Academic literature on the topic 'Structural Optimisation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural Optimisation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structural Optimisation"
Vankan, W. J., R. Maas, and S. Grihon. "Efficient optimisation of large aircraft fuselage structures." Aeronautical Journal 118, no. 1199 (January 2014): 31–52. http://dx.doi.org/10.1017/s0001924000008915.
Full textDe Wilde, W. P., T. Vandenbergh, and W. Debacker. "Structural optimisation and sustainable design." International Journal of Computational Methods and Experimental Measurements 3, no. 3 (September 30, 2015): 187–204. http://dx.doi.org/10.2495/cmem-v3-n3-187-204.
Full textW. Lim, J., and S. Sivaguru. "Chassis Structural Design of Track Racing One Manned Formula Car." International Journal of Engineering & Technology 7, no. 3.32 (August 26, 2018): 71. http://dx.doi.org/10.14419/ijet.v7i3.32.18396.
Full textTomašić, Dubravko, Dragan Peraković, and Marinko Jurčević. "Interdependence between Inventory Management and Employees’ Satisfaction." PROMET - Traffic&Transportation 25, no. 3 (June 19, 2013): 245–54. http://dx.doi.org/10.7307/ptt.v25i3.909.
Full textRibeiro, Tiago P., Luís F. A. Bernardo, and Jorge M. A. Andrade. "Topology Optimisation in Structural Steel Design for Additive Manufacturing." Applied Sciences 11, no. 5 (February 27, 2021): 2112. http://dx.doi.org/10.3390/app11052112.
Full textPhillips, Andrew T. M. "Structural optimisation: biomechanics of the femur." Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 165, no. 2 (June 2012): 147–54. http://dx.doi.org/10.1680/eacm.10.00032.
Full textChen, Yu‐Ming, Kuo‐Shuh Fan, and Ban‐Jwu Shih. "2.5D Nodal based evolutionary structural optimisation." Journal of the Chinese Institute of Engineers 33, no. 6 (September 2010): 899–908. http://dx.doi.org/10.1080/02533839.2010.9671678.
Full textJones, R., P. Chaperon, and M. Heller. "Structural optimisation with fracture strength constraints." Engineering Fracture Mechanics 69, no. 13 (September 2002): 1403–23. http://dx.doi.org/10.1016/s0013-7944(02)00006-1.
Full textJones, R., D. Peng, P. Chaperon, S. Pitt, D. Abramson, and T. Peachey. "Structural optimisation with damage tolerance constraints." Theoretical and Applied Fracture Mechanics 43, no. 1 (March 2005): 133–55. http://dx.doi.org/10.1016/j.tafmec.2004.12.009.
Full textSuraweera, NP, and DN Ranasinghe. "Adaptive Structural Optimisation of Neural Networks." International Journal on Advances in ICT for Emerging Regions (ICTer) 1, no. 1 (March 26, 2009): 33. http://dx.doi.org/10.4038/icter.v1i1.450.
Full textDissertations / Theses on the topic "Structural Optimisation"
Appelo, Sophia Aletta. "Structural optimisation via genetic algorithms." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71907.
Full textENGLISH ABSTRACT: The design of steel structures needs to incorporate some optimisation procedure that evolves the initial design into a more economic nal design, where this nal design must still satisfy all the initial design criteria. A candidate optimisation technique suggested by this research is the genetic algorithm. The genetic algorithm (GA) is an optimisation technique that was inspired by evolutionary principles, such as the survival of the ttest (also known as natural selection). The GA operates by generating a population of individuals which 'compete' with one another in order to survive, or di erently stated, in order to make it into the next generation. Each individual presents a solution to the problem. Surviving solutions which propagate through to the next generation are typically 'better' or ' tter' than the ones that had died o , hence suggesting a process of optimisation. This process continues until a de ned convergence criteria is met (e.g. speci ed maximum number of generations is reached), where after the best individual in the population serves as the ultimate solution to the problem. This study thoroughly investigates the inner workings that drive the algorithm, after which an algorithm is presented to face the challenges of structural optimisation. This algorithm will be concerned only with sizing optimisation; geometry, topology and shape optimisation is outside the scope of this research. The objective of this optimising problem will be to minimise the weight of the structure, it is assumed that the weight is inversely propotional to the cost of the structure. The motive behind using a genetic algorithm in this study is largely due to its ability to handle discrete search spaces; classical search methods are typically limited to some form of gradient search technique for which the search space must be continuous. The algorithm is also preferred due to its ability to e ciently search through vast search spaces, which is typically the case for a structural optimisation problem. The genetic algorithm's performance will be examined through the use of bench-marking problems. Benchmarking is done for both planar and space trusses; the 10 - and 25 bar truss problems. Such problems are typically analysed with stress and displacement constraints. After the performance of the algorithm is validated, the study commences towards solving real life practical problems. The rst step towards solving such problems would be to investigate the 160 bar truss benchmarking problem. This problem will be slightly adapted by applying South African design standards to the design, SANS (2005). This approach is more realistic, when compared to simply specifying stress and displacement constraints due to the fact that an element cannot simply be assigned