Academic literature on the topic 'Structure fine de l’exciton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structure fine de l’exciton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Structure fine de l’exciton"

1

Shiner, D. L., and R. Dixson. "Measuring the fine structure constant using helium fine structure." IEEE Transactions on Instrumentation and Measurement 44, no. 2 (April 1995): 518–21. http://dx.doi.org/10.1109/19.377896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Blair, David F. "Fine Structure of a Fine Machine." Journal of Bacteriology 188, no. 20 (October 1, 2006): 7033–35. http://dx.doi.org/10.1128/jb.01016-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Forbes, Richard. "Redefining fine-structure." Physics World 19, no. 11 (November 2006): 19. http://dx.doi.org/10.1088/2058-7058/19/11/30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Howell, Kathryn E. "Fine Structure Immunocytochemistry." Trends in Cell Biology 4, no. 1 (January 1994): 30. http://dx.doi.org/10.1016/0962-8924(94)90037-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Songaila, Antoinette, and Lennox L. Cowie. "Fine-structure variable?" Nature 398, no. 6729 (April 1999): 667–68. http://dx.doi.org/10.1038/19426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toth, K. S., P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, K. Vierinen, M. O. Kortelahti, and F. T. Avignone. "Fine structure inTm153αdecay." Physical Review C 38, no. 4 (October 1, 1988): 1932–35. http://dx.doi.org/10.1103/physrevc.38.1932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zirker, J. B., and S. Koutchmy. "Prominence fine structure." Solar Physics 127, no. 1 (May 1990): 109–18. http://dx.doi.org/10.1007/bf00158516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drake, G. WF. "Progress in helium fine-structure calculations and the fine-structure constant." Canadian Journal of Physics 80, no. 11 (November 1, 2002): 1195–212. http://dx.doi.org/10.1139/p02-111.

Full text
Abstract:
The long-term goal of this work is to determine the fine-structure constant α from a comparison between theory and experiment for the fine-structure splittings of the helium 1s2p 3PJ states. All known terms of order α5 a.u. (α7 mc2) arising from the electron–electron interaction, and recoil corrections of order α4 µ / M a.u. are evaluated and added to previous tabulation. The predicted energy splittings are ν0,1 = 29 616.946 42(18) MHz and ν1,2 = 2291.154 62(31) MHz. Although the computational uncertainty is much less than ±1 kHz, there is an unexplained discrepancy between theory and experiment of 19.4(1.4) kHz for ν1,2. PACS Nos.: 31.30Jv, 32.10Fn
APA, Harvard, Vancouver, ISO, and other styles
9

Friedman, Sy D. "Coding without fine structure." Journal of Symbolic Logic 62, no. 3 (September 1997): 808–15. http://dx.doi.org/10.2307/2275573.

Full text
Abstract:
In this paper we prove Jensen's Coding Theorem, assuming ˜ 0#, via a proof that makes no use of the fine structure theory. We do need to quote Jensen's Covering Theorem, whose proof uses fine-structural ideas, but make no direct use of these ideas. The key to our proof is the use of “coding delays.”Coding Theorem (Jensen). Suppose 〈M,A〉 is a model of ZFC + O#does not exist. Then there is an 〈M, A〉-definable class forcing P such that if G ⊆ P is P-generic over 〈M, A〉:(a) 〈M[G],A,G〉 ⊨ NZFC.(b) M[G] ⊨ V = L[R], R ⊆ ωand 〈M[G], A, G〉 ⊨ A,G are definable from the parameter R.In the above statement when we say “〈M, A〉 ⊨ ZFC” we mean that M ⊨ ZFC and in addition M satisfies replacement for formulas that mention A as a predicate. And “P-generic over 〈M, A〉” means that all 〈M, A〉-definable dense classes are met.The consequence of ˜ O# that we need follows directly from the Covering Theorem.
APA, Harvard, Vancouver, ISO, and other styles
10

Gibert, A., and F. Bastien. "Fine structure of streamers." Journal of Physics D: Applied Physics 22, no. 8 (August 14, 1989): 1078–82. http://dx.doi.org/10.1088/0022-3727/22/8/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Structure fine de l’exciton"

1

Prin, Elise. "Propriétés optiques fondamentales de nanocristaux de semi-conducteurs individuels aux températures cryogéniques." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0182.

Full text
Abstract:
Les nanocristaux de semi-conducteurs présentent des propriétés optiques et électroniques remarquables en raison du confinement quantique de leurs porteurs de charge, ce qui les rend avantageux pour diverses applications en optoélectronique, dans les dispositifs émetteurs de lumière et dans les technologies basées sur le spin. La compréhension de la physique de l’exciton de bord de bande, dont la recombinaison est à l’origine de leur photoluminescence, est cruciale pour le développement de ces applications. Cette thèse porte sur l’étude expérimentale des propriétés optiques des nanocristaux de phosphure d’indium et de pérovskites d’halogénure de plomb. En utilisant une méthode de spectroscopie de magnéto-photoluminescence sur des nanocristaux uniques à basse température, nous révélons des empreintes spectrales très sensibles à la morphologie des nanocristaux et élucidons la structure fine de l’exciton de bord de bande et les énergies de liaison des complexes de charge. Dans les nanocristauxd’InP/ZnS/ZnSe, l’évolution des spectres et des déclins de luminescence sous champ magnétique montrent l’existence d’un niveau d’exciton noir situé à moins d’un millielectronvolt en dessous du triplet brillant de l’exciton, résultats étayés par un modèle tenant compte de l’anisotropie de forme du coeur d’InP. Dans les pérovskites d’halogénure de plomb, nous démontrons que l’état fondamental de l’exciton est noir et se situe plusieurs millielectronvolts en dessous des sous-niveaux d’exciton brillants les plus bas, résolvant ainsi le débat sur l’ordre des niveaux brillants et noirs de l’exciton dans ces matériaux. En combinant nos résultats avec des mesures spectroscopiques sur divers composés de nanocristaux de pérovskite, nous établissons des lois d’échelle universelles qui relient l’éclatement de la structure fine de l’exciton et les énergies de liaison du trion et du biexciton à l’énergie de l’exciton de bord de bande dans les nanostructures de pérovskite d’halogénure de plomb, quelle que soit leur composition chimique. Enfin, des analyses préliminaires de spectroscopie sur des nano-bâtonnets de pérovskite avec un grand rapport d’aspect suggèrent leur potentiel en tant qu’émetteurs de lumière quantique grâce à leur émission composée d’une raie unique
Semiconductor nanocrystals exhibit outstanding optical and electronic properties due to the quantum confinement of their charge carriers, making them valuable for various applications in optoelectronics, light-emitting devices, and spin-based technologies. Understanding the physics of the band-edge exciton, whose recombination is at the origin of their photoluminescence, is crucial for developing these applications. This thesis focuses on the experimental study of the optical properties of indium phosphide and lead halide perovskites nanocrystals. Using magneto-photoluminescence spectroscopy onsingle nanocrystals at low temperatures, we reveal spectral fingerprints highly sensitive to nanocrystal morphologies and elucidate the entire band-edge exciton fine structure and charge-complex binding energies. In InP/ZnS/ZnSe nanocrystals, the evolution of photoluminescence spectra and decays under magnetic fields show evidence for a ground dark exciton level lying less than a millielectronvolt below the bright exciton triplet, findings supported by a model accounting for the shape anisotropy of the InPcore. In lead halide perovskites, we demonstrate that the ground exciton state is dark and lies several millielectronvolts below the lowest bright exciton sublevels, settling the debate on the bright-dark exciton level ordering in these materials. Combining our results with spectroscopic measurements on various perovskite nanocrystal compounds, we establish universal scaling laws relating exciton fine structure splitting, trion and biexciton binding energies to the band-edge exciton energy in lead-halide perovskitenanostructures, regardless of their chemical composition. Lastly, preliminary spectroscopy analyses on perovskite nanorods with a high aspect ratio suggest their potential as candidates for quantum light emitters due to their characteristic single emission line
APA, Harvard, Vancouver, ISO, and other styles
2

Smiciklas, Marc. "A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure." Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc31547/.

Full text
Abstract:
Spectroscopic measurements of the helium atom are performed to high precision using an atomic beam apparatus and electro-optic laser techniques. These measurements, in addition to serving as a test of helium theory, also provide a new determination of the fine structure constant α. An apparatus was designed and built to overcome limitations encountered in a previous experiment. Not only did this allow an improved level of precision but also enabled new consistency checks, including an extremely useful measurement in 3He. I discuss the details of the experimental setup along with the major changes and improvements. A new value for the J = 0 to 2 fine structure interval in the 23P state of 4He is measured to be 31 908 131.25(30) kHz. The 300 Hz precision of this result represents an improvement over previous results by more than a factor of three. Combined with the latest theoretical calculations, this yields a new determination of α with better than 5 ppb uncertainty, α-1 = 137.035 999 55(64).
APA, Harvard, Vancouver, ISO, and other styles
3

Johnson, Colin Terence. "Fine structure transitions in astrophysics." Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Turnbull, Alexander James. "Fine structure in elliptical galaxies." Thesis, University of Hertfordshire, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jankowski, Charles Robert. "Fine structure features for speaker identification." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/11012.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.
Includes bibliographical references (p. 193-198).
by Charles Robert Jankowski, Jr.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Tovena, Lucia M. "The fine structure of polarity sensitivity /." New York ; London : Garland, 1998. http://catalogue.bnf.fr/ark:/12148/cb37081866c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Givors, Fabien. "Vers une structure fine des calculabilités." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20160/document.

Full text
Abstract:
La calculabilité est centrée autour de la notion de fonction calculable telle que définie par Church, Kleene, Rosser et Turing au siècle dernier. D'abord focalisée sur les nombres entiers, la calculabilité a été généralisée aux ensembles, notamment par le biais de la théorie axiomatique des ensembles de Kripke-Platek. Dans cette thèse, nous définissons une notion générale de calculabilité, les sous-calculabilités, dont les axiomes sont satisfaits à la fois par de nombreux fragments récursifs de la calculabilité classique, mais également par des calculabilités d'ordre supérieur sur les ensembles admissibles. Nous montrons, sur cette structure composée d'une énumération de fonctions totales et d'une énumération de fonctions partielles, que les théorèmes classiques de calculabilité (isomorphisme de Myhill, Rogers, théorème s-m-n,point fixe de Kleene, théorème de Rice, créativité, etc.) sont présents sous différentes formes alors même que les sous-calculabilités ne comprennent qu'un fragment des objets de la calculabilité classique. Les structures de degrés associées aux notions de récursivité que nous définissons reflètent également des propriétés de la calculabilité (degrés intermédiaires, high, low, etc.), mais nos réductions étant plus fortes, une structure fine apparaît à l'intérieur même des degrés récursifs. Finalement, nous montrons que les calculabilités sur les admissibles sont interprétables dans le formalisme des sous-calculabilités. En particulier, les énumérations des ensembles alpha-finis et alpha-énumérables présents dans ce contexte nous permettent de transférer certains résultats d'un modèle à l'autre
Computability is centered on computable functions, as defined by Church, Kleene,Rosser and Turing in the twentieth century. Initially focused on integers,computability has been generalised to sets, in particular thanks toKripke-Platek's Axiomatic Set Theory.In this thesis, we define a general notion of computability,sub-computabilities, whose axioms are satisfied by numerous recursive fragmentsof classical computability, and also by higher-order computabilities overadmissible sets. We show how in sub-computabilities, containing an enumeration oftotal functions and an enumeration of partial functions, classical theoremssuch as Myhill and Rogers isomorphisms, s-m-n theorem, Kleene's fixed-point orRice's theorem hold in a slightly different way, even if a large part ofthe objects of computability are missing. Along with each of thesesub-computabilities and their different notions of recursivity comes a structureof degrees (with intermediate, high and low degrees, etc.), refining theclassical one, our notions of recursivity being stronger.Moreover, we show how admissible computability can be interpreted through theformalism of sub-computabilities. In particular, the enumerations ofalpha-finite and alpha-enumerable sets present in this setting allowsome interesting results to be carried from one model to the other
APA, Harvard, Vancouver, ISO, and other styles
8

ISHIHARA, TAKASHI, and YUKIO KANEDA. "Fine-scale structure of thin vortical layers." Cambridge University Press, 1998. http://hdl.handle.net/2237/10287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Macindoe, Owen. "Investigating the fine grained structure of networks." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/60103.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 107-109).
In this thesis I explore a novel representation for characterizing a graph's fine grained structure. The key idea is that this structure can be represented as a distribution of the structural features of subgraphs. I introduce a set of such structural features and use them to compute representations for a variety of graphs, demonstrating their use in qualitatively describing fine structure. I then demonstrate the utility of this representation with quantitative techniques for computing graph similarity and graph clustering. I show that similarity judged using this representation is significantly different from judgements using full graph structural measures. I find that graphs from the same class of networks, such as email correspondence graphs, can differ significantly in their fine structure across the institutions whose relations they model, but also find examples of graphs from the same institutions across different time periods that share a similar fine structure.
by Owen Macindoe.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
10

Kane, Frances. "The fine structure of the Irish NP." Thesis, Ulster University, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675469.

Full text
Abstract:
This thesis is a structural analysis of the DP in Irish. The thesis is based on analysis of a number of different types of noun phrases and a consideration of the observed patterns in relation to other languages and syntactic theory in general. The proposal accounts for the typical data that has been analysed previously in the literature as well as novel data not yet accounted for within existing analyses. As well as providing a full structural account of the Irish NP, the findings of this thesis provide evidence in Support of the universal existence of a number of functional projections, which have been shown to be projected for language in general.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Structure fine de l’exciton"

1

Griffiths, Gareth. Fine Structure Immunocytochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Griffiths, Gareth. Fine structure immunocytochemistry. Berlin: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mitchell, William J., and John R. Steel. Fine Structure and Iteration Trees. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-21903-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

1948-, Steel J. R., ed. Fine structure and iteration trees. Berlin: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1952-, Hasnain S. S., ed. X-ray absorption fine structure. New York: E. Horwood, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chernov, Gennady P. Fine Structure of Solar Radio Bursts. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20015-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

service), SpringerLink (Online, ed. Fine Structure of Solar Radio Bursts. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schwabe, Christian, and Erika E. Büllesbach. Relaxin and the Fine Structure of Proteins. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-12909-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

L, Palay Sanford, Webster Henry D, and Peters Alan 1929-, eds. The fine structure of the nervous system =: The fine structure of the nervous system : neurons and their supporting cells. 3rd ed. New York: Oxford University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rabah, Samar O. The fine structure of muscle in development of salmon. Birmingham: University of Birmingham, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Structure fine de l’exciton"

1

Mitchell, William J., and John R. Steel. "Fine Structure." In Fine Structure and Iteration Trees, 10–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-21903-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gooch, Jan W. "Fine Structure." In Encyclopedic Dictionary of Polymers, 305. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_4955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schindler, Ralf, and Martin Zeman. "Fine Structure." In Handbook of Set Theory, 605–56. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Athay, R. G. "Chromospheric Fine Structure." In Physics of the Sun, 51–69. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9636-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kragh, Helge. "Fine-Structure Constant." In Compendium of Quantum Physics, 239–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Welch, Philip D. "Σ* Fine Structure." In Handbook of Set Theory, 657–736. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Griffiths, Gareth. "Fine-Structure Preservation." In Fine Structure Immunocytochemistry, 9–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Griffiths, Gareth. "Introduction to Immunocytochemistry and Historical Background." In Fine Structure Immunocytochemistry, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griffiths, Gareth. "Preembedding Immuno-Labelling." In Fine Structure Immunocytochemistry, 345–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Griffiths, Gareth. "Quantitative Aspects of Immunocytochemistry." In Fine Structure Immunocytochemistry, 371–445. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77095-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Structure fine de l’exciton"

1

Hinder, Fabian, Valerie Vaquet, and Barbara Hammer. "On the Fine Structure of Drifting Features." In ESANN 2024, 63–68. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Page, R. D., R. G. Allatt, T. Enqvist, K. Eskola, P. T. Greenlees, P. Jones, R. Julin, P. Kuusiniemi, M. Leino, and J. Uusitalo. "Fine structure in." In EXOTIC NUCLEI AND ATOMIC MASSES. ASCE, 1998. http://dx.doi.org/10.1063/1.57349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rykaczewski, K. P. "Fine structure in proton emission." In MAPPING THE TRIANGLE: International Conference on Nuclear Structure. AIP, 2002. http://dx.doi.org/10.1063/1.1517954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Macindoe, Owen, and Whitman Richards. "Graph Comparison Using Fine Structure Analysis." In 2010 IEEE Second International Conference on Social Computing (SocialCom). IEEE, 2010. http://dx.doi.org/10.1109/socialcom.2010.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Hailing, Jens-Uwe Grabow, Richard Mawhorter, and Timothy Steimle. "FINE AND HYPERFINE STRUCTURE OF 173YbF." In 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.te07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sonzogni, A. A. "Fine structure in deformed proton emitters." In International symposium on proton-emitting nuclei (PROCON99). AIP, 2000. http://dx.doi.org/10.1063/1.1305998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vesely, S. L., A. A. Vesely, and S. R. Dolci. "The Fine Structure Constant and Graphene." In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ushenko, Alexander G., and Serhiy B. Yermolenko. "Fine polarization structure of laser speckles." In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, edited by Maksymilian Pluta and Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Crescenzi, Valter, Paolo Merialdo, and Paolo Missier. "Fine-grain web site structure discovery." In the fifth ACM international workshop. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/956699.956703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Simberová, Stanislava, Michal Haindl, and Filip Sroubek. "Fine Structure Recognition in Multichannel Observations." In 2012 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2012. http://dx.doi.org/10.1109/dicta.2012.6411740.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Structure fine de l’exciton"

1

Barton, J. J. Angle-resolved photoemission extended fine structure. Office of Scientific and Technical Information (OSTI), March 1985. http://dx.doi.org/10.2172/5860703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lestone, John Paul. QED Based Calculation of the Fine Structure Constant. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Refaie, A. I. Fine structure calculations of atomic data for Ar XVI. Edited by Lotfia Elnai and Ramy Mawad. Journal of Modern trends in physics research, December 2014. http://dx.doi.org/10.19138/mtpr/(14)1-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Refaie, A. I., and Ramy Mawad. Fine structure calculations of atomic data for Ar XVI. Edited by Lotfia Elnai. Journal of Modern trends in physics research, December 2014. http://dx.doi.org/10.19138/mtpr/(14)16-25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Y., [Lawrence Berkeley Lab., CA (United States)], and D. A. Shirley. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/88786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toole, John M., and Raymond W. Schmitt. Analysis of Fine Structure and Microstructure Data from Fieberling Guyot. Fort Belvoir, VA: Defense Technical Information Center, April 1997. http://dx.doi.org/10.21236/ada324305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sobotka, M., P. N. Brandt, and G. W. Simon. Fine Structure in Sunspots: Sizes, Lifetimes, Motions and Temporal Variations. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada334909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lestone, John Paul. Possible reason for the numerical value of the fine-structure constant. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1423965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Antonio, M. R., L. Soderholm, and I. Song. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/515522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miller, Wooddy, and Wooddy S. Miller. Temperature Dependent Rubidium Helium Line Shapes and Fine Structure Mixing Rates. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1003086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography