery Through Surrogate Modeling with Principal Components." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8451.

Full text
Abstract:
Design space exploration (DSE) is used to improve and understand engineering designs. Such designs must meet objectives and structural requirements. Design improvement is non-trivial and requires new DSE methods. Turbomachinery manufacturers must continue to improve existing engines to keep up with global demand. Two challenges of turbomachinery DSE are: the time required to evaluate designs, and knowing which designs to evaluate. This research addressed these challenges by developing novel surrogate and principal component analysis (PCA) based DSE methods. Node and PCA-based surrogates were created to allow faster DSE of turbomachinery blades. The surrogates provided static stress estimation within 10% error. Surrogate error was related to the number of sampled finite element (FE) models used to train the surrogate and the variables used to change the designs. Surrogates were able to provide structural evaluations three to five orders of magnitude faster than FEA evaluations. The PCA-based surrogates were then used to create a PCA-based design workflow to help designers know which designs to evaluate. The workflow used either two-point correlation or stress and geometry coupling to relate the design variables to principal component (PC) scores. These scores were projections of the FE models onto the PCs obtained from PCA. Analysis showed that this workflow could be used in DSE to better explore and improve designs. The surrogate methods were then applied to vibratory stress. A computationally simplified analysis workflow was developed to allow for enough fluid and structural analyses to create a surrogate model. The simplified analysis workflow introduced 10% error but decreased the computational cost by 90%. The surrogate methods could not directly be applied to emulation of vibration due to the large spikes which occur near resonance. A novel, indirect emulation method was developed to better estimate vibratory responses Surrogates were used to estimate the inputs to calculate the vibratory responses. During DSE these estimations were used to calculate the vibratory responses. This method reduced the error between the surrogate and FEA from 85% to 17%. Lastly, a PCA-based multi-fidelity surrogate method was developed. This assumed the PCs of the high and low-fidelities were similar. The high-fidelity FE models had tens of thousands of nodes and the low-fidelity FE models had a few hundred nodes. The computational cost to create the surrogate was decreased by 75% for the same errors. For the same computational cost, the error was reduced by 50%. Together, the methods developed in this research were shown to decrease the cost of evaluating the structural responses of turbomachinery blade designs. They also provided a method to help the designer understand which designs to explore. This research paves the way for better, and more thoroughly understood turbomachinery blade designs.
APA, Harvard, Vancouver, ISO, and other styles
38

Andersson, Harald. "Numerical and experimental study of confluent jets supply device with variable airflow." Licentiate thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-29271.

