Academic literature on the topic 'Structural solution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural solution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structural solution"
Kharko, O. V. "Structural behaviour of continuous solid solution SmCo1-xFexO3." Functional Materials 21, no. 2 (June 30, 2014): 226–32. http://dx.doi.org/10.15407/fm21.02.226.
Full textKnight, Kevin S., and C. Michael B. Clark Henderson. "Structural variations in the wesselsiteeffenbergerite (Sr1xBaxCuSi4O10) solid solution." European Journal of Mineralogy 22, no. 3 (June 23, 2010): 411–23. http://dx.doi.org/10.1127/0935-1221/2010/0022-2025.
Full textYEE, A., A. GUTMANAS, and C. ARROWSMITH. "Solution NMR in structural genomics." Current Opinion in Structural Biology 16, no. 5 (October 2006): 611–17. http://dx.doi.org/10.1016/j.sbi.2006.08.002.
Full textChiriţă, S., M. Ciarletta, and B. Straughan. "Structural stability in porous elasticity." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2073 (March 30, 2006): 2593–605. http://dx.doi.org/10.1098/rspa.2006.1695.
Full textHollkamp, J. J., and S. M. Batill. "Structural Identification Using Order Overspecified Time-Series Models." Journal of Dynamic Systems, Measurement, and Control 114, no. 1 (March 1, 1992): 27–33. http://dx.doi.org/10.1115/1.2896504.
Full textMigliardo, F., V. Magazù, and M. Migliardo. "Structural properties of C60 in solution." Journal of Molecular Liquids 110, no. 1-3 (March 2004): 3–6. http://dx.doi.org/10.1016/j.molliq.2003.08.010.
Full textDražić, Jasmina, Igor Peško, Vladimir Mučenski, Aleksandar Dejić, and Marina Romanovich. "Evaluating Contractors and Offered Structural Solution." Procedia Engineering 165 (2016): 898–905. http://dx.doi.org/10.1016/j.proeng.2016.11.790.
Full textAl-Rasby, S. N. "Solution techniques in nonlinear structural analysis." Computers & Structures 40, no. 4 (January 1991): 985–93. http://dx.doi.org/10.1016/0045-7949(91)90329-k.
Full textTuma, Rabiya S. "Drug designers seek a structural solution." Drug Discovery Today 8, no. 22 (November 2003): 1012. http://dx.doi.org/10.1016/s1359-6446(03)02906-4.
Full textLiu, G. R., Y. G. Xu, and Z. P. Wu. "Total solution for structural mechanics problems." Computer Methods in Applied Mechanics and Engineering 191, no. 8-10 (December 2001): 989–1012. http://dx.doi.org/10.1016/s0045-7825(01)00314-0.
Full textDissertations / Theses on the topic "Structural solution"
Demers, Audrey Gertrude. "Structural studies of glycoproteins in solution." Case Western Reserve University School of Graduate Studies / OhioLINK, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=case1054759177.
Full textPatriksson, Alexandra. "From Solution into Vacuum - Structural Transitions in Proteins." Doctoral thesis, Uppsala : University Library Universitetsbiblioteket, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8300.
Full textSaint-Georges, Pascal. "Iterative Solution of Linear Systems for FEM Structural Analysis." Doctoral thesis, Universite Libre de Bruxelles, 1996. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212345.
Full textDicko, I. Cedric. "Structural changes in Nephila edulis silk proteins in solution." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400100.
Full textStanic, Andjelka. "Solution methods for failure analysis of massive structural elements." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2383/document.
Full textThe thesis studies: the methods for failure analysis of solids and structures, and the embedded strong discontinuity finite elements for modelling material failures in quasi brittle 2d solids. As for the failure analysis, the consistently linearized path-following method with quadratic constraint equation is first presented and studied in detail. The derived path-following method can be applied in the nonlinear finite element analysis of solids and structures in order to compute a highly nonlinear solution path. However, when analysing the nonlinear problems with the localized material failures (i.e. materialsoftening), standard path-following methods can fail. For this reason we derived new versions of the pathfollowing method, with other constraint functions, more suited for problems that take into account localized material failures. One version is based on adaptive one-degree-of-freedom constraint equation, which proved to be relatively successful in analysing problems with the material softening that are modelled by the embedded-discontinuity finite elements. The other versions are based on controlling incremental plastic dissipation or plastic work in an inelastic structure. The dissipation due to crack opening and propagation, computed by e.g. embedded discontinuity finite elements, is taken into account. The advantages and disadvantages of the presented path-following methods with different constraint equations are discussed and illustrated on a set of numerical examples. As for the modelling material failures in quasi brittle 2d solids (e.g. concrete), several embedded strong discontinuity finite element formulations are derived and studied. The considered formulations are based either on: (a) classical displacement-based isoparametric quadrilateral finite element or (b) on quadrilateral finite element enhanced with incompatible displacements. In order to describe a crack formation and opening, the element kinematics is enhanced by four basic separation modes and related kinematic parameters. The interpolation functions that describe enhanced kinematics have a jump in displacements along the crack. Two possibilities were studied for deriving the operators in the local equilibrium equations that are responsible for relating the bulk stresses with the tractions in the crack. For the crack embedment, the major-principle-stress criterion was used, which is suitable for the quasi brittle materials. The normal and tangential cohesion tractions in the crack are described by two uncoupled, nonassociative damage-softening constitutive relations. A new crack tracing algorithm is proposed for computation of crack propagation through the mesh. It allows for crack formation in several elements in a single solution increment. Results of a set of numerical examples are provided in order to assess the performance of derived embedded strong discontinuity quadrilateral finite element formulations, the crack tracing algorithm, and the solution methods
Doktorska disertacija obravnava: (i) metode za porušno analizo trdnih teles in konstrukcij, ter (ii) končne elemente z vgrajeno močno nezveznostjo za modeliranje materialne porušitve v kvazi krhkih 2d trdnih telesih. Za porušno analizo smo najprej preučili konsistentno linearizirano metodo sledenja ravnotežne poti skvadratno vezno enačbo (metoda krožnega loka). Metoda omogoča izračun analize nelinearnih modelov, ki imajo izrazito nelinearno ravnotežno pot. Kljub temu standardne metode sledenja poti lahko odpovedo,kadar analiziramo nelinearne probleme z lokalizirano materialno porušitvijo (mehčanje materiala). Zatosmo izpeljali nove različice metode sledenja poti z drugimi veznimi enačbami, ki so bolj primerne zaprobleme z lokalizirano porušitvijo materiala. Ena različica temelji na adaptivni vezni enačbi, pri katerivodimo izbrano prostostno stopnjo. Izkazalo se je, da je metoda relativno uspešna pri analizi problemov zmaterialnim mehčanjem, ki so modelirani s končnimi elementi z vgrajeno nezveznostjo. Druge različicetemeljijo na kontroli plastične disipacije ali plastičnega dela v neelastičnem trdnem telesu ali konstrukciji.Upoštevana je tudi disipacija zaradi širjenja razpok v elementih z vgrajeno nezveznostjo. Prednosti inslabosti predstavljenih metod sledenja ravnotežnih poti z različnimi veznimi enačbami so predstavljeni naštevilnih numeričnih primerih. Za modeliranje porušitve materiala v kvazi krhkih 2d trdnih telesih (npr. betonskih) smo izpeljali različne formulacije končnih elementov z vgrajeno močno nezveznostjo v pomikih. Obravnavane formulacije temeljijo bodisi (a) na klasičnem izoparametričnem štirikotnem končnem elementu bodisi (b) na štirikotnem končnem elementu, ki je izboljšan z nekompatibilnimi oblikami za pomike. Nastanek in širjenje razpoke opišemo tako, da kinematiko v elementu dopolnimo s štirimi osnovnimi oblikami širjenja razpoke in pripadajočimi kinematičnimi parametri. Interpolacijske funkcije, ki opisujejo izboljšano kinematiko, zajemajo skoke v pomikih vzdolž razpoke. Obravnavali smo dva načina izpeljave operatorjev, ki nastopajo v lokalni ravnotežni enačbi in povezujejo napetosti v končnem elementu z napetostmi na vgrajeni nezveznosti. Kriterij za vstavitev nezveznosti (razpoke) temelji na kriteriju največje glavne napetosti in je primeren za krhke materiale. Normalne in tangentne kohezijske napetosti v razpoki opišemo z dvema nepovezanima, poškodbenima konstitutivnima zakonoma za mehčanje. Predlagamo novi algoritem za sledenje razpoki za izračun širjenja razpoke v mreži končnih elementov. Algoritem omogoča formacijo razpok v več končnih elementih v enem obtežnem koraku. Izračunali smo številne numerične primere, da bi ocenili delovanje izpeljanih formulacij štirikotnih končnih elementov z vgrajeno nezveznostjo in algoritma za sledenje razpoki kot tudi delovanje metod sledenja ravnotežnih poti
Steinke, Nicola. "Structural investigations of peptide folding and unfolding in solution." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:753c28d5-cb84-4a40-9048-bbaf98e9057c.
Full textDoan, Vinh Thi Thuy. "Integrated design solution of a residential structural insulated panel dwelling." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4236/.
Full textGopalasingam, Piraveen. "Structural characterization of the protein tyrosine phosphatase Shp2 in solution." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5828/.
Full textThareja, Rajiv R. "Efficient single-level solution of hierarchical problems in structural optimization." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/71195.
Full textPh. D.
Borges, Rafael Junqueira. "Structural studies of PLA2-like toxins and development of the structure solution method sequence slider." Botucatu, 2017. http://hdl.handle.net/11449/150292.
Full textResumo: As fosfolipases A2 (PLA2s) são um dos maiores constituintes protéicos do veneno botrópico e um dos responsáveis pela necrose muscular, consequência esta não eficazmente neutralizada pela administração do soro antiofídico. Estas proteínas são tóxicas através do rompimento ou perturbação da membrana celular em um mecanismo catalítico dependente de cálcio e outro independente, sendo este último não totalmente elucidado. Usualmente, estas toxinas são obtidas diretamente do veneno das serpentes, sendo sua purificação um desafio pela co-existência de diferentes isoformas. O objetivo desta tese foi compreender o mecanismo miotóxico independente de cálcio através de estudos estruturais e propor nova metodologia que trate de dados cristalográficos de toxinas provenientes de amostras impuras, chamada SEQUENCE SLIDER. Para tanto, cristalografia e outras técnicas biofísicas, como espalhamento de raios X a baixo ângulo, serão utilizados para estudar três miotoxinas ofídicas em estado nativo e complexado com produtos naturais e inibidores. Nós propusemos medidas locais e globais para caracterizar e relacionar a estrutura dessas toxinas a função. Com o SEQUENCE SLIDER, pudemos elucidar as estruturas de toxinas inéditas cuja sequência era parcialmente conhecida. Esta nova metodologia proposta consiste em avaliar diferentes cadeias laterais contra o coeficiente de correlação em espaço real calculado a partir dos dados cristalográficos. Em paralelo, desenvolvemos o SEQUENCE SLIDER no âmbito do... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Books on the topic "Structural solution"
French, Samuel E. Instructor's solution manual to accompany Fundamentals of structural analysis. Minneapolis/St. Paul: West Pub. Co, 1995.
Find full textKurdo, R. The physical and structural properties of solution-spun tencelfibres. Manchester: UMIST, 1994.
Find full textHaldane, Samuel Arthur Thomas. X-ray structural studies of nitrogenase proteins in solution. Leicester: De Montfort University, 1997.
Find full textF, Doyle James. Modern experimental stress analysis: The solution of partially specified problems. Hoboken, NJ: Wiley, 2004.
Find full textUnited States. National Aeronautics and Space Administration., ed. Application of finite-element-based solution technologies for viscoplastic structural analyses. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textUnited States. National Aeronautics and Space Administration., ed. Application of finite-element-based solution technologies for viscoplastic structural analyses. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textL, Lawson Charles, and Dryden Flight Research Facility, eds. Implementation of a block Lanczos algorithm for eigenproblem solution of gyroscopic systems. Edwards, Calif: National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1987.
Find full textFrankel, Jeffrey A. A solution to fiscal procyclicality: The structural budget institutions pioneered by Chile. Cambridge, MA: National Bureau of Economic Research, 2011.
Find full textManolis, Papadrakakis, ed. Parallel solution methods in computational mathematics. Chichester: John Wiley & Sons, 1997.
Find full textManolis, Papadrakakis, ed. Solving large-scale problems in mechanics: The development and application of computational solution methods. Chichester, West Sussex, England: Wiley, 1993.
Find full textBook chapters on the topic "Structural solution"
Galperin, E. I. "Solution of Structural Problems." In Vertical Seismic Profiling and Its Exploration Potential, 280–303. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5195-2_10.
Full textTim Huff, P. E. "Problems for Solution." In A Practical Course in Advanced Structural Design, 265–86. First edition. | Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003158998-6.
Full textKukula, Pavel, and Michael Valasek. "Kinematical Solution by Structural Approximation." In Computational Kinematics, 323–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01947-0_40.
Full textLyamina, Elena. "An Approximate Solution for Plane Strain Rolling of Viscoplastic Sheets." In Structural Integrity, 79–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91989-8_14.
Full textHjelmstad, Keith D. "Numerical Solution of Ordinary Differential Equations." In Fundamentals of Structural Dynamics, 23–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89944-8_2.
Full textAndrusiv, Lubov. "Numerical Issues Affecting the Eigenproblem Solution of Transversely Vibrating Segmented Structures." In Structural Integrity, 255–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91989-8_57.
Full textOlhoff, Niels. "Solution of Max-Min Problems via Bound Formulation and Mathematical Programming." In Structural Optimization, 397. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1413-1_52.
Full textRamana, P. V., and Vivek Singh. "The Emerging Solution for Partial Differential Problems." In Advances in Structural Engineering, 193–203. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2190-6_18.
Full textGutkowski, W. "Discrete Structural Optimization: Design Problems and Exact Solution Methods." In Discrete Structural Optimization, 1–53. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2754-4_1.
Full textPileni, M. P., T. Zemb, P. Brochette, B. Hickel, and J. Milhaud. "Hydrated Electron in Reverse Micelles Used as A Structural Probe." In Surfactants in Solution, 685–96. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-7981-6_11.
Full textConference papers on the topic "Structural solution"
UTKU, S., and M. SALAMA. "Parallel solution of closely coupled systems." In 26th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-782.
Full textSTUBSTAD, JOHN, and GEORGE SIMITSES. "Solution methods for one-dimensional viscoelastic problems." In 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-804.
Full textGu, Haozhong, and Aditi Chattopadhyay. "Elasticity solution for delamination buckling of plates." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1612.
Full textOrisamolu, I., and Q. Liu. "Finite element reliability solution of stochastic eigenvalue problems." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1311.
Full textPARK, K., and W. BELVIN. "Stability and implementation of partitioned CSI solution procedures." In 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1238.
Full textOU, RONGFU, and ROBERT FULTON. "Solution of nonlinear dynamic response on parallel computers." In 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2396.
Full textLasher, E., and C. Bloebaum. "Impact of sensitivity analysis error on optimal solution accuracy." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1286.
Full textMIN, J., J. BASS, and L. SPRADLEY. "SOLUTION-ADAPTIVE FINITE ELEMENT METHOD IN COMPUTATIONAL FRACTURE MECHANICS." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1449.
Full textSTORAASLI, OLAF, EUGENE POOLE, JAMES ORTEGA, and ANDREW CLEARY. "Solution of structural analysis problems on a parallel computer." In 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2287.
Full textOJALVO, IRVING. "Improved Solution for System Identification Equations by Epsilon-Decomposition." In 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1146.
Full textReports on the topic "Structural solution"
Hammel, Michal. Structural analyses of macromolecules by solution scattering (CRADA Final Report). Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1874024.
Full textLee, Andrew Loyd. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/373861.
Full textFrankel, Jeffrey. A Solution to Fiscal Procyclicality: The Structural Budget Institutions Pioneered by Chile. Cambridge, MA: National Bureau of Economic Research, April 2011. http://dx.doi.org/10.3386/w16945.
Full textSOHN, HOON, JEANETTE R. WAIT, and FARRAR, TANNER, NEAL A. APPLICATION OF A WIRELESS SENSOR MODULE AS A DISTRIBUTED STRUCTURAL HEALTH MONITORING SOLUTION. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/808001.
Full textKraus, Nicholas C., Lihwa Lin, Ernest R. Smith, Daniel J. Heilman, and Robert C. Thomas. Long-Term Structural Solution for the Mouth of Colorado River Navigation Channel, Texas. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada480430.
Full textPatel, Reena, David Thompson, Guillermo Riveros, Wayne Hodo, John Peters, and Felipe Acosta. Dimensional analysis of structural response in complex biological structures. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41082.
Full textAllen, H. C., E. A. Raymond, and G. L. Richmond. Surface Structural Studies of Methane Sulfonic Acid at Air/Aqueous Solution Interfaces using Vibrational Sum Frequency Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada379636.
Full textKansa, E. J. Verification of the NIKE3D structural analysis code by comparison against the analytic solution for a spherical cavity under a far-field uniaxial stress. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5745682.
Full textWi, Jungyeon. Preventing Styrofoam in Marine Environment through Eco-friendly, Durable Bivalve Buoys of Reduced Impact through structural modification. Intellectual Archive, September 2022. http://dx.doi.org/10.32370/iaj.2729.
Full textDeb, Robin, Paramita Mondal, and Ardavan Ardeshirilajimi. Bridge Decks: Mitigation of Cracking and Increased Durability—Materials Solution (Phase III). Illinois Center for Transportation, December 2020. http://dx.doi.org/10.36501/0197-9191/20-023.
Full text