Academic literature on the topic 'Structured lattices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structured lattices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structured lattices"
Frascella, A., and C. Guido. "Structured lattices and ground categories ofL-sets." International Journal of Mathematics and Mathematical Sciences 2005, no. 17 (2005): 2783–803. http://dx.doi.org/10.1155/ijmms.2005.2783.
Full textBathla, Pranjal, and John Kennedy. "3D Printed Structured Porous Treatments for Flow Control around a Circular Cylinder." Fluids 5, no. 3 (August 14, 2020): 136. http://dx.doi.org/10.3390/fluids5030136.
Full textHORE, VICTORIA R. A., JOHN B. TROY, and STEPHEN J. EGLEN. "Parasol cell mosaics are unlikely to drive the formation of structured orientation maps in primary visual cortex." Visual Neuroscience 29, no. 6 (October 30, 2012): 283–99. http://dx.doi.org/10.1017/s0952523812000338.
Full textBudinski, Ljubomir, Julius Fabian, and Matija Stipić. "Lattice Boltzmann method for groundwater flow in non-orthogonal structured lattices." Computers & Mathematics with Applications 70, no. 10 (November 2015): 2601–15. http://dx.doi.org/10.1016/j.camwa.2015.09.027.
Full textKumar, K. Raj, and Giuseppe Caire. "Space–Time Codes From Structured Lattices." IEEE Transactions on Information Theory 55, no. 2 (February 2009): 547–56. http://dx.doi.org/10.1109/tit.2008.2009595.
Full textDziobiak, Wieslaw, Jaroslav Ježek, and Ralph McKenzie. "Avoidable structures, II: Finite distributive lattices and nicely structured ordered sets." Algebra universalis 60, no. 3 (March 16, 2009): 259–91. http://dx.doi.org/10.1007/s00012-009-2098-0.
Full textBoley, J. William, Wim M. van Rees, Charles Lissandrello, Mark N. Horenstein, Ryan L. Truby, Arda Kotikian, Jennifer A. Lewis, and L. Mahadevan. "Shape-shifting structured lattices via multimaterial 4D printing." Proceedings of the National Academy of Sciences 116, no. 42 (October 2, 2019): 20856–62. http://dx.doi.org/10.1073/pnas.1908806116.
Full textAnoop, V. S., and S. Asharaf. "Extracting Conceptual Relationships and Inducing Concept Lattices from Unstructured Text." Journal of Intelligent Systems 28, no. 4 (September 25, 2019): 669–81. http://dx.doi.org/10.1515/jisys-2017-0225.
Full textKhoromskaia, Venera, and Boris N. Khoromskij. "Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach." Computational Methods in Applied Mathematics 17, no. 3 (July 1, 2017): 431–55. http://dx.doi.org/10.1515/cmam-2017-0004.
Full textSTRACCIA, UMBERTO. "DESCRIPTION LOGICS OVER LATTICES." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14, no. 01 (February 2006): 1–16. http://dx.doi.org/10.1142/s0218488506003807.
Full textDissertations / Theses on the topic "Structured lattices"
Felderhoff, Joël. "Difficultés de Problèmes de Réseaux Structurés pour la Cryptographie Post-Quantique." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0059.
Full textThe security of cryptographic protocols is based on the presumed difficulty of algorithmic problems. Among those identified so far, some of the best problems to serve as a foundation for quantum-proof cryptography come from lattices. Lattices are a mathematical structure defined as a set of space vectors generated by integer combinations of a finite number of linearly independent real vectors (its basis). A typical example of a related security problem is the Shortest Vector Problem (SVP). Given a base of an n-dimensional lattice, find a non-zero short vector. For efficiency reasons, these problems are restricted to lattices arising from number theory, known as structured lattices. As the security assumptions for these particular lattices are different from those for unstructured lattices, it is necessary to study them specifically, which is the aim of this thesis.We have studied the case of NTRU and uSVP modules in rank 2, proving that the SVP problem is equivalent on these two families of lattices. We also show a worst-case to average-case reduction for rank-2 uSVP lattices. Then we show that solving SVP on a prime ideal of small norm is no easier than solving SVP on any ideal
ASHOK, RAMYA. "A DATABASE SYSTEM TO STORE AND RETRIEVE A CONCEPT LATTICE STRUCTURE." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130552767.
Full textJenkins, Sarah Nield Morrish. "Mechanical properties and structural evaluation of diamond structure Ti6Al4V lattices made by Electron Beam Melting." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20954/.
Full textBanihashemi, Amir H. "Decoding complexity and trellis structure of lattices." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22189.pdf.
Full textBurns, D. "Factorisability, group lattices, and Galois module structure." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335599.
Full textO'Connor, Joseph. "Fluid-structure interactions of wall-mounted flexible slender structures." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/fluidstructure-interactions-of-wallmounted-flexible-slender-structures(1dab2986-b78f-4ff9-9b2e-5d2181cfa009).html.
Full textGoel, Archak. "Design of Functionally Graded BCC Type Lattice Structures Using B-spline Surfaces for Additive Manufacturing." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1552398559313737.
Full textHou, An. "Strength of composite lattice structures." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/12475.
Full textObiedat, Mohammad. "Incrementally Sorted Lattice Data Structures." Thesis, The George Washington University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3732474.
Full textData structures are vital entities that strongly impact the efficiency of several software applications. Compactness, predictable memory access patterns, and good temporal and spacial locality of the structure's operations are increasingly becoming essential factors in the selection of a data structure for a specific application. In general, the less data we store and move the better for efficiency and power consumption, especially in infrastructure software and applications for hand-held devices like smartphones. In this dissertation, we extensively study a data structure named lattice data structure (LDS) that is as compact and suitable for memory hierarchies as the array, yet with a rich structure that enables devising procedures with better time bounds.
To achieve performance similar to the performance of the optimal O(log(N)) time complexity of the searching operations of other structures, we provide a hybrid searching algorithm that can be implemented by searching the lattice using the basic searching algorithm when the degree of the sortedness of the lattice is less than or equal to 0.9h, and the jump searching algorithm when the degree of the sortedness of the lattice is greater than 0.9h. A sorting procedure that can be used, during the system idle time, to incrementally increase the degree of sortedness of the lattice is given. We also provide randomized and parallel searching algorithms that can be used instead of the usual jump-and-walk searching algorithms.
A lattice can be represented by a one-dimensional array, where each cell is represented by one array element. The worst case time complexity of the basic LDS operations and the average time complexity of some of the order-statistic operations are better than the corresponding time complexities of most of other data structures operations. This makes the LDS a good choice for memory-constrained systems, for systems where power consumption is a critical issue, and for real-time systems. A potential application of the LDS is to use it as an index structure for in-memory databases.
Kouach, Mona. "Methods for modelling lattice structures." Thesis, KTH, Hållfasthetslära (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260498.
Full textÖkad implementering av gitterstrukturer i komponenter är ett resultat av utvecklingen inom additiv tillverkning. Metoden öppnar upp för tillverkning av komplexa strukturer med färre delmoment. Dock så uppkommer det svårigheter vid simulering av dessa komplexa strukturer då beräkningar snabbt tyngs ner med ökad komplexitet. Följande examensarbete har utförts hos avdelningen Strukturanalys, på SAAB i Järfälla, för att de ska kunna möta upp det framtida behovet av beräkningar på additivt tillverkade gitterstrukturer. I det här arbetet presenteras ett tillvägagångsätt för modellering av gitterstrukturer med hjälp av represantiva volymselement. Styvhetsmatriser har räknats fram, för en vald gitterkonfiguration, som sedan viktats mot tre snarlika representativa volymselement. En jämförelseanalys mellan de olika styvhetsmatriserna har sedan gjorts på en större och solid modell för att se hur väl metoderna förutsett deformationen av en gitterstruktur i samma storlek. Resultaten har visat att samtliga metoder är bra approximationer med tämligen små skillnader från randeffekterna. Vid jämförelseanalysen simulerades gitterstrukturen bäst med två av de tre metoder. En av slutsatserna är att det är viktigt att förstå inverkan av randvillkoren hos gitterstrukturer innan implementering görs med det tillvägagångssätt som presenterats i det här examensarbetet.
Books on the topic "Structured lattices"
H, Sowa, ed. Cubic structure types described in their space groups with the aid of frameworks. Karlsruhe, [West Germany]: Fachinformationszentrum Energie, Physik, Mathematik, 1985.
Find full textMüller-Hoissen, Folkert, Jean Marcel Pallo, and Jim Stasheff, eds. Associahedra, Tamari Lattices and Related Structures. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0405-9.
Full textFuentes, Benjamin J. Optical lattices: Structures, atoms, and solitons. Hauppauge, N.Y: Nova Science Publishers, 2012.
Find full textLeung, Henry Hon Hung. Trellis structure and decoding of lattices. Ottawa: National Library of Canada, 1994.
Find full textAmerican Society of Civil Engineers., ed. Design of latticed steel transmission structures. Reston, Va: American Society of Civil Engineers, 2000.
Find full textAmerican Society of Civil Engineers. Design of latticed steel transmission structures. Reston, Virginia: American Society of Civil Engineers, 2015.
Find full textZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Department of Civil Engineering, University of Queensland, 1992.
Find full textZhu, K. Nonlinear dynamic analysis of lattice structures. Brisbane: Universityof Queensland, Dept. of Civil Engineering, 1990.
Find full textAkademii͡a nauk SSSR. I͡Akutskiĭ nauchnyĭ t͡sentr. Otdel prikladnoĭ matematiki i vychislitelʹnoĭ tekhniki, ed. Matematicheskie metody sinteza mnogosloĭnykh struktur pri vozdeĭstvii voln. I͡Akutsk: I͡Akutskiĭ nauchnyĭ t͡sentr SO AN SSSR, 1990.
Find full textGalvin, Brian Russell. Numerical studies of localized vibrating structures in nonlinear lattices. Monterey, Calif: Naval Postgraduate School, 1991.
Find full textBook chapters on the topic "Structured lattices"
Michelitsch, Thomas M., Alejandro P. Riascos, Bernard A. Collet, Andrzej F. Nowakowski, and Franck C. G. A. Nicolleau. "Generalized Space–Time Fractional Dynamics in Networks and Lattices." In Advanced Structured Materials, 221–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38708-2_14.
Full textPorubov, Alexey V., Alena E. Osokina, and Ilya D. Antonov. "Nonlinear Dynamics of Two-Dimensional Lattices with Complex Structure." In Advanced Structured Materials, 309–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38708-2_18.
Full textMichelitsch, Thomas, Bernard Collet, Alejandro Perez Riascos, Andrzej Nowakowski, and Franck Nicolleau. "On Recurrence and Transience of Fractional RandomWalks in Lattices." In Advanced Structured Materials, 555–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72440-9_29.
Full textDos Reis, Francisco, and Jean-François Ganghoffer. "Construction of Micropolar Continua from the Homogenization of Repetitive Planar Lattices." In Advanced Structured Materials, 193–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19219-7_9.
Full textTurco, Emilio, Maciej Golaszewski, Ivan Giorgio, and Luca Placidi. "Can a Hencky-Type Model Predict the Mechanical Behaviour of Pantographic Lattices?" In Advanced Structured Materials, 285–311. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3764-1_18.
Full textTurco, Emilio. "How the Properties of Pantographic Elementary Lattices Determine the Properties of Pantographic Metamaterials." In Advanced Structured Materials, 489–506. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13307-8_33.
Full textGoda, Ibrahim, Francisco Dos Reis, and Jean-François Ganghoffer. "Limit Analysis of Lattices Based on the Asymptotic Homogenization Method and Prediction of Size Effects in Bone Plastic Collapse." In Advanced Structured Materials, 179–211. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31721-2_9.
Full textLoeb, Arthur L. "Lattices and Lattice Complexes." In Space Structures, 123–25. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_15.
Full textBain, Michael. "Structured Features from Concept Lattices for Unsupervised Learning and Classification." In Lecture Notes in Computer Science, 557–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36187-1_49.
Full textLyubashevsky, Vadim, and Thomas Prest. "Quadratic Time, Linear Space Algorithms for Gram-Schmidt Orthogonalization and Gaussian Sampling in Structured Lattices." In Advances in Cryptology -- EUROCRYPT 2015, 789–815. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46800-5_30.
Full textConference papers on the topic "Structured lattices"
Chuman, Victor, Filip Milojković, Pol Van Dorpe, and Niels Verellen. "Three-Dimensional Sparse Lattices for High-Throughput Fluorescence Microscopy." In Imaging Systems and Applications, IM3G.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/isa.2024.im3g.2.
Full textCameron, Andrew R., Sandra W. L. Cheng, Sacha Schwarz, Connor Kapahi, Dusan Sarenac, Michael Grabowecky, David G. Cory, Thomas Jennewein, Dmitry A. Pushin, and Kevin J. Resch. "Remotely prepared structured wave lattices." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth4a.3.
Full textRogers, Benedict A., Max D. A. Valentine, Elise C. Pegg, Alexander J. G. Lunt, and Vimal Dhokia. "Additive Manufacturing of Star Structured Auxetic Lattices With Overhanging Links." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93965.
Full textLee, Sang Hyun, Ankit Ghiya, Sriram Vishwanath, Sung Soo Hwang, and Sunghwan Kim. "Structured dirty-paper coding using low-density lattices." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5496012.
Full textMejdoub, Mahmoud, Leonardo Fonteles, Chokri BenAmar, and Marc Antonini. "Fast indexing method for image retrieval using tree-structured lattices." In 2008 International Workshop on Content-Based Multimedia Indexing. IEEE, 2008. http://dx.doi.org/10.1109/cbmi.2008.4564970.
Full textYamane, Keisaku, Kohei Iwasa, Kohei Kakizawa, Kazuhiko Oka, Yasunori Toda, and Ryuji Morita. "Generation of intense ultrafast-rotating ring-shaped optical lattices with programmable control of rotational symmetry." In SPIE Technologies and Applications of Structured Light, edited by Takashige Omatsu. SPIE, 2017. http://dx.doi.org/10.1117/12.2275015.
Full textChen, Jiangce, Martha Baldwin, Sneha Narra, and Christopher McComb. "Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models." In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Full textTang, Tsz Ling Elaine, Yan Liu, Da Lu, Erhan Batuhan Arisoy, and Suraj Musuvathy. "Lattice Structure Design Advisor for Additive Manufacturing Using Gaussian Process." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67282.
Full textArdebili, Mahmoud K., Kerim Tuna Ikikardaslar, Colt Ehrnfeld, and Feridun Delale. "3D Printed Cellular Structure Materials Under Impact and Compressive Loading." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23871.
Full textAyaz Uddin, Mohammed, Imad Barsoum, Shanmugam Kumar, and Andreas Schiffer. "Enhancing Energy Absorption Capacity of Pyramidal Lattice Structures via Geometrical Tailoring and 3D Printing." In ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121512.
Full textReports on the topic "Structured lattices"
Fry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England, and C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, July 2023. http://dx.doi.org/10.47120/npl.mat119.
Full textLiu, Keh-Fei, and Terrence Draper. Lattice QCD Calculation of Nucleon Structure. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1323029.
Full textWilliams, James H., and Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190037.
Full textWilliams, James H., and Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190611.
Full textWilliams, James H., and Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1985. http://dx.doi.org/10.21236/ada170316.
Full textBraun, D. W., G. W. Crabtree, H. G. Kaper, G. K. Leaf, D. M. Levine, V. M. Vinokur, and A. E. Koshelev. The structure of a moving vortex lattice. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/179299.
Full textParsa, Z., and S. Tepikian. Overview of the structure resonances in the AGS-Booster lattices. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/1150423.
Full textSkowronski, Marek, and D. W. Greve. Growth of Lattice Matched Nitride Alloys and Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354115.
Full textWilliams, James H., Nagem Jr., and Raymond J. Computation of Natural Frequencies of Planar Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, March 1987. http://dx.doi.org/10.21236/ada185387.
Full textHughes, Nathan. Computed Tomography (CT) Analysis of 3D Printed Lattice Structures. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1975633.
Full text