Academic literature on the topic 'Structure des complexes de surface'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structure des complexes de surface.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structure des complexes de surface"
Terebinska, M. I., O. I. Tkachuk, A. M. Datsyuk, O. V. Filonenko, and V. V. Lobanov. "Electronic structure of complexes of oligomers of 3,4-ethylene-dietoxythiophene with polystyrlesulphonic acid." Surface 13(28) (December 30, 2021): 84–93. http://dx.doi.org/10.15407/surface.2021.13.084.
Full textKarpenko, O. S., V. V. Lobanov, and M. T. Kartel. "Stability of single-atom iron complexes on graphene double vacancy." Surface 15(30) (December 30, 2023): 3–11. http://dx.doi.org/10.15407/surface.2023.15.003.
Full textFUKUOKA, Atsushi, Toshiyuki FUJIMOTO, Feng-show XIAO, and Masaru ICHIKAWA. "Structure and catalysis of surface-grafted cluster complexes." Journal of The Japan Petroleum Institute 34, no. 2 (1991): 125–37. http://dx.doi.org/10.1627/jpi1958.34.125.
Full textKremleva, Alena, Sven Krüger, and Notker Rösch. "Uranyl adsorption at solvated edge surfaces of 2 : 1 smectites. A density functional study." Physical Chemistry Chemical Physics 17, no. 20 (2015): 13757–68. http://dx.doi.org/10.1039/c5cp01074h.
Full textDUAN, YUHUA, BOOJALA V. B. REDDY, and YIANNIS N. KAZNESSIS. "RESIDUE CONSERVATION INFORMATION FOR GENERATING NEAR-NATIVE STRUCTURES IN PROTEIN–PROTEIN DOCKING." Journal of Bioinformatics and Computational Biology 04, no. 04 (August 2006): 793–806. http://dx.doi.org/10.1142/s0219720006002223.
Full textFunk, Felix, Beat Flühmann, and Amy E. Barton. "Criticality of Surface Characteristics of Intravenous Iron–Carbohydrate Nanoparticle Complexes: Implications for Pharmacokinetics and Pharmacodynamics." International Journal of Molecular Sciences 23, no. 4 (February 15, 2022): 2140. http://dx.doi.org/10.3390/ijms23042140.
Full textDigurova, Anna I., and Natalia A. Lvova. "“Boron + vacancy” complexes on the hydrogenated diamond surface С(100)-(2×1)." Image Journal of Advanced Materials and Technologies 6, no. 4 (2021): 256–66. http://dx.doi.org/10.17277/jamt.2021.04.pp.256-266.
Full textКараулова, Дарья Александровна, Владимир Георгиевич Алексеев, and Мариана Александровна Феофанова. "DFT CALCULATION OF THE STRUCTURE OF COPPER COMPLEXES." Вестник Тверского государственного университета. Серия: Химия, no. 2(48) (July 7, 2022): 79–85. http://dx.doi.org/10.26456/vtchem2022.2.9.
Full textNewton, Aric G., Jin-Yong Lee, and Kideok D. Kwon. "Na-Montmorillonite Edge Structure and Surface Complexes: An Atomistic Perspective." Minerals 7, no. 5 (May 12, 2017): 78. http://dx.doi.org/10.3390/min7050078.
Full textSpadini, Lorenzo, Alain Manceau, Paul W. Schindler, and Laurent Charlet. "Structure and Stability of Cd2+ Surface Complexes on Ferric Oxides." Journal of Colloid and Interface Science 168, no. 1 (November 1994): 73–86. http://dx.doi.org/10.1006/jcis.1994.1395.
Full textDissertations / Theses on the topic "Structure des complexes de surface"
Mora, Serge. "Structure d'interfaces de fluides complexes." Paris 11, 2003. http://www.theses.fr/2003PA112161.
Full textThe structure of liquid-vapor interfaces is investigated in this thesis. Different kinds of surfaces have been examined in order to determine the influence of each component of molecular interactions on the physical properties of these surfaces. The height-height fluctuation spectrum of different bare liquid-vapor surfaces has been determined by x ray diffuse scattering. These measurements show that the cappilary-wave model fails at small length scales (wave-vector > 10^8 m^(-1)). The problem of the small scale structure can be addressed by considering corrections to the surface energy through an effective momentum-dependent surface energy. We show that the momentum-dependent surface energy first decrease from its macroscopic value and then increases with increasing wave vector. The agreement with a theory proposed by K. Mecke and S. Dietrich is excellent. We then turned to fatty acid films at the water-air interface: a bending energy is sufficient to describe the whole momentum-dependent surface energy. It has been measured for films in various phases. The particular case of a polimerized monolayer has been specially investigated, and a coupling between height fluctuations and in-plane phonons has been demonstrated. Surface of ionic solutions have also been investigated: height fluctuations spectrum has been measured. In addidition, x ray grazing incidence fluorescence and ellipsometry experiment have been performed in order to measure the adsorption excess of ions. Knowing this excess is essential to understand the origins of surface tension's variation when salts are added, and so to explain ion specificity and the Hofmeister effect. Then, these experiments are fundamental to account for a long time unexplained phenomenon
Addou, Rafik. "Surfaces d'alliages métalliques complexes : structure, propriétés et nanostructuration." Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL011N/document.
Full textWe report the investigation of pseudo-ten-fold surfaces on two complex metallic alloys considered as approximants to the decagonal quasicristal. The atomic and electronic structure of the both samples is investigated by means of a multi-technique approach supported by ab initio electronic structure calculations. The main termination of the (100) surface of Al13Co4 is attributed to an incomplete puckered layer. The (010) surface of Al3(Mn, Pd) exhibits an important amount of structural imperfections. With the exception of several vacancies, this surface is identical to the complete puckered layer. In a second stage, both surfaces have been used as templates for the growth of metallic thin films. On both surfaces, Pb adatoms adopt a pseudomorphic growth mode up to one monolayer. For the Al13Co4 surface, the sticking coefficient of Pb vanishes upon the completion of the monolayer. However, it remains sufficient for the growth of additional layers on the Al3(Mn, Pd) (010) surface. The adsorption of Cu on the Al13Co4 surface follows also a pseudomorphic growth mode up to one monolayer. The ß-Al(Cu, Co) phase appears for coverages greater than one monolayer. For higher temperature deposition, the ß-phase is followed by the formation of the ?-Al4Cu9 phase. Both ß and ? phases grow as two (110) domains rotated by 72° from each other
Loustau, Brice. "La géométrie symplectique de l'espace des structures projectives complexes sur une surface." Toulouse 3, 2011. http://thesesups.ups-tlse.fr/2071/.
Full textThis thesis investigates the complex symplectic geometry of the deformation space of complex projective structures on a surface. The author attempts to give a global and unifying picture of this symplectic geometry by exploring the connections between different possible approaches. The cotangent symplectic structure given by the Schwarzian parametrization is studied in detail and compared to the canonical symplectic structure on the character variety, clarifying and generalizing a theorem of S. Kawai. Generalizations of results of C. McMullen are derived, notably quasifuchsian reciprocity. The cotangent symplectic structure is also addressed through the notion of minimal surfaces in hyperbolic 3-manifolds. Finally, the symplectic geometry is described in a Hamiltonian setting with the complex Fenchel-Nielsen coordinates on the quasifuchsian space, recovering results of I. Platis
Makki, Ali. "Morphismes harmoniques et déformation de surfaces minimales dans des variétés de dimension 4." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4013/document.
Full textIn this thesis, we are interested in harmonic morphisms between Riemannian manifolds (Mm, g) and (Nn, h) for m > n. Such a smooth map is a harmonic morphism if it pulls back local harmonic functions to local harmonic functions: if ƒ : V → ℝ is a harmonic function on an open subset V on N and Φ-1(V) is non-Empty, then the composition ƒ ∘ Φ : Φ-1(V) → ℝ is harmonic. The conformal transformations of the complex plane are harmonic morphisms. In the late 1970's Fuglede and Ishihara published two papers ([Fu]) and ([Is]), where they discuss their results on harmonic morphisms or mappings preserving harmonic functions. They characterize non-Constant harmonic morphisms F : (M,g) → (N,h) between Riemannian manifolds as those harmonic maps, which are horizontally conformal, where F horizontally conformal means : for any x ∈ M with dF(x) ≠ 0, the restriction of dF(x) to the orthogonal complement of kerdF(x) in TxM is conformal and surjective. This means that we are dealing with a special class of harmonic maps
Yoshida, Yuichiro. "Energy Surface Explorations of Clusters, Transition-Metal Complexes, and Self-Assembled Systems." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263681.
Full textDeschamps, Guillaume. "Espaces twistoriels et structures complexes exotiques." Phd thesis, Université Rennes 1, 2005. http://tel.archives-ouvertes.fr/tel-00011091.
Full textPalmer, Darryl M. "Structural and surface chemical studies of zirconium and aluminium complexes." Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244862.
Full textMeier, Matthias. "Influence de la liaison chimique sur la structure des surfaces d'alliages métalliques complexes." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0257/document.
Full textA complex metallic alloy is an intermetallic with a large unit cell and whose structure can often be seen as a stacking of motifs of strongly covalent-like bonded atoms. Al5Co2 is such a compound and is a potential catalyst for the semi-hydrogenation of acetylene. The influence of the 3-dimensional structure on 2-dimensional surfaces is investigated. Therefore, the bulk system is analysed using DFT to gain insight in the thermodynamic, electronic and vibrational properties. Good agreements between calculated results, experimental ones and results found in the literature are obtained. The low index (001), (100) and (2-10) surfaces are investigated. A combination of surface analysis techniques under ultra high vacuum - LEED, STM - and DFT calculations is used for the structural investigations. The results show that: (i) the surface structure depends on the preparation conditions, such as the annealing temperature, (ii) the surface structure can be interpreted as truncated motif parts, where the covalent-like bonds are broken. Adsorption sites and energies of molecules involved in the semi-hydrogenation reaction are calculated for all three surfaces. For favourable adsorption sites, specific distances of adsorbed H atoms with Co surface and subsurface atoms are observed. These Co subsurface atoms have an electron donor character, stabilising the adsorbed atoms at the surface. Based on NEB calculations, possible reaction paths on the (2-10) surface are proposed. The calculated activity is similar to the one obtained for the Al13Co4 surface, which is considered a good catalyst. The selectivity - the competition between desorption of ethylene and its further hydrogenation - is discussed
D'Ornelas, Lindora. "Chimie organométallique de surface réactivité des clusters moléculaires de rhuthénium et d'osmium à la surface des oxydes divisés, structure et réactivité des analogues moléculaires des complexes de surface." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37597436v.
Full textSausse, Pascal. "Effets de composés polyphénoliques sur la structure et les propriétés de couches d'adsorption de caséine B en milieu hydro-alcoolique." Paris 6, 2003. http://www.theses.fr/2003PA066586.
Full textBooks on the topic "Structure des complexes de surface"
A, Burgen, and Barnard Eric A. 1927-, eds. Receptor subunits and complexes. Cambridge [England]: Cambridge University Press, 1992.
Find full textT, Andras Maria, Hepp Aloysius F, and United States. National Aeronautics and Space Administration., eds. Reactivity of [pi]-complexes of Ti, V, and Nb towards dithioacetic acid: Synthesis and structure of novel metal sulfur-containing complexes. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textT, Andras Maria, Hepp Aloysius F, and United States. National Aeronautics and Space Administration., eds. Reactivity of [pi]-complexes of Ti, V, and Nb towards dithioacetic acid: Synthesis and structure of novel metal sulfur-containing complexes. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textStructure and properties of liquid crystals. Dordrecht [Netherlands]: Springer, 2010.
Find full textHarris, J. Robin, and Egbert J. Boekema, eds. Membrane Protein Complexes: Structure and Function. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7757-9.
Full textHermann, Klaus. Crystallography and Surface Structure. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633296.
Full textSurface structure and interpretation. Cambridge, Mass: MIT Press, 1996.
Find full textSynthesis, structure and reactivity of oligometallic complexes. Konstanz: Hartung-Gorre, 1985.
Find full textHarris, J. Robin, and Jon Marles-Wright, eds. Macromolecular Protein Complexes II: Structure and Function. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28151-9.
Full textHarris, J. Robin, and Jon Marles-Wright, eds. Macromolecular Protein Complexes III: Structure and Function. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58971-4.
Full textBook chapters on the topic "Structure des complexes de surface"
Hasim, Nurulhawa Ali, and Mohd Rafie Johan. "Structure, Surface and Hardness Properties of YxAgyBa2Cu3O7-δ Composites Superconductor." In Materials with Complex Behaviour II, 463–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22700-4_28.
Full textMarcus, P. M., and F. Jona. "Complete Surface Structures." In Solvay Conference on Surface Science, 61–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74218-7_6.
Full textAlmlöf, Jan. "Chemical Applications of Energy Derivatives: Frequency Shifts as a Probe of Molecular Structure in Weak Complexes." In Geometrical Derivatives of Energy Surfaces and Molecular Properties, 289–302. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4584-5_23.
Full textGao, Y., J. Xiang, Z. Yu, G. Han, and H. Jing. "Influence of Carbon Nanotubes on the Fracture Surface Characteristics of Cementitious Composites Under the Brazilian Split Test." In Lecture Notes in Civil Engineering, 503–12. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_53.
Full textBob, Corneliu, Sorin Dan, Catalin Badea, Aurelian Gruin, and Liana Iures. "Strengthening of the Frame Structure at the Timisoreana Brewery, Romania." In Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of Structures, 57–80. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2010. http://dx.doi.org/10.2749/sed012.057.
Full textKrüger, Nina, Jan Brüning, Leonid Goubergrits, Matthias Ivantsits, Lars Walczak, Volkmar Falk, Henryk Dreger, Titus Kühne, and Anja Hennemuth. "Deep Learning-Based Pulmonary Artery Surface Mesh Generation." In Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers, 140–51. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-52448-6_14.
Full textBarth, Wolf P., Klaus Hulek, Chris A. M. Peters, and Antonius Ven. "Topological and Differentiable Structure of Surfaces." In Compact Complex Surfaces, 375–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-57739-0_10.
Full textSato, Eiichi, and Heinz Spindler. "On the structure of 4 folds with a hyperplane section which is a ℙ1 bundle over a ruled surface." In Complex Analysis and Algebraic Geometry, 145–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0077001.
Full textGiarlelis, Christos. "Geotechnical Aspects of Structural Failures." In Characteristic Seismic Failures of Buildings, 149–87. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/sed016.149.
Full textKurochkina, Natalya. "Multiprotein Complexes." In Protein Structure and Modeling, 153–83. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6601-7_6.
Full textConference papers on the topic "Structure des complexes de surface"
Heaven, Michael C. "Structure and dynamics of OH/D-Rg complexes." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thi3.
Full textKornev, Y. V. "Elastomeric Composites Surface Structure Study by Scanning Electron and Atomic Force Microscopy." In Modern Trends in Manufacturing Technologies and Equipment. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901755-45.
Full textZhang, Jie, and Oz Yilmaz. "Near‐surface corrections for complex structure imaging." In SEG Technical Program Expanded Abstracts 2005. Society of Exploration Geophysicists, 2005. http://dx.doi.org/10.1190/1.2148247.
Full textKannan, R., D. Sivakumar, Michio Tokuyama, Irwin Oppenheim, and Hideya Nishiyama. "Drop Impact on a Solid Surface Comprising Micro Groove Structure." In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897870.
Full textKashin, Oleg A., Alexander I. Lotkov, Dmitry P. Borisov, Vladimir A. Slabodchikov, Vladimir M. Kuznetsov, Andrey N. Kudryashov, and Konstantin V. Krukovsky. "Plasma immersion ion implantation for surface treatment of complex branched structures." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966375.
Full textSlabodchikov, Vladimir A., Stanislav V. Ovchinnikov, and Vladimir M. Kuznetsov. "Composition and structure of Si-doped NiTi with a complex surface profile." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2017 (AMHS’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5013883.
Full textMiller, Roger E. "Infrared-Molecular Beam Spectroscopy: the Study of Weakly Bound Molecular Complexes as a Probe of Potential Energy Surfaces and Molecular Dynamics." In High Resolution Spectroscopy. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/hrs.1993.tua2.
Full textNa, Jeong K., James L. Blackshire, and Samuel J. Kuhr. "Detection of surface breaking fatigue crack on a complex aircraft structure with Rayleigh surface waves." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Tribikram Kundu. SPIE, 2009. http://dx.doi.org/10.1117/12.815079.
Full textNobes*, David C., and Harry M. Jol. "Enhancing Form and Structure: Complex Attributes as Aids for Ground Penetrating Radar Interpretation." In Near-Surface Asia Pacific Conference, Waikoloa, Hawaii, 7-10 July 2015. Society of Exploration Geophysicists, Australian Society of Exploration Geophysicists, Chinese Geophysical Society, Korean Society of Earth and Exploration Geophysicists, and Society of Exploration Geophysicists of Japan, 2015. http://dx.doi.org/10.1190/nsapc2015-082.
Full textZimmermann, Kristen A., Jianfei Zhang, Harry Dorn, Christopher Rylander, and Marissa Nichole Rylander. "Synthesis and Cytotoxicity Analysis of Carbon Nanohorn-Quantum Dot Complexes." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53968.
Full textReports on the topic "Structure des complexes de surface"
Samuel Traina and Shankar Sharma. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination. Office of Scientific and Technical Information (OSTI), July 2005. http://dx.doi.org/10.2172/841683.
Full textAinsworth, Calvin C., Donald M. Friedrich, Benjamin P. Hay, Satish C. B. Myneni, and Samuel J. Traina. Contaminant-Organic Complexes, Their Structure and Energetics in Surface Decontamination Processes. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/831220.
Full textAinsworth, Calvin C., Benjamin P. Hay, Samuel J. Traina, and Satish C. B. Myneni. Contaminant-Organic Complexes, Their Structure and Energetics in Surface Decontamination Processes. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/831221.
Full textAinsworth, Calvin C., Benjamin P. Hay, Samuel J. Traina, and Satish C. B. Myneni. Contaminant-Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/835365.
Full textAinsworth, Calvin C., Benjamin P. Hay, Samuel J. Traina, and Satish C. B. Myneni. Contaminant-Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/835367.
Full textSatish C. B. Myneni. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861663.
Full textSamuel J. Traina and Shankar Sharma. Technical Report: Contaminant Organic Complexes: Their structure and energetics in surface decontamination. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/902502.
Full textBuesseler, K. O., M. Dai, and D. J. Repeta. Speciation and structural characterization of Plutonium and Actinide-organic complexes in surface and ground waters. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/827047.
Full textBuesseler, K. O., D. J. Repeta, and J. M. Kelley. Speciation and structural characterization of plutonium and actinide-organic complexes in surface and groundwaters. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/12615.
Full textBuesseler, K. O., D. J. Repeta, and J. M. Kelley. Speciation and structural characterization of plutonium and actinide-organic complexes in surface and groundwaters. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/13469.
Full text