Full text
Abstract:
In recent years, application of confluent jets for design of ventilation supply devices has been studied. Similarly, numerus studies have been made on the potential and application of variable air volume (VAV) in order to reduce the energy demand of ventilation systems. This study investigates the combination of supply devices based on confluent jets and VAV, both in terms of the nearfield flow behavior of the device and the impact on thermal comfort, indoor air quality and energy efficiency on a classroom-level space when the airflow rate is varied. The method used in this study is an experimental field study where the confluent jets-based supply devices were compared to the previously installed displacement ventilation. The field study evaluated the energy efficiency, thermal comfort and indoor air quality of the two systems. In the case of the confluent jets supply devices, airflow rate was varied in order to see what impact the variation had on the performance of the system for each airflow rate. Furthermore, the confluent jets supply devices were investigated both experimentally and numerically in a well insulated test room to get high resolution data on the particular flow characteristics for this type of supply device when the airflow rate is varied. The results from the field study show nearly uniform distribution of the local mean age of air in the occupied zone, even in the cases of relatively low airflow rates. The airflow rates have no significant effect on the degree of mixing. The thermal comfort in the classroom was increased when the airflow rate was adapted to the heat load compared to the displacement system. The results lead to the conclusion that the combination of supply devices based on confluent jets can reduce energy usage in the school while maintaining indoor air quality and increasing the thermal comfort in the occupied zone. The results from the experimental and numerical study show that the flow pattern and velocity in each nozzle is directly dependent on the total airflow rate. However, the flow pattern does not vary between the three different airflow rates. The numerical investigation shows that velocity profiles for each nozzle have the same pattern regardless of the airflow rate, but the magnitude of the velocity profile increases as the airflow increases. Thus, a supply device of this kind could be used for variable air volume and produce confluent jets for different airflow rates. The results from both studies show that the airflow rate does not affect the distribution of the airflow on both near-field and room level. The distribution of air is nearly uniform in the case of the near-field results and the room-level measurement shows a completely uniform degree of mixing and air quality in the occupied zone for each airflow rate. This means that there is potential for combining these two schemes for designing air distribution systems with high energy efficiency and high thermal comfort and indoor air quality.
Under senare tid har applikation av Confluent jets för design av tilluftsdon studerats. Många studier har även utförts över potentialen av att applicera variabelt luftflöde (VAV) för att minska energianvändningen i ventilationssystem. Denna studie undersöker möjligheten att kombinera Confluent jets-don med VAV, både med avseende på den lokala flödesbilden och dess påverkan på termisk komfort, luftkvalitet och energieffektivitet i en klassrumsmiljö där luftflödes varieras. Denna studie baseras dels på en experimentell fältstudie där tilluftsdon baserade på Confluents jets jämfördes med befintliga deplacerande tilluftsdon. Fältstudien utvärderade energieffektiviteten, den termiska komforten och luftkvaliteten för båda typerna av tillluftsdon. Confluent jets-donen testades under varierat luftflöde för att se påverkan av flödesvariationen på ventilationens prestation under de olika flödena. Utöver fältstudien testades Confluent jets-donen experimentellt och numeriskt i ett välisolerat test-rum för få den detaljerade flödeskarakteristiken för den här typen tilluftsdon vid varierat luftflöde. Resultaten från fältstudien visar på en jämn fördelning av den lokala luftsmedelåldern i vistelsezonen, även för fallen med relativt låga luftflöden. Luftflöden har ingen signifikant effekt på omblandningen. Den termiska komforten i klassrummet ökade när luftflödet anpassades efter värmelasten jämfört med de deplacerande donen. Slutsatsen från fältstudien är att kombinationen av VAV och Confluent jets-don kan användas för att minska energianvändningen på skolan och bevara luftkvaliteten och den termiska komforten i vistelsezonen. Resultaten från den experimental och numeriska studien visar luftflödet och lufthastigheten i varje enskild dysa är direkt beroende på det totala luftflödet genom donet. Dock är flödesfördelningen mellan dysorna oberoende av de tre olika luftflödena. Den numeriska undersökningen visar att flödesprofilen för varje dysa är konstant trots att flödet varieras, men amplituden för varje profil ökar med en höjning av luftflödet. Det betyder att tilluftsdon av den här typen kan användas med VAV för att producera Confluent jets för olika luftflöden. Resultaten från båda studierna visar att luftflöde inte påverkar fördelningen av luften vare sig längs luftdonen eller på rumsnivå. Fördelningen av luften är nästan helt jämn längs donen och på rumsnivå är omblandningen och luftkvalitet den samma för varje luftflöde. Det betyder att det finns potential för att kombinera det här två teknikerna för att designa luftdistribueringssystem med hög energieffektivitet och hög termisk komfort med god luftkvalitet.
APA, Harvard, Vancouver, ISO, and other styles
39

Mashiko, Naoto. "Comparative performance of ductile and damage protected bridge piers subjected to bi-directional earthquake attack." Thesis, University of Canterbury. Civil Engineering, 2006. http://hdl.handle.net/10092/1159.

Full text
Abstract:
Incremental Dynamic Analysis (IDA) procedures are advanced and then applied to a quantitative risk assessment for bridge structures. This is achieved by combining IDA with site-dependent hazard-recurrence relations and damage outcomes. The IDA procedure is also developed as a way to select a critical earthquake motion record for a one-off destructive experiment. Three prototype bridge substructures are designed according to the loading and detailing requirements of New Zealand, Japan and Caltrans codes. From these designs 30 percent reduced scale specimens are constructed as part of an experimental investigation. The Pseudodynamic test is then to control on three specimens using the identified critical earthquake records. The results are presented in a probabilistic riskbased format. The differences in the seismic performance of the three different countries' design codes are examined. Each of these current seismic design codes strive for ductile behaviour of bridge substructures. Seismic response is expected to be resulting damage on structures, which may threaten post-earthquake serviceability. To overcome this major performance shortcoming, the seismic behaviour under bi-directional lateral loading is investigated for a bridge pier designed and constructed in accordance with Damage Avoidance principles. Due to the presence of steel armoured rocking interface at the base, it is demonstrated that damage can be avoided, but due to the lack of hysteresis it is necessary to add some supplemental damping. Experimental results of the armoured rocking pier under bi-directional loading are compared with a companion ductile design specimen.
APA, Harvard, Vancouver, ISO, and other styles
40

Loret, Benjamin. "Problèmes numériques et théoriques de la géomécanique." Paris 6, 1986. http://www.theses.fr/1986PA066239.

Full text
Abstract:
Traitement numérique des milieux infinis de la géomécanique: méthodes d'équations intégrales régulières et singulières pour les structures géotechniques en conditions dynamiques; méthode de couplage itérative éléments finis/équations intégrales (applications au demi-espace et demi-plan); vibration d'un pieu fiché dans le demi espace stratifié. Comportement frottant des milieux granulaires: algorithmes locaux d'intégration numérique pour matériaux élastoplastiques type Drucker-Prager; partie élastique déformation des sols; influence de la contrainte moyenne. Problèmes liés à l'anisotropie en grandes transformations (rotations plastiques). Etude de deux types de bifurcation sur les sables; conséquences macroscopiques de la structure granulaire des sables; non-linéarité incrémentale et localisation des déformations.
APA, Harvard, Vancouver, ISO, and other styles
41

Zimmermann, Karsten. "Prognose und bergschadenkundliche Analyse dynamischer Bodenbewegungen durch oberflächennahen Steinkohlenbergbau in den USA." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2011. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-65009.

Full text
Abstract:
Der untertägige Abbau von Steinkohle führt zu Bewegungen des überlagernden Gebirges und der Tagesoberfläche. Eine Bewegungsprognose ist im Hinblick auf entstehende Bergschäden weltweit von großer Bedeutung. In dieser Arbeit wird untersucht, ob eine Prognose von Bodenbewegungen im amerikanischen Steinkohlenbergbau mit einem in Europa bewährten Verfahren, einem dynamischen stochastischen Senkungsmodell, möglich ist. Dazu wurde eine Literaturstudie über den bisherigen Kenntnisstand in den USA durchgeführt, abbaubegleitende Bodenbewegungsmessungen aus dem Steinkohlengebiet der Appalachen ausgewertet und durch Modellrechnungen nachgebildet. Es wurde darüber hinaus untersucht, welchen Einfluss die spezifischen Abbaubedingungen und die räumliche und zeitliche Abbauführung auf die Größe und Dynamik von Bodenbewegungen haben. Die theoretischen und praktischen Untersuchungen zeigen einen deutlichen Know-how Vorsprung des europäischen Bergbaus in den Bereichen der Senkungsmodellierung und Bewertung abbauinduzierter Bodenbewegungen und belegen die Anwendbarkeit des Senkungsmodells. Es wurden wichtige Erkenntnisse gewonnen, die Möglichkeiten und Grenzen einer Optimierung des Abbauzuschnitts und der zeitlichen Abbauführung im Sinne einer bergschadensmindernden Abbauplanung aufzeigen. Die Arbeit trägt zur Verbesserung der bergmännischen und markscheiderischen Abbauplanung im Steinkohlenbergbau bei.
APA, Harvard, Vancouver, ISO, and other styles
42

Trad, Ayman. "Analyse du comportement et modélisation de structures souples de protection : le cas des écrans de filets pare-pierres sous sollicitations statique et dynamique." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00690546.

Full text
Abstract:
En région montagneuse, les infrastructures et les voies de communications sont soumises à de nombreux risques naturels dont les phénomènes d'origine gravitaire. Au-delà du danger pour les usagers, les conséquences des interruptions du trafic deviennent problématiques d'un point de vue économique et il devient indispensable de sécuriser les itinéraires. La mise en place d'écrans de filets pare-pierres est une des solutions possibles pour la protection contre les éboulements rocheux. Cette thèse porte sur l'étude des écrans souples ou filets métalliques de protection contre les chutes de blocs et plus précisément sur l'écran développé par l'entreprise GTS. Le filet constitutif de ces écrans se différencie par rapport aux systèmes conventionnels par un comportement orthotrope, dû à un maillage spécifique. Dans cette étude nous caractérisons le comportement de ces écrans de filets sous des chargements statiques et dynamiques de type impact par une approche couplant l'expérimentation et la modélisation numérique. L'étude procède pas à pas, les divers constituants sont évalués de façon quasi-statique, en laboratoire, et également in-situ pour reproduire les conditions réelles d'utilisation, en particulier l'aspect dynamique. Une attention particulière concernant les dissipateurs d'énergie, qui représentent l'élément centrale de ce type de structure, nous a permis de mettre au point un élément fusible robuste et fiable. Une campagne d'essais en grandeur réel sur les écrans de filets étudiés a permis de valider deux classes énergétiques (3000 kJ et 5000 kJ) selon les recommandations européennes. Les données recueillis lors des expérimentations ont permis de calibrer et valider différentes modélisations numériques de type éléments finis et éléments discrets. La pertinence de la modélisation a été évaluée au niveau des différentes échelles étudiées, échelle d'une maille, échelle d'une nappe, échelle du dissipateur d'énergie et échelle de la structure entière. Les performances et les limites des deux approches, MEF (méthode des éléments finis) et MED (méthodes des éléments discrets) ont été évaluées pour ce qui est de nos modélisations.
APA, Harvard, Vancouver, ISO, and other styles
43

Jakel, Roland. "Lineare und nichtlineare Analyse hochdynamischer Einschlagvorgänge mit Creo Simulate und Abaqus/Explicit." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-171812.

Full text
Abstract:
Der Vortrag beschreibt wie sich mittels der unterschiedlichen Berechnungsverfahren zur Lösung dynamischer Strukturpobleme der Einschlag eines idealisierten Bruchstücks in eine Schutzwand berechnen lässt. Dies wird mittels zweier kommerzieller FEM-Programme beschrieben: a.) Creo Simulate nutzt zur Lösung die Methode der modalen Superposition, d.h., es können nur lineare dynamische Systeme mit rein modaler Dämpfung berechnet werden. Kontakt zwischen zwei Bauteilen lässt sich damit nicht erfassen. Die unbekannte Kraft-Zeit-Funktion des Einschlagvorganges muss also geeignet abgeschätzt und als äußere Last auf die Schutzwand aufgebracht werden. Je dynamischer der Einschlagvorgang, desto eher wird der Gültigkeitsbereich des zugrunde liegenden linearen Modells verlassen. b.) Abaqus/Explicit nutzt ein direktes Zeitintegrationsverfahren zur schrittweisen Lösung der zugrunde liegenden Differentialgleichung, die keine tangentiale Steifigkeitsmatrix benötigt. Damit können sowohl Materialnichtlinearitäten als auch Kontakt geeignet erfasst und damit die Kraft-Zeit-Funktion des Einschlages ermittelt werden. Auch bei extrem hochdynamischen Vorgängen liefert diese Methode ein gutes Ergebnis. Es müssen dafür jedoch weit mehr Werkstoffdaten bekannt sein, um das nichtlineare elasto-plastische Materialverhalten mit Schädigungseffekten korrekt zu beschreiben. Die Schwierigkeiten der Werkstoffdatenbestimmung werden in den Grundlagen erläutert
The presentation describes how to analyze the impact of an idealized fragment into a stell protective panel with different dynamic analysis methods. Two different commercial Finite Element codes are used for this: a.) Creo Simulate: This code uses the method of modal superposition for analyzing the dynamic response of linear dynamic systems. Therefore, only modal damping and no contact can be used. The unknown force-vs.-time curve of the impact event cannot be computed, but must be assumed and applied as external force to the steel protective panel. As more dynamic the impact, as sooner the range of validity of the underlying linear model is left. b.) Abaqus/Explicit: This code uses a direct integration method for an incremental (step by step) solution of the underlying differential equation, which does not need a tangential stiffness matrix. In this way, matieral nonlinearities as well as contact can be obtained as one result of the FEM analysis. Even for extremely high-dynamic impacts, good results can be obtained. But, the nonlinear elasto-plastic material behavior with damage initiation and damage evolution must be characterized with a lot of effort. The principal difficulties of the material characterization are described
APA, Harvard, Vancouver, ISO, and other styles
44

