Journal articles on the topic 'Structural-phase transformations'

To see the other types of publications on this topic, follow the link: Structural-phase transformations.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Structural-phase transformations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aftandiliants, Ye G. "Modelling of phase transformations in structural steels." Naukovij žurnal «Tehnìka ta energetika» 11, no. 2 (July 5, 2020): 15–20. http://dx.doi.org/10.31548/machenergy2020.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tkachuk, O., Ya Matychak, I. Pohrelyuk, and V. Fedirko. "Diffusion of Nitrogen and Phase—Structural Transformations in Titanium." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 36, no. 8 (September 6, 2016): 1079–89. http://dx.doi.org/10.15407/mfint.36.08.1079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Froyen, Sverre, Su-Huai Wei, and Alex Zunger. "Epitaxy-induced structural phase transformations." Physical Review B 38, no. 14 (November 15, 1988): 10124–27. http://dx.doi.org/10.1103/physrevb.38.10124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Green, M. A., M. Kurmoo, P. Day, and K. Kikuchi. "Structural phase transformations in C70." Journal of the Chemical Society, Chemical Communications, no. 22 (1992): 1676. http://dx.doi.org/10.1039/c39920001676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Semenova, O. L., J. C. Tedenac, and O. S. Fomichev. "Structural Phase Transformations in Zr50Co25Ni25 Alloy." Powder Metallurgy and Metal Ceramics 55, no. 5-6 (September 2016): 339–46. http://dx.doi.org/10.1007/s11106-016-9811-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schröter, M., E. Hoffmann, M. S. Yang, P. Entel, H. Akai, and A. Altrogge. "Binding Surfaces and Structural Phase Transformations." Le Journal de Physique IV 05, no. C8 (December 1995): C8–273—C8–278. http://dx.doi.org/10.1051/jp4:1995838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilde, Gerhard. "Structural Phase Transformations in Nanoscale Systems." Advanced Engineering Materials 23, no. 5 (February 8, 2021): 2001387. http://dx.doi.org/10.1002/adem.202001387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Yipeng, Rongpei Shi, Jian-Feng Nie, Suliman A. Dregia, and Yunzhi Wang. "Group theory description of transformation pathway degeneracy in structural phase transformations." Acta Materialia 109 (May 2016): 353–63. http://dx.doi.org/10.1016/j.actamat.2016.01.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hudak, Bethany M., Sean W. Depner, Gregory R. Waetzig, Sarbajit Banerjee, and Beth S. Guiton. "Direct Observation of Hafnia Structural Phase Transformations." Microscopy and Microanalysis 23, S1 (July 2017): 2092–93. http://dx.doi.org/10.1017/s1431927617011126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Axe, J. D., A. H. Moudden, D. Hohlwein, D. E. Cox, K. M. Mohanty, A. R. Moodenbaugh, and Youwen Xu. "Structural phase transformations and superconductivity inLa2−xBaxCuO4." Physical Review Letters 62, no. 23 (June 5, 1989): 2751–54. http://dx.doi.org/10.1103/physrevlett.62.2751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kollerov, M. Yu, Yu E. Runova, V. V. Zasypkin, and I. M. Kudelina. "Phase and structural transformations in hydrogenated titanium." Russian Metallurgy (Metally) 2017, no. 1 (January 2017): 18–23. http://dx.doi.org/10.1134/s0036029517010062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Iskakova, L. Yu, A. P. Romanchuk, and A. Yu Zubarev. "Phase and structural transformations in magnetorheological suspensions." Physica A: Statistical Mechanics and its Applications 366 (July 2006): 18–30. http://dx.doi.org/10.1016/j.physa.2005.10.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Focher, P., G. L. Chiarotti, M. Bernasconi, E. Tosatti, and M. Parrinello. "Structural Phase Transformations via First-Principles Simulation." Europhysics Letters (EPL) 26, no. 5 (May 10, 1994): 345–51. http://dx.doi.org/10.1209/0295-5075/26/5/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ye, Y. Y., C. T. Chan, K. M. Ho, and B. N. Harmon. "Total Energy Calculations for Structural Phase Transformations." International Journal of Supercomputing Applications 4, no. 3 (September 1990): 111–21. http://dx.doi.org/10.1177/109434209000400311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Baran, L. V., G. P. Okatova, and V. A. Ukhov. "Structural phase transformations in tin-fullerite films." Physics of the Solid State 48, no. 7 (July 2006): 1418–21. http://dx.doi.org/10.1134/s1063783406070316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hadermann, J., A. M. Abakumov, O. I. Lebedev, G. Van Tendeloo, M. G. Rozova, R. V. Shpanchenko, B. Ph Pavljuk, E. M. Kopnin, and E. V. Antipov. "Structural Transformations in the Fluorinated T* Phase." Journal of Solid State Chemistry 147, no. 2 (November 1999): 647–56. http://dx.doi.org/10.1006/jssc.1999.8438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jacobs, K., P. Hofmann, D. Klimm, J. Reichow, and M. Schneider. "Structural Phase Transformations in Crystalline Gallium Orthophosphate." Journal of Solid State Chemistry 149, no. 1 (January 2000): 180–88. http://dx.doi.org/10.1006/jssc.1999.8520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Blanchart, Philippe, Sarah Deniel, and Nicolas Tessier-Doyen. "Clay Structural Transformations during Firing." Advances in Science and Technology 68 (October 2010): 31–37. http://dx.doi.org/10.4028/www.scientific.net/ast.68.31.

Full text
Abstract:
Silicate ceramics with clays are some of the most complicated ceramic systems because of the very complex relationship between the behavior of mineral materials during the ceramic processing and the transformations during heating. A major challenge is to predict the phase transformations in silicate ceramics, since complex relationship occur between the microstructural and structural characteristics of fired product and the physical properties. Clay minerals undergo strong structural transformations during heating, simultaneously to a complex path of thermal transformations. Individual reactions cannot simply identify since they are closely related and overlapped. At temperature above 800°C, new phases are recrystallized and many of the reactions are strongly topotactic. Mullite is the most important phase, which recrystallizes with a range of morphology and stoichiometry. Variables affecting the mullite formation include the clay mineral type and behavior during heating, the possible occurrence of liquid and impurities as Fe. It results in large variations of the stoichiometry and shape of mullite crystals, which are embedded in a low ordered phase to form a micro-composite microstructure. This presentation will review recent research, looking at structural transformations in some typically used phyllosilicate systems : (i) structural transformation of kaolinite and mica phases were identified at temperature up to 1100°C. They evidence a residual structural order of high temperature phases which is favorable to the topotactic recrystallization of mullite; (ii) from the high temperature form of phyllosilicates, an organized network of mullite can be obtained; (iii) the composition of a local and transient liquid and the presence of minor elements as Fe has a significant influence on the mullite morphology; (iv) mechanical properties are closely related to size and organization degree of the mullite network; (v) the process itself influence the kinetic of structural transformation and particularly the powder compact density and the thermal cycle. These research in silicate ceramics evidence multiple and complex challenges, providing opportunities for future development.
APA, Harvard, Vancouver, ISO, and other styles
19

Kubicki, Maciej. "Structural Aspects of Phase Transitions." Solid State Phenomena 112 (May 2006): 1–20. http://dx.doi.org/10.4028/www.scientific.net/ssp.112.1.

Full text
Abstract:
There are two kinds of structural transformations in the crystalline solid state: solid state reactions, in which the product chemically different from the starting material can be isolated, and polymorphic transitions, when the phases have different organization of identical molecules in the crystal structures. As a consequence, the starting and the final phases of a solid state reaction differ in the melt and vapor, while different polymorphic modifications are identical in melt or gas phase. Some examples of the different phase transitions in the solid state are described in detail: the π-molecular complexes, the hydrogen-bond transformations and the reversible single crystal - twin transition.
APA, Harvard, Vancouver, ISO, and other styles
20

Piekarska, W. "Modelling and Analysis of Phase Transformations and Stresses in Laser Welding Process / Modelowanie I Analiza Przemian Fazowych I Naprężeń W Procesie Spawania Laserowego." Archives of Metallurgy and Materials 60, no. 4 (December 1, 2015): 2833–42. http://dx.doi.org/10.1515/amm-2015-0454.

Full text
Abstract:
The work concerns the numerical modelling of structural composition and stress state in steel elements welded by a laser beam. The temperature field in butt welded joint is obtained from the solution of heat transfer equation with convective term. The heat source model is developed. Latent heat of solid-liquid and liquid-gas transformations as well as latent heats of phase transformations in solid state are taken into account in the algorithm of thermal phenomena. The kinetics of phase transformations in the solid state and volume fractions of formed structures are determined using classical formulas as well as Continuous-Heating-Transformation (CHT) diagram and Continuous-Cooling-Transformation (CCT) diagram during welding. Models of phase transformations take into account the influence of thermal cycle parameters on the kinetics of phase transformations during welding. Temporary and residual stress is obtained on the basis of the solution of mechanical equilibrium equations in a rate form. Plastic strain is determined using non-isothermal plastic flow with isotropic reinforcement, obeying Huber-Misses plasticity condition. In addition to thermal and plastic strains, the model takes into account structural strain and transformation plasticity. Changing with temperature and structural composition thermophysical parameters are included into constitutive relations. Results of the prediction of structural composition and stress state in laser butt weld joint are presented.
APA, Harvard, Vancouver, ISO, and other styles
21

Paúl, A., A. Beirante, Nuno Franco, Eduardo Alves, and José Antonio Odriozola. "Phase Transformation and Structural Studies of EUROFER RAFM Alloy." Materials Science Forum 514-516 (May 2006): 500–504. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.500.

Full text
Abstract:
High temperature phase transformations in EUROFER reduced activation ferritic martensitic (RAFM) steel were studied in-situ by means of X-ray diffraction. Results show that, during slow cooling, the austenite to ferrite transformation takes place around 755 oC. Full transformation of the austenitic phase into pure martensite is observed for cooling above 5 oC/min. This transformation was found in samples annealed at 950 oC for 3 h and quenched in liquid nitrogen. TEM analyses reveal a high concentration of carbides along the grain boundaries of the martensitic structure. The thermal expansion coefficient derived from the measurements was 12.7x10-6 K-1.
APA, Harvard, Vancouver, ISO, and other styles
22

Paidar, Václav, and Andriy Ostapovets. "Displacive Phase Transformations." Solid State Phenomena 150 (January 2009): 159–74. http://dx.doi.org/10.4028/www.scientific.net/ssp.150.159.

Full text
Abstract:
Shear deformation and shuffling of atomic planes are elementary mechanisms of collective atomic motion that take place during displacive phase transformations. General displacements of atomic planes are examined, i.e. -surface type calculations extensively used for the stacking faults and crystal dislocations are applied to single plane shuffling and alternate shuffling of every other atomic plane producing in combination with homogeneous deformation the hcp structure (martensitic type) from the initial bcc structure (austenitic type). Similar approach considering shear type planar displacements leads to the Zener path between the bcc and fcc lattices. The effect of additional deformation required to obtain the close-packed atomic arrangements is examined as well. Finally, the influence of volume modification on phase transitions is investigated. The energies of various structural configurations are calculated using many-body potentials for the description of interatomic forces. Such atomic models are tested to check their suitability for investigation of the role of interfaces in the displacive structural transitions.
APA, Harvard, Vancouver, ISO, and other styles
23

Fedotkin, A. A., V. E. Medentsov, and V. V. Stolyarov. "STRUCTURAL PHASE TRANSFORMATIONS IN TENSION WITH THE CURRENT." Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy 55, no. 8 (January 1, 2012): 47–52. http://dx.doi.org/10.17073/0368-0797-2012-8-47-52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Vlasova, M., G. Dominguez-Patiño, N. Kakazey, M. Dominguez-Patiño, D. Juarez-Romero, and Enríquez Méndez. "Structural-phase transformations in bentonite after acid treatment." Science of Sintering 35, no. 3 (2003): 155–66. http://dx.doi.org/10.2298/sos0303155v.

Full text
Abstract:
The methods of X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray microanalysis, electron microscopy, BET and cation exchange capacity (CEC) were used for investigation of the structural-phase transformations in bentonite under the influence of hydrochloric acid and temperature treatment (100-800?C). It is established that in HCl medium during temperature treatment, dehydration and dehydroxilation of montmorillonite occur. The presence of gypsum and barium chloride results in an intercalation of interlayer space of montmorillonite by Ca and Ba ions Temperature treatment of intercalated montmorillonite leads to the formation of pores.
APA, Harvard, Vancouver, ISO, and other styles
25

Pugacheva, N. B., A. A. Pankratov, N. Yu Frolova, and I. V. Kotlyarov. "Structural and phase transformations in α + β brasses." Russian Metallurgy (Metally) 2006, no. 3 (May 2006): 239–48. http://dx.doi.org/10.1134/s0036029506030104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Poswal, H. K., Nandini Garg, Surinder M. Sharma, E. Busetto, S. K. Sikka, Gautam Gundiah, F. L. Deepak, and C. N. R. Rao. "Pressure-Induced Structural Phase Transformations in Silicon Nanowires." Journal of Nanoscience and Nanotechnology 5, no. 5 (May 1, 2005): 729–32. http://dx.doi.org/10.1166/jnn.2005.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dobromyslov, A. V., G. V. Dolgikh, Ya Dutkevich, and T. L. Trenogina. "Phase and structural transformations in Ti-Ta alloys." Physics of Metals and Metallography 107, no. 5 (May 2009): 502–10. http://dx.doi.org/10.1134/s0031918x09050111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Vassilieva, I. G., T. Yu Kardash, and V. V. Malakhov. "Phase transformations of CuCrS2: Structural and chemical study." Journal of Structural Chemistry 50, no. 2 (April 2009): 288–95. http://dx.doi.org/10.1007/s10947-009-0040-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Karpukhin, I. A., V. S. Vladimirov, and S. E. Moizis. "Phase and structural transformations in refractory SHS-materials." Refractories and Industrial Ceramics 46, no. 4 (July 2005): 284–86. http://dx.doi.org/10.1007/s11148-006-0026-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ghica, D., S. V. Nistor, L. C. Nistor, M. Stefan, and C. D. Mateescu. "Structural phase transformations in annealed cubic ZnS nanocrystals." Journal of Nanoparticle Research 13, no. 9 (May 3, 2011): 4325–35. http://dx.doi.org/10.1007/s11051-011-0379-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Berdiev, D. M., M. A. Umarova, and R. K. Toshmatov. "Phase and Structural Transformations of Structural Steels in Nontraditional Heat Treatment." Russian Engineering Research 41, no. 1 (January 2021): 46–48. http://dx.doi.org/10.3103/s1068798x21010068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Xiao, Hai Zhu, Fei Ye, Da Yu Zhou, and Fei Ming Bai. "Structural Transformation Relationship for Hafnia Ferroelectric Phase." Advanced Materials Research 873 (December 2013): 865–70. http://dx.doi.org/10.4028/www.scientific.net/amr.873.865.

Full text
Abstract:
The ferroelectricity of hafnia-based thin films with a dominant phase of orthorhombic Pca21has been reported. However, the relationship of structural transformations between the orthorhombic Pca21and other hafnia structures remains unclear. In this work, all the structures have been optimized. Then, the fluorite-related structures have been used to analyze the structural relationship. Calculations of the lattice energies and the relative atomic displacements between the structures suggest that the Pca21phase may originate from the P42/nmc or Pbca phases.
APA, Harvard, Vancouver, ISO, and other styles
33

Yoshida, Kenichi, T. Yasuda, D. Tani, and H. Nishino. "Dynamic Behavior of Two Types of Martensitic Transformations in Cu-Al-Ni Shape Memory Alloy Single Crystal by Acoustic Emission Method." Advanced Materials Research 13-14 (February 2006): 305–12. http://dx.doi.org/10.4028/www.scientific.net/amr.13-14.305.

Full text
Abstract:
Dynamic behavior of two types of martensitic transformations during tensile deformation of Cu-Al-Ni shape memory alloy single crystal has been investigated using an acoustic emission waveform analysis. Two kinds of martensitic transformations consist of β1 ⇔ β1′ (structural change of DO3 to 18R) and β1 ⇒ γ1′ (structural change of DO3 to 2H), each of which is called super-elastic and thermo-elastic martensitic transformations, respectively. These two types of martensitic transformations could be obtained during tensile deformation because of different heat treatment. The rise time at the source (the source rise time) in finite elastic solid by the modified Takashima’s method was analyzed using the acoustic emission waveform detected during the martensitic transformation. The mean source rise time to the γ1′ phase was smaller than that to the β1′ phase before yielding and became the same after yielding. The former result means that the nucleation of the γ1′ phase is faster than that of the β1′ phase because of different crystallographic structure. The latter result is that the growth rate of the γ1′ phase is the same as that of the β1′ phase.
APA, Harvard, Vancouver, ISO, and other styles
34

SHIMONO, Masato, and Hidehiro ONODERA. "Molecular Dynamics Study on Phase Transitions and Structural Transformations*." Journal of the Japan Welding Society 72, no. 6 (2003): 495–98. http://dx.doi.org/10.2207/qjjws1943.72.495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ivanova, Z. G., V. Pamukchieva, and M. Vlček. "On the structural phase transformations in GexSb40−xSe60 glasses." Journal of Non-Crystalline Solids 293-295 (November 2001): 580–85. http://dx.doi.org/10.1016/s0022-3093(01)00842-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, W. H., F. X. Hu, J. L. Chen, Y. X. Li, Z. Wang, Z. Y. Gao, Y. F. Zheng, L. C. Zhao, G. H. Wu, and W. S. Zan. "Magnetic properties and structural phase transformations of NiMnGa alloys." IEEE Transactions on Magnetics 37, no. 4 (July 2001): 2715–17. http://dx.doi.org/10.1109/20.951284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhurov, V. V., S. A. Ivanov, I. V. Ol'hovik, and E. D. Politova. "Structural phase transformations of the prototypic ceramic superconductor BaPbO3." Acta Crystallographica Section A Foundations of Crystallography 49, s1 (August 21, 1993): c303. http://dx.doi.org/10.1107/s0108767378091576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Garg, Nandini, Surinder M. Sharma, and S. K. Sikka. "Investigations of pressure induced structural phase transformations in pentaerythritol." Solid State Communications 136, no. 1 (October 2005): 56–61. http://dx.doi.org/10.1016/j.ssc.2005.05.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kruhlov, I. O., O. V. Shamis, N. Y. Schmidt, M. V. Karpets, S. Gulyas, E. Hadjixenophontos, A. P. Burmak, et al. "Structural phase transformations in annealed Pt/Mn/Fe trilayers." Journal of Physics: Condensed Matter 32, no. 36 (June 18, 2020): 365404. http://dx.doi.org/10.1088/1361-648x/ab9269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nikul’chenkov, Nikolai, Artem Yurovskikh, Yuri Starodubtsev, and Mikhail Lobanov. "Phase and structural transformations in a nanocrystalline alloy Fe72.5Cu1Nb2Mo1.5Si14B9." Letters on Materials 9, no. 1 (2019): 64–69. http://dx.doi.org/10.22226/2410-3535-2019-1-64-69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kleiner, L. M., D. M. Larinin, L. V. Spivak, and A. A. Shatsov. "Phase and structural transformations in low-carbon martensitic steels." Physics of Metals and Metallography 108, no. 2 (August 2009): 153–60. http://dx.doi.org/10.1134/s0031918x09080080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Basso, V., M. Kuepferling, C. P. Sasso, and M. LoBue. "Modeling Hysteresis of First-Order Magneto-Structural Phase Transformations." IEEE Transactions on Magnetics 44, no. 11 (November 2008): 3177–80. http://dx.doi.org/10.1109/tmag.2008.2002796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vas’kovskii, V. O., A. V. Svalov, A. V. Gorbunov, N. N. Shchegoleva, and S. M. Zadvorkin. "Structural and magnetic phase transformations in multilayer gadolinium films." Physics of the Solid State 43, no. 4 (April 2001): 698–704. http://dx.doi.org/10.1134/1.1365996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Khomchenko, V. A., I. O. Troyanchuk, A. N. Chobot, and H. Szymczak. "Structural and magnetic phase transformations in La0.88MnO3 − x crystals." Crystallography Reports 48, no. 3 (May 2003): 390–95. http://dx.doi.org/10.1134/1.1578120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mehrotra, Bhoopendra Narain. "Structural transformations and phase stabilization in Na2S04-Na2C03 system." Phase Transitions 16, no. 1-4 (June 1989): 431–36. http://dx.doi.org/10.1080/01411598908245717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yue-Wu, Pan, Qu Sheng-Chun, Gao Chun-Xiao, Han Yong-Hao, Luo Ji-Feng, Cui Qi-Liang, Liu Jing, and Zou Guang-Tian. "Structural Phase Transformations of ZnS Nanocrystalline Under High Pressure." Chinese Physics Letters 21, no. 1 (January 2004): 67–69. http://dx.doi.org/10.1088/0256-307x/21/1/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bernstein, E., M. G. Blanchin, R. Ravelle-Chapuis, and J. Rodriguez-Carvajal. "Structural studies of phase transformations in ultrafine zirconia powders." Journal of Materials Science 27, no. 23 (February 20, 1992): 6519–24. http://dx.doi.org/10.1007/bf00576306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Potekaev, A. I., and V. V. Kulagina. "Structural-phase transformations in low-stability condensed state systems." Russian Physics Journal 54, no. 8 (December 28, 2011): 839–54. http://dx.doi.org/10.1007/s11182-011-9693-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Malinenko, I. A., S. A. Chudinova, and A. D. Fofanov. "Structural investigation of phase transformations in an MnAl alloy." Soviet Physics Journal 32, no. 8 (August 1989): 608–12. http://dx.doi.org/10.1007/bf00898534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tsuruta, Hanako, Kazuyuki Shimizu, Takeshi Murakami, Yasuhiro Kamada, and Hideo Watanabe. "Structural Phase Transformations of Gallium Ion Irradiated SUS304 Steel." Journal of the Japan Institute of Metals and Materials 85, no. 6 (June 1, 2021): 239–46. http://dx.doi.org/10.2320/jinstmet.j2021006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography