Academic literature on the topic 'Structures de Van der Waals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structures de Van der Waals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structures de Van der Waals"
Ren, Ya-Ning, Yu Zhang, Yi-Wen Liu, and Lin He. "Twistronics in graphene-based van der Waals structures." Chinese Physics B 29, no. 11 (October 2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.
Full textFife, Paul C., and Xiao-Ping Wang. "Periodic structures in a van der Waals fluid." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, no. 2 (1998): 235–50. http://dx.doi.org/10.1017/s0308210500012762.
Full textWang, Yanli, and Yi Ding. "The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study." Physical Chemistry Chemical Physics 17, no. 41 (2015): 27769–76. http://dx.doi.org/10.1039/c5cp04815j.
Full textZhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang, and Chun Tang. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes." Materials 15, no. 22 (November 18, 2022): 8220. http://dx.doi.org/10.3390/ma15228220.
Full textFINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO, and NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS." Journal of Bioinformatics and Computational Biology 06, no. 04 (August 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.
Full textAnnamalai, Meenakshi, Kalon Gopinadhan, Sang A. Han, Surajit Saha, Hye Jeong Park, Eun Bi Cho, Brijesh Kumar, Abhijeet Patra, Sang-Woo Kim, and T. Venkatesan. "Surface energy and wettability of van der Waals structures." Nanoscale 8, no. 10 (2016): 5764–70. http://dx.doi.org/10.1039/c5nr06705g.
Full textForest, Susan E., and Robert L. Kuczkowski. "The Structures of Cyclopropane−Amine van der Waals Complexes." Journal of the American Chemical Society 118, no. 1 (January 1996): 217–24. http://dx.doi.org/10.1021/ja952849z.
Full textDeilmann, Thorsten, Michael Rohlfing, and Ursula Wurstbauer. "Light–matter interaction in van der Waals hetero-structures." Journal of Physics: Condensed Matter 32, no. 33 (May 19, 2020): 333002. http://dx.doi.org/10.1088/1361-648x/ab8661.
Full textQuan, Silong, Linghui He, and Yong Ni. "Tunable mosaic structures in van der Waals layered materials." Physical Chemistry Chemical Physics 20, no. 39 (2018): 25428–36. http://dx.doi.org/10.1039/c8cp04360d.
Full textKing, Benjamin T., Bruce C. Noll, and Josef Michl. "Cation-π Interactions in the Solid State: Crystal Structures of M+(benzene)2CB11Me12- (M = Tl, Cs, Rb, K, Na) and Li+(toluene)CB11Me12-." Collection of Czechoslovak Chemical Communications 64, no. 6 (1999): 1001–12. http://dx.doi.org/10.1135/cccc19991001.
Full textDissertations / Theses on the topic "Structures de Van der Waals"
Andrinopoulos, Lampros. "Including van der Waals interactions in first-principles electronic structure calculations." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/22152.
Full textLee, Hee-Seung. "The structure, spectroscopy and dynamics of Small Van Der Waals Complexes /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486572165276376.
Full textSCHMIDT, PER MARTIN. "Structure et dynamique des complexes de van der waals benzene-argon." Paris 11, 1992. http://www.theses.fr/1992PA112315.
Full textWatkins, Jason Derrick. "X-ray structures of P22 c2 repressor-DNA complexes the mechansism of direct and indirect readout /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26709.
Full textCommittee Chair: Loren D. Williams; Committee Member: Donald Doyle; Committee Member: Nicholas V. Hud; Committee Member: Roger Wartell; Committee Member: Stephen Harvey. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Economides, George. "Investigations of open-shell open-shell Van der Waals complexes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.
Full textConstantinescu, Gabriel Cristian. "Large-scale density functional theory study of van-der-Waals heterostructures." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274876.
Full textWalters, Alan. "Spectroscopy and structure of jet cooled aromatics and van der Waals complexes." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280097.
Full textSkouteris, Dimitris. "Structure and dynamics of weakly bound complexes." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301422.
Full textDuval-Été, Marie-Christine. "Structure électronique et mouvements moléculaires dans les complexes de Van der Waals du mercure." Paris 11, 1988. http://www.theses.fr/1988PA112191.
Full textCe travail porte sur l'étude de la structure électronique et vibrationnelle de complexes de van der Waals du mercure. Il met en évidence l'influence de la nature électronique et vibrationnelle du niveau optiquement excité sur les voies de désactivation. L'étude spectroscopique des différents systèmes, mercure-atome : Hg-Ar et mercure-molécule : Hg-N₂ , Hg-CH₄ , Hg-NH₃ et Hg-H₂ 0, conduit à la détermination des potentiels d'interaction van der Waals. Dans le cas du complexe mercure-argon on a pu montrer, par un modèle simple, que pour les premiers états électroniques excités, états corrélés aux niveaux 6³P du mercure, le facteur essentiel décrivant l'interaction van der Waals est l'orientation moyenne de l'orbitale 6³p du mercure par rapport à l'axe internucléaire du complexe. L'étude des états excités supérieurs corrélés à l'état de Rydberg 7³s₁ du mercure a révélé une structure en double puits. L'argon peut occuper deux positions d'équilibre, situé à l'intérieur du nuage électronique de l'orbitale 7s du mercure, le complexe a les caractéristiques de l'ion Hg+-Ar, situé à l'extérieur de ce nuage il forme une molécule de van der Waals très peu liée. Les mouvements moléculaires du complexe : Allongement et torsion et leur influence sur les mécanismes de désactivation, sont plus spécialement étudiés avec le système Hg-N₂. La modélisation des spectres expérimentaux: Excitation de fluorescence, émission, excitation du fragment Hg (6 ³P0), conduit à une description des potentiels d'interaction de l'état fondamental et des états excités atteints. Les mouvements de torsion du complexe peuvent être décrits comme une rotation bloquée de l'azote. Observant une dépendance de la dissociation du complexe avec le niveau vibrationnel excité, on a pu mettre en évidence le rôle du moment angulaire de vibration sur la dissociation du complexe induisant la relaxation intra multiplet du mercure vers le niveau ³P0. Enfin, l'excitation optique des complexes de van der Waals mercure-ammoniac et mercure-eau permet l'observation directe et la caractérisation spectroscopique des complexes collisionnels dont les émissions ont été observées précédemment. Donnant une image précise de la structure électronique, des mouvements moléculaires et des processus de désactivation de ces complexes, cette étude contribue à la compréhension de leur formation et des émissions caractéristiques leur étant liées. Un mécanisme de double échange de charge entre le mercure et la molécule est proposé pour rendre compte des énergies de liaison des complexes les plus liés à l'état excité. Il est de même nature que ceux ayant lieu entre ligands et surfaces métalliques, aussi les complexes très liés peuvent-ils être considérés comme des systèmes catalytiques ou pré-catalytiques
Hay, Henri. "Étude de la structure et des propriétés des polymorphes de SiO2 et B2O3 par méthodes ab initio." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066318.
Full textDuring this PhD I use density functional theory and quantum Monte Carlo to evaluate the importance of van der Waals effects on the structures, the energies, and the properties of SiO2 and B2O3 polymorphs. I show that exchange-correlation functionals including dispersion effects lead to an error cancellation between an overestimation of the Si-O distances and an underestimation of the Si-O-Si angles in low densities SiO2 polymorphs. By using quantum Monte Carlo calculations, I have predicted with high accuracy the relative energy of a new B2O3 polymorph, which allowed me to evaluate the performances of different exchange-correlation functionals on this material. I then use the best functional possible to compute the mechanical and electronic properties of 25 predicted B2O3 polymorphs. Some of the predicted polymorphs exhibit intriguing mechanical properties, such as negative linear compressibility, auxeticity and anisotropy. These calculations allow me to make a hypothesis explaining the crystallization anomaly in B2O3. They underline a seemingly universal link between low energy polymorphism and ease of vitrification
Books on the topic "Structures de Van der Waals"
Yeh, Po-Chun. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textSerrée, Raoul. Amsterdam ommuurd: Het raadsel van de middeleeuwse stadsmuur (1481-1601). Abcoude: Uniepers, 1999.
Find full textParsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.
Find full textHolwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.
Full textL, Neal Brian, Lenhoff Abraham M, and United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.
Find full textKipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.
Find full text1926-, Rowlinson J. S., and I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.
Find full textHalberstadt, Nadine, and Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.
Full textHalberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.
Find full textNATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.
Find full textBook chapters on the topic "Structures de Van der Waals"
Horing, Norman J. Morgenstern, Vassilios Fessatidis, and Jay D. Mancini. "Atom/Molecule van der Waals Interaction with Graphene." In Low Dimensional Semiconductor Structures, 93–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28424-3_5.
Full textSanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials, 77–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_4.
Full textSernelius, Bo E. "Van der Waals Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions, 209–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_10.
Full textSernelius, Bo E. "Van der Waals Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions, 233–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_11.
Full textSernelius, Bo E. "Van der Waals Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions, 153–207. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_9.
Full textSernelius, Bo E. "Dispersion Interaction in Planar Structures." In Fundamentals of van der Waals and Casimir Interactions, 273–337. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_13.
Full textSernelius, Bo E. "Dispersion Interaction in Spherical Structures." In Fundamentals of van der Waals and Casimir Interactions, 339–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_14.
Full textSernelius, Bo E. "Dispersion Interaction in Cylindrical Structures." In Fundamentals of van der Waals and Casimir Interactions, 373–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_15.
Full textHoward, Brian J. "The Structure and Dynamics of Van Der Waals Molecules." In Structures and Conformations of Non-Rigid Molecules, 137–61. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2074-6_7.
Full textSanchez, Oswaldo, Joung Min Kim, and Ganesh Balasubramanian. "Erratum to: Graphene Analogous Elemental van der Waals Structures." In Advances in Nanomaterials, E1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_7.
Full textConference papers on the topic "Structures de Van der Waals"
Li, Jie, Yirong Guo, and Pengying Chang. "Copper Ion Migration in van der Waals CuInP2S6 Devices with Vertical and Lateral Structures." In 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 1–3. IEEE, 2024. https://doi.org/10.1109/icsict62049.2024.10831410.
Full textNorden, Tenzin, Luis M. Martinez, Nehan Tarefder, Kevin W. C. Kwock, Luke M. McClintock, Nicholas Olsen, Xiaoyang Zhu, et al. "Two-dimensional nonlinear optics with a twist." In CLEO: Fundamental Science, FTh5B.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth5b.8.
Full textZong, Zhen, Ryosuke Morisaki, Kanami Sugiyama, Masahiro Higashi, Takayuki Umakoshi, and Prabhat Verma. "Probing Forbidden Low-Frequency Raman Modes in MoS2 via Plasmonic Nanoparticle." In JSAP-Optica Joint Symposia, 17a_A34_9. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_9.
Full textRoy, Ajit K., Jonghoon Lee, Dhriti Nepal, and John Ferguson. "Electronic Conduction Mechanism in Van Der Waals Flake Thin Film." In ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ssdm2023-108595.
Full textZhu, Kaichen, Xianhu Liang, Bin Yuan, Marco A. Villena, Chao Wen, Tao Wang, Shaochuan Chen, Mario Lanza, Fei Hui, and Yuanyuan Shi. "Tristate Resistive Switching in Heterogenous Van Der Waals Dielectric Structures." In 2019 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2019. http://dx.doi.org/10.1109/irps.2019.8720485.
Full textCaliskan, U. "New approach for modeling randomly distributed CNT reinforced polymer nanocomposite with van der Waals interactions." In Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-7.
Full textLoreau, J. "Structure and dynamics of small van der Waals complexes." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897805.
Full textCho, Hyunhee, Dong-Jin Shin, Junghyun Sung, Young-Ho Ko, and Su-Hyun Gong. "Ultra-thin Photonic Structures for Integration of Quantum Emitters in van der Waals Materials." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jw4a.76.
Full textBunte, S. W., J. B. Miller, Z. S. Huang, J. E. Verdasco, C. Wittig, and R. A. Beaudet. "Structure determination of the CO−CI2 van der Waals complex." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tul3.
Full textRosser, David. "High-precision local transfer of van der Waals materials on nanophotonic structures (Conference Presentation)." In 2D Photonic Materials and Devices III, edited by Arka Majumdar, Carlos M. Torres, and Hui Deng. SPIE, 2020. http://dx.doi.org/10.1117/12.2543902.
Full textReports on the topic "Structures de Van der Waals"
Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6608231.
Full textMak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1782672.
Full textKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ada616377.
Full textSandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6382645.
Full textSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5610422.
Full textO'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1562380.
Full textMenezes, W. J. C., and M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10132910.
Full textMartinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350595.
Full textGwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7188608.
Full textFrench, Roger H., Nicole F. Steinmetz, and Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1431216.
Full text