Sénégond, Nicolas. "APPROCHE TEMPORELLE DE LA SIMULATION ET DE LA CARACTÉRISATION DES TRANSDUCTEURS ULTRASONORES CAPACITIFS MICRO-USINÉS." Phd thesis, Université François Rabelais - Tours, 2010. http://tel.archives-ouvertes.fr/tel-00738359.

Full text
Abstract:
Les transducteurs ultrasonores capacitifs micro-usinés (cMUT : capacitive Micromachined Ultrasound Transducers) sont aujourd'hui une nouvelle alternative à la transduction d'ondes ultrasonores. En comparaison avec la technologie piézoélectrique, ils offrent de nombreuses potentialités en termes de fiabilité, de production, de miniaturisation et d'intégration, d'une électronique associée mais aussi en termes de performances acoustiques. Les voies d'application de ces dispositifs, dédiés initialement à l'imagerie médicale, sont aujourd'hui étendues à de nombreux domaines tels que la thérapie, les capteurs biochimiques ou encore l'émission paramétrique d'ondes sonores. Néanmoins, leur mise en œuvre n'en est encore qu'à ses balbutiements et la compréhension de leurs comportements à la fois statique et dynamique nécessite d'être approfondie. C'est dans ce cadre que s'inscrit le présent travail de thèse. Ce mémoire adresse deux aspects majeurs de ces micro-systèmes : leur caractérisation mécanique et l'impact de la non-linéarité des forces électrostatiques sur la réponse temporelle. La caractérisation des micro-systèmes, notamment en termes de contraintes initiales et de modules d'élasticité, est une problématique récurrente de ces dispositifs. Dans le contexte des technologies cMUT, fabriquées par procédé de micro-usinage de surface, nous avons souhaité reposer les bases de cette étape de mesure et proposer des méthodes de caractérisation basées sur l'utilisation de dispositifs fonctionnels plutôt que s'appuyer sur des structures dédiées (micro-poutre, ponts, structures rotatives). L'impact de la non-linéarité sur la dynamique dans le fluide d'une cellule, puis d'un réseau de cellules, est ensuite étudié en s'appuyant à la fois sur des mesures d'interférométrie laser et sur un modèle temporel intégrant les effets du fluide. Nous exposons ici une étude à plusieurs échelles, allant de la cellule unitaire du dispositif à la pression rayonnée par un élément de barrette. Une optimisation de l'excitation dans l'objectif de réduire l'effet de la non-linéarité tout en conservant des niveaux de pressions optimum est proposée. En fin, à travers l'étude dynamique effectuée, un nouveau régime de fonctionnement des cMUTs est identifié et vérifié. Celui-ci s'appuie sur l'exploitation du régime forcé dans l'air ou dans l'eau de ces dispositifs pour la génération d'ondes ultrasonores basse-fréquence.
APA, Harvard, Vancouver, ISO, and other styles
45

Mondelin, Alexandre. "Modélisation de l'intégrité des surfaces usinées : Application au cas du tournage finition de l'acier inoxydable 15-5PH." Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00838512.

Full text
Abstract:
En usinage, la zone de coupe présente des conditions de température, des cinétiques thermiques, des déformations et des pressions extrêmes. Dans ce contexte, être capable de relier les variations des conditions de coupe (vitesse de coupe, avance, lubrification, usure, outil,...) à l'intégrité de la surface usinée constitue un objectif scientifique majeur. Cette thèse s'intéresse au cas du tournage finition du 15-5PH (acier inoxydable martensitique utilisé, entre autre, pour la fabrication des pièces de rotor d'hélicoptère ainsi que les pompes et les vannes de circuit primaire de centrale nucléaire) et s'inscrit dans le cadre du projet MIFSU (Modélisation de l'Intégrité et de la Fatigue des Surfaces Usinées).Dans un premier temps, le comportement du matériau a été étudié afin d'alimenter les simulations d'usinage. Des essais de dilatométrie libre ont été conduit afin de calibrer les cinétiques d'austénitisation du 15-5PH pour des vitesses de chauffe élevées (jusqu'à 11000 °C/s). Les paramètres du modèle de changement de phase de Leblond ont alors été identifiés. De plus, des essais de compression dynamique (dε/dt allant de 0.01 à 80 /s et ε > 1) ont été réalisés pour calibrer une loi de comportement élasto-plastique aux grandes déformations avec une sensibilité à la vitesse de déformation. Ces essais ont aussi permis de mettre en évidence des phénomènes de recristallisation dynamique et leurs influences sur la contrainte d'écoulement du matériau. Un modèle de recristallisation dynamique a donc également été mis en œuvre.En parallèle, un modèle numérique de prédiction de l'intégrité des surfaces tournées a été construit. Ce modèle repose sur une méthodologie dite " hybride " (développée au cours de la thèse Frédéric Valiorgue pour l'acier AISI 304L) qui consiste à supprimer la modélisation de l'outil de coupe et de la formation du copeau, et à remplacer l'impact thermomécanique de ces derniers sur la surface usinée par des chargements équivalents. Une étape de calibration de ces chargements a donc été réalisée à travers des essais de coupe orthogonale et de frottement (étude de sensibilité des efforts d'usinage, du coefficient de frottement et du coefficient de partage thermique) aux variations des paramètres de coupe.Enfin, les résultats des simulations numériques de tournage portant sur la prédiction des changements de microstructure (austénitisation et recristallisation dynamique) ainsi que des contraintes résiduelles ont été comparés aux résultats issus d'une campagne d'essais de chariotage.
APA, Harvard, Vancouver, ISO, and other styles
46

Chevalier, Thibaud. "Écoulements de fluides à seuil en milieux confinés." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00903850.

Full text
Abstract:
Afin de mieux comprendre les spécificités de l'écoulement des fluides en seuil en géométries confinées, nous avons opté pour une approche multi-échelle expérimentale et/ou numérique dans des milieux poreux complexes et modèles. Nous montrons qu'il est possible d'utiliser la RMN pour visualiser des écoulements de fluides à seuil en géométrie complexe. Dans un milieu poreux, il est également possible de mesurer la distribution statistique des vitesses, ceci sans problème de résolution spatiale, grâce à la méthodologie de réglage d'une expérience d'injection sous IRM que nous avons mise en place. A l'aide de ces techniques, nous montrons que l'écoulement d'un fluide à seuil dans un pore modèle (une expansion-contraction axisymétrique) se localise dans la partie centrale du pore, dans le prolongement du tube d'entrée, tandis que les régions extérieures restent dans le régime solide. Des simulations numériques confirment ces résultats et montrent que la localisation de l'écoulement provient du confinement engendré par la géométrie. A l'inverse, nous montrons que pour un fluide à seuil s'écoulant dans un milieu poreux réel (en trois dimensions), il n'existe pas de zones au repos. De plus, la distribution de vitesse est identique à celle d'un fluide newtonien. Une analyse de ces résultats nous permet de prédire la forme de la loi de Darcy pour les fluides à seuil et de comprendre l'origine physique des paramètres déterminés par des expériences d'injection " macroscopiques "
APA, Harvard, Vancouver, ISO, and other styles
47

Wagner, Christopher Todd. "Effects of fluid dynamic shear stress on platelet aggregability under pathophysiologic conditions." Thesis, 1997. http://hdl.handle.net/1911/19227.

Full text
Abstract:
The objective of this work was to further our understanding of the influence hemodynamic forces have on the cardiovascular system. Specifically, the effect of shear stress on platelet aggregability under two pathophysiological conditions was studied. Elevated shear stress levels in stenosed vessels induce platelet aggregation. Increased plasma catecholamine concentrations have also been implicated in the onset of acute coronary ischemic syndromes. This first study was designed to examine the synergistic platelet activation by the interaction of shear stress and epinephrine. Platelets suspensions sheared at subthreshold levels in a cone and plate viscometer showed little or no aggregation unless pretreated with subthreshold concentrations of epinephrine. Monoclonal antibody blockade of glycoproteins (Gp) Ib and IIb/IIIa showed that the synergistic platelet aggregation required functional Gp IIb/IIIa but could partially bypass Gp Ib-von Willebrand factor (vWF) interaction. Binding studies indicated that fibrinogen is required for platelet priming, but a functional role for vWF could not be ruled out. Synergistic platelet aggregation was also observed in whole blood following exercise to elevate endogenous levels of catecholamines in blood donors. Vascular smooth muscle cells (SMCs) are exposed to fluid dynamic shear stress at sites of vessel wall damage. This second study was designed to examine the effects of shear stress on the production of platelet inhibitory nitric oxide (NO) and carbon monoxide (CO) from SMCs. A modified cone and plate viscometer was used to subject monolayers of SMCs to arterial levels of shear stress. Shear stress was observed to induce mRNA and protein production of inducible heme oxygenase (HO-1), which generates CO, but not to affect inducible NO synthase, in a shear stress and time dependent manner. Washed platelets, used to detect the production of CO from SMCs, contained elevated levels of cGMP and demonstrated an inhibited aggregation response to ADP following coincubation with sheared SMCs. The elevated intra-platelet cGMP levels and inhibited aggregation response could only be blocked by incubating the SMCs with the HO-1 inhibitor tin protoporphyrin. These results indicate that shear stress may play a variety of roles with regard to platelet aggregability under pathological conditions, helping to control blood fluidity.
APA, Harvard, Vancouver, ISO, and other styles
48

Langevin, Ariel Marie. "Dynamics and evolution of efflux pump-mediated antibiotic resistance." Thesis, 2021. https://hdl.handle.net/2144/41885.

Full text
Abstract:
Antibiotic resistance is a worldwide health threat, as bacteria continue to evade antibiotic treatment. In order to survive, bacteria utilize a number of resistance mechanisms, including efflux pumps, which efficiently export antibiotics outside of the cell to reduce intracellular damage. While such mechanisms are well known, there remains a significant gap in knowledge regarding how different environmental dynamics, such as the rate of antibiotic introduction or the diversity within a microbial community, play a role in resistance. In this work, we used the AcrAB-TolC efflux pump as a case study to explore how such complex dynamics promote antibiotic resistance and its evolution. First, through a combined effort using experiments and mathematical modeling, we discovered that the rate of antibiotic introduction impacts the fraction of resistant bacteria in a population. We then explored the impact of mixed populations on survival following antibiotic treatment. In mixed microcolonies, we found that resistant cells can harm their susceptible neighbors by exporting antibiotics to increase the local concentrations of these drugs. Next, we aimed to understand how these environmental effects may impact longer-term survival of an antibiotic treatment, focusing on the evolution of resistance over ~72 hours. Through a series of adaptive evolution experiments, we identified that near-MIC treatments were the most likely to promote antibiotic resistance, regardless of whether the strains contained the AcrAB-TolC pump at wild type or overexpressed levels, or whether the strains lacked the pump altogether. In studying antibiotic introduction rates on evolution, we found that slower introduction rates facilitated the evolution of high levels of resistance with a minimal fitness cost. Meanwhile, mixed populations demonstrated limited evolvability after rapid antibiotic introductions. This work provides important insights into the impacts of environmental factors, such as the rate of antibiotic introduction and the homogeneity of populations, on the promotion and evolution of antibiotic resistance. These lessons may help inform future policies on antibiotic use and mitigate the continued pattern of resistance evolution.
APA, Harvard, Vancouver, ISO, and other styles
49

"Population dynamics of insect-cell cultures in different bioreactor environments and as a function of shear stress." Tulane University, 1999.

Find full text
Abstract:
In earlier studies, we reported benefits for insect-cell cultivation in a low shear regime in terms of reduced medium requirements and enhanced longevity. To elucidate these effects, we characterized the mode and kinetics of Spodoptera frugiperda cell death in a quiescent rotating-wall vessel (RWV) relative to a shaker-flask control (Section I). Our proposed kinetic model of growth and bimodal cell death is unique for including both apoptosis and necrosis, and further, transition steps within each pathway. Kinetic constants reveal that total cell death is reduced in the RWV and the observed accumulation of apoptotic cells results from reduced depletion by lysis and secondary necrosis. In the model, apoptosis is only well represented by an integral term, which may indicate its dependence on accumulation of some factor over time; in contrast, necrosis is adequately represented with a first-order term. Data from cell-cycle analysis suggests the tetraploid phase as the likely origin for apoptosis in our cultures. Possible mechanisms for these changes in bimodal cell death are discussed, including hydrodynamic forces, cell-cell interactions, waste accumulation, and mass transport In Section II, insect-cell growth and death rates and other culture parameters are defined as more explicit functions of shear stress. This was accomplished by using a Couette bioreactor, a geometry for which the shear field is well described. We determined that our operating conditions were in the laminar flow regime, with maximum shear stress at the inner cylinder ranging from 0.8 to 1.3 dyne cm--2. Rheology testing revealed that insect cells in medium behave as a pseudoplastic fluid below shear rates of 50 s--1, i.e. within the range of interest. At higher shear rates, there were significant decreases in aggregation and increases in cell lysis. On application of the kinetic model to Couette bioreactor data, the rates of formation of necrotic and early apoptotic cells and apoptotic lysis increased approximately exponentially with shear stress, while the formation rate of late apoptotic cells and necrotic lysis showed no clear dependence. These studies may benefit insect-cell cultivation by increasing our understanding of cell death in culture and providing a means for further enhancing culture longevity
acase@tulane.edu
APA, Harvard, Vancouver, ISO, and other styles
50

(9188927), seyedalireza abootorabi. "COMPUTATIONAL FLUID DYNAMICS FOR MODELING AND SIMULATION OF INTRAOCULAR DRUG DELIVERY AND WALL SHEAR STRESS IN PULSATILE FLOW." Thesis, 2020.

Find full text
Abstract:
The thesis includes two application studies of computational fluid dynamics. The first is new and efficient drug delivery to the posterior part of the eye, a growing health necessity worldwide. Current treatment of eye diseases, such as age related macular degeneration (AMD), relies on repeated intravitreal injections of drug-containing solutions. Such a drug delivery has significant drawbacks, including short drug life, vital medical service, and high medical costs. In this study, we explore a new approach of controlled drug delivery by introducing unique porous implants. Computational
modeling contains physiological and anatomical traits. We simulate the IgG1 Fab drug delivery to the posterior eye to evaluate the effectiveness of the porous implants to control the drug delivery. The computational model was validated by established computation results from independent studies and experimental data. Overall, the results indicate that therapeutic drug levels in the posterior eye are sustained for
eight weeks, similar to those performed with intravitreal injection of the same drug. We evaluate the effects of the porous implant on the time evaluation of the drug concentrations in the sclera, choroid, and retina layers of the eye. Subsequent simulations were carried out with varying porosity values of a porous episcleral implant.
Our computational results reveal that the time evolution of drug concentration is distinctively correlated to drug source location and pore size. The response of this porous implant for controlled drug delivery applications was examined. A correlation between porosity and fluid properties for the porous implants was revealed in this study. The second application lays in the computational modeling of the oscillating flow in rectangular ducts. This computational study has further applications in investigating the fluid flow motion in bodily organs. It can be useful in studying the
response of bone cells to the wall shear stress in the human body.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography