To see the other types of publications on this topic, follow the link: Structure fine de l’exciton.

Journal articles on the topic 'Structure fine de l’exciton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Structure fine de l’exciton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shiner, D. L., and R. Dixson. "Measuring the fine structure constant using helium fine structure." IEEE Transactions on Instrumentation and Measurement 44, no. 2 (April 1995): 518–21. http://dx.doi.org/10.1109/19.377896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Blair, David F. "Fine Structure of a Fine Machine." Journal of Bacteriology 188, no. 20 (October 1, 2006): 7033–35. http://dx.doi.org/10.1128/jb.01016-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Forbes, Richard. "Redefining fine-structure." Physics World 19, no. 11 (November 2006): 19. http://dx.doi.org/10.1088/2058-7058/19/11/30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Howell, Kathryn E. "Fine Structure Immunocytochemistry." Trends in Cell Biology 4, no. 1 (January 1994): 30. http://dx.doi.org/10.1016/0962-8924(94)90037-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Songaila, Antoinette, and Lennox L. Cowie. "Fine-structure variable?" Nature 398, no. 6729 (April 1999): 667–68. http://dx.doi.org/10.1038/19426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toth, K. S., P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, K. Vierinen, M. O. Kortelahti, and F. T. Avignone. "Fine structure inTm153αdecay." Physical Review C 38, no. 4 (October 1, 1988): 1932–35. http://dx.doi.org/10.1103/physrevc.38.1932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zirker, J. B., and S. Koutchmy. "Prominence fine structure." Solar Physics 127, no. 1 (May 1990): 109–18. http://dx.doi.org/10.1007/bf00158516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drake, G. WF. "Progress in helium fine-structure calculations and the fine-structure constant." Canadian Journal of Physics 80, no. 11 (November 1, 2002): 1195–212. http://dx.doi.org/10.1139/p02-111.

Full text
Abstract:
The long-term goal of this work is to determine the fine-structure constant α from a comparison between theory and experiment for the fine-structure splittings of the helium 1s2p 3PJ states. All known terms of order α5 a.u. (α7 mc2) arising from the electron–electron interaction, and recoil corrections of order α4 µ / M a.u. are evaluated and added to previous tabulation. The predicted energy splittings are ν0,1 = 29 616.946 42(18) MHz and ν1,2 = 2291.154 62(31) MHz. Although the computational uncertainty is much less than ±1 kHz, there is an unexplained discrepancy between theory and experiment of 19.4(1.4) kHz for ν1,2. PACS Nos.: 31.30Jv, 32.10Fn
APA, Harvard, Vancouver, ISO, and other styles
9

Friedman, Sy D. "Coding without fine structure." Journal of Symbolic Logic 62, no. 3 (September 1997): 808–15. http://dx.doi.org/10.2307/2275573.

Full text
Abstract:
In this paper we prove Jensen's Coding Theorem, assuming ˜ 0#, via a proof that makes no use of the fine structure theory. We do need to quote Jensen's Covering Theorem, whose proof uses fine-structural ideas, but make no direct use of these ideas. The key to our proof is the use of “coding delays.”Coding Theorem (Jensen). Suppose 〈M,A〉 is a model of ZFC + O#does not exist. Then there is an 〈M, A〉-definable class forcing P such that if G ⊆ P is P-generic over 〈M, A〉:(a) 〈M[G],A,G〉 ⊨ NZFC.(b) M[G] ⊨ V = L[R], R ⊆ ωand 〈M[G], A, G〉 ⊨ A,G are definable from the parameter R.In the above statement when we say “〈M, A〉 ⊨ ZFC” we mean that M ⊨ ZFC and in addition M satisfies replacement for formulas that mention A as a predicate. And “P-generic over 〈M, A〉” means that all 〈M, A〉-definable dense classes are met.The consequence of ˜ O# that we need follows directly from the Covering Theorem.
APA, Harvard, Vancouver, ISO, and other styles
10

Gibert, A., and F. Bastien. "Fine structure of streamers." Journal of Physics D: Applied Physics 22, no. 8 (August 14, 1989): 1078–82. http://dx.doi.org/10.1088/0022-3727/22/8/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Takeda, Yasuhito. "Fine Structure of Starch." Journal of the agricultural chemical society of Japan 68, no. 11 (1994): 1573–76. http://dx.doi.org/10.1271/nogeikagaku1924.68.1573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hourani, E., L. Rosier, G. Berrier-Ronsin, A. Elayi, A. C. Mueller, G. Rappenecker, G. Rotbard, et al. "Fine structure inC14emission fromRa223andRa224." Physical Review C 44, no. 4 (October 1, 1991): 1424–34. http://dx.doi.org/10.1103/physrevc.44.1424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kinoshita, Toichiro. "The fine structure constant." Reports on Progress in Physics 59, no. 11 (November 1, 1996): 1459–92. http://dx.doi.org/10.1088/0034-4885/59/11/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Thomas, John H., and Nigel O. Weiss. "Fine Structure in Sunspots." Annual Review of Astronomy and Astrophysics 42, no. 1 (September 22, 2004): 517–48. http://dx.doi.org/10.1146/annurev.astro.42.010803.115226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wadsworth, J. "Fine structure superplastic intermetallics." International Materials Reviews 44, no. 2 (February 1999): 59–75. http://dx.doi.org/10.1179/095066099101528225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Benka, Stephen. "The fine-structure constant." Physics Today 57, no. 2 (February 2004): 9. http://dx.doi.org/10.1063/1.4796393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tziotziou, Kostas, and G. Tsiropoula. "Chromospheric fine structure studies." Proceedings of the International Astronomical Union 2, S233 (March 2006): 173. http://dx.doi.org/10.1017/s1743921306001773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sobotka, M., and P. Sütterlin. "Fine structure in sunspots." Astronomy & Astrophysics 380, no. 2 (December 2001): 714–18. http://dx.doi.org/10.1051/0004-6361:20011456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Haeffler, G., U. Ljungblad, I. Yu Kiyan, and D. Hanstorp. "Fine structure of As $^-$." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 42, no. 4 (December 1, 1997): 263–66. http://dx.doi.org/10.1007/s004600050365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nath, Biman. "The fine structure constant." Resonance 20, no. 5 (May 2015): 383–88. http://dx.doi.org/10.1007/s12045-015-0196-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sandahl, Ingrid, Urban Brändström, and Tima Sergienko. "Fine structure of aurora." International Journal of Remote Sensing 32, no. 11 (June 10, 2011): 2947–72. http://dx.doi.org/10.1080/01431161.2010.541507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Polyakov, A. "Fine structure of strings." Nuclear Physics B 268, no. 2 (May 1986): 406–12. http://dx.doi.org/10.1016/0550-3213(86)90162-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tagusari, O., K. Yamazaki, P. Litwak, A. Kojima, J. F. Antaki, M. Watach, A. Holmes, et al. "FINE RAHMEN STRUCTURE OF CARBON (FINE TRABECULARIZED CARBON)." ASAIO Journal 43, no. 2 (March 1997): 3. http://dx.doi.org/10.1097/00002480-199703000-00010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Neuhäuser, Hartmut. "Slip Propagation and Fine Structure." Solid State Phenomena 3-4 (January 1991): 407–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.3-4.407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Perkowitz, Sidney. "Fine structure and black holes." Physics World 34, no. 3 (May 1, 2021): 68. http://dx.doi.org/10.1088/2058-7058/34/03/37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Martins, C. J. A. P., F. P. S. A. Ferreira, and P. V. Marto. "Varying fine-structure constant cosmography." Physics Letters B 827 (April 2022): 137002. http://dx.doi.org/10.1016/j.physletb.2022.137002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gilson, James G. "Calculating the Fine‐Structure Constant." Physics Essays 9, no. 2 (June 1996): 342–53. http://dx.doi.org/10.4006/1.3029242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

TANIDA, Hajime, Makoto HARADA, Takanori TAKIUE, and Hirohisa NAGATANI. "X-ray Absorption Fine Structure." Oleoscience 12, no. 1 (2012): 11–16. http://dx.doi.org/10.5650/oleoscience.12.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Miyamoto, Toshiyuki, Takashi Hashiguchi, Toru Hirano, and Koumei Baba. "Fine Surface Structure of Prostheses." Orthopedics & Traumatology 47, no. 2 (1998): 454–57. http://dx.doi.org/10.5035/nishiseisai.47.454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Baloyannis, Stavros J., and Ioannis S. Baloyannis. "The fine structure of ependymomas." CNS Oncology 3, no. 1 (January 2014): 49–59. http://dx.doi.org/10.2217/cns.13.64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Efimov, Sergei P. "Symmetries of fine-structure constant." Advanced Studies in Theoretical Physics 7 (2013): 635–46. http://dx.doi.org/10.12988/astp.2013.3431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sapirstein, Jonathan. "Theory, experiment and fine structure." Physics World 13, no. 7 (July 2000): 28–30. http://dx.doi.org/10.1088/2058-7058/13/7/27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dumitrescu, Ovidiu. "Fine structure of cluster decays." Physical Review C 49, no. 3 (March 1, 1994): 1466–81. http://dx.doi.org/10.1103/physrevc.49.1466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wauters, J., J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, L. F. Conticchio, C. N. Davids, et al. "Fine structure in theαdecay of189Bi." Physical Review C 55, no. 3 (March 1, 1997): 1192–96. http://dx.doi.org/10.1103/physrevc.55.1192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fox, Harold. "Balancer Fine Structure of thePleurodelesLarva." Acta Zoologica 66, no. 2 (June 1985): 97–110. http://dx.doi.org/10.1111/j.1463-6395.1985.tb00828.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Osborne, Ian S. "Refining the fine-structure constant." Science 360, no. 6385 (April 12, 2018): 166.6–167. http://dx.doi.org/10.1126/science.360.6385.166-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nieh, Tai‐Gang, and Jeffrey Wadsworth. "Fine‐structure superplasticity in materials." Journal of the Chinese Institute of Engineers 21, no. 6 (September 1998): 659–89. http://dx.doi.org/10.1080/02533839.1998.9670427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Saikia, C. K., and L. J. Burdick. "Fine structure ofPnlwaves from explosions." Journal of Geophysical Research: Solid Earth 96, B9 (August 10, 1991): 14383–401. http://dx.doi.org/10.1029/91jb00921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hemici, M., R. Saoudi, E. Descroix, E. Audouard, P. Laporte, and F. Spiegelmann. "Fine structure in krypton excimer." Physical Review A 51, no. 4 (April 1, 1995): 3351–54. http://dx.doi.org/10.1103/physreva.51.3351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Long, Glenis R., Lauren Shaffer, William J. Murphy, and Carrick L. Talmadge. "Cochlear fine structure in chinchillas." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1085. http://dx.doi.org/10.1121/1.425085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Rowley, John R., and Satish K. Srivastava. "Fine structure of Classopollis exines." Canadian Journal of Botany 64, no. 12 (December 1, 1986): 3059–74. http://dx.doi.org/10.1139/b86-405.

Full text
Abstract:
Serial sections for light microscopy or transmission electron microscopy of two Classopollis pollen tetrads show that the exine structure, except for the nexine, has radially arranged rodlike units interwoven with transverse subunits. The nexine consists of strands or thin sheets except in the equatorial infratectal striate band area, where it is up to ca. 1 μm thick. Nexine is absent in the areas of the distal cryptopore and the subequatorial circumpolar infratectal canal. It is very thin or absent in the tetrad scar. Native contrast and reactivity to stain disappeared on immersion of thin sections in 1 M NaOH or HCl or in water. Reactivity to stains was regained after oxidizing the sections in KMnO4. Reactivity to stains appears to be dependent upon non-sporopollenin molecules embedded within exines. The above immersions remove stain reactive sites. Oxidative etching of sporopollenin exposes new sites. The specimens of Classopollis classoides Pflug studied and illustrated were picked from an Upper Jurassic sample (CRC 31519-2) collected at Osmington Mills locality, Dorset, England.
APA, Harvard, Vancouver, ISO, and other styles
42

Suganuma, Atsushi. "FINE STRUCTURE OF STAPHYLOCOCCUS AUREUS*." Annals of the New York Academy of Sciences 128, no. 1 (December 16, 2006): 26–44. http://dx.doi.org/10.1111/j.1749-6632.1965.tb11627.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Weiss, Nigel. "Fine structure on the Sun." Nature 344, no. 6269 (April 1990): 815–16. http://dx.doi.org/10.1038/344815a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kruggel, F., M. K. Brückner, Th Arendt, C. J. Wiggins, and D. Y. von Cramon. "Analyzing the neocortical fine-structure." Medical Image Analysis 7, no. 3 (September 2003): 251–64. http://dx.doi.org/10.1016/s1361-8415(03)00006-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Łącki, Mateusz K., Dirk Valkenborg, and Michał P. Startek. "IsoSpec2: Ultrafast Fine Structure Calculator." Analytical Chemistry 92, no. 14 (June 5, 2020): 9472–75. http://dx.doi.org/10.1021/acs.analchem.0c00959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cohen, G. M., and M. L. Domeier. "Fine structure of the cupula." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 826–27. http://dx.doi.org/10.1017/s0424820100128419.

Full text
Abstract:
The cupula functions as a sensitive biological transducer that undergoes extremely limited mechanical displacements in its normal dynamic range. Cupular displacements are coupled to the bending and stimulation of hair cell cilia. However, details of cupular-ciliary coupling and of cupular attachments to the ampullary crest are unsettled because of difficulties in preserving the cupula without severe distortion from fixation and dehydration. With conventional fixation procedures, the cupula either pulls away from crest or collapses to a fraction of its original volume. Our objective was to reduce cupular shrinkage.We used the inner ears of 1 day-old chicks (White Leghorn) and 3 month-old mice (C57BL/6). The inner ears were fixed 3-72 h in 1.5-1.75% glutaraldehyde in 150 mM KC1 buffered with potassium phosphate, pH 7.3. To the basic solution, we sometimes added spermine (0.1%) or lysine (0.25%).
APA, Harvard, Vancouver, ISO, and other styles
47

Muller, R. "Fine Structure of Photospheric Faculae." Symposium - International Astronomical Union 138 (1990): 85–96. http://dx.doi.org/10.1017/s0074180900044028.

Full text
Abstract:
Properties of the photospheric bright points associated with magnetic flux tubes are reviewed both in faculae (facular points) and in the photospheric network (network bright points - NBPs) out of active regions. A special attention is given to their size distribution, to their location relative to the granular, mesogranular and supergranular patterns, and to their relation with the small scale magnetic features, both in active and quiet regions. In particular a new granulation movie reveals that NBPs form in large intergranular spaces, compressed by the surrounding granules.At the center of the solar disk, bright points are much brighter than the mean photosphere; their contrast increases toward the limb up to μ = 0.3 − 0.2 and then decreases to the limb, as it is now widely accepted. But, all the published contrasts are of little significance because of center-to-limb selection effects. New center-to-limb contrast variations of individual network bright points are presented, which take into account the selection effects.
APA, Harvard, Vancouver, ISO, and other styles
48

Łącki, Mateusz K., Michał Startek, Dirk Valkenborg, and Anna Gambin. "IsoSpec: Hyperfast Fine Structure Calculator." Analytical Chemistry 89, no. 6 (March 8, 2017): 3272–77. http://dx.doi.org/10.1021/acs.analchem.6b01459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bello-Pérez, L. A., O. Paredes-López, P. Roger, and P. Colonna. "Amylopectin—properties and fine structure." Food Chemistry 56, no. 2 (June 1996): 171–76. http://dx.doi.org/10.1016/0308-8146(95)00152-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lazutin, L. L., R. Rasinkangas, T. V. Kozelova, A. Korth, H. Singer, G. Reeves, W. Riedler, K. Torkar, and B. B. Gvozdevsky. "Observations of substorm fine structure." Annales Geophysicae 16, no. 7 (July 31, 1998): 775–86. http://dx.doi.org/10.1007/s00585-998-0775-5.

Full text
Abstract:
Abstract. Particle and magnetic field measurements on the CRRES satellite were used, together with geosynchronous satellites and ground-based observations, to investigate the fine structure of a magnetospheric substorm on February 9, 1991. Using the variations in the electron fluxes, the substorm activity was divided into several intensifications lasting about 3–15 minutes each. The two main features of the data were: (1) the intensifications showed internal fine structure in the time scale of about 2 minutes or less. We call these shorter periods activations. Energetic electrons and protons at the closest geosynchronous spacecraft (1990 095) were found to have comparable activation structure. (2) The energetic (>69 keV) proton injections were delayed with respect to electron injections, and actually coincided in time with the end of the intensifications and partial returns to locally more stretched field line configuration. We propose that the energetic protons could be able to control the dynamics of the system locally be quenching the ongoing intensification and possibly preparing the final large-scale poleward movement of the activity. It was also shown that these protons originated from the same intensification as the preceeding electrons. Therefore, the substorm instability responsible for the intensifications could introduce a negative feedback loop into the system, creating the observed fine structure with the intensification time scales.Key words. Magnetospheric Physics (Storms and substorms).
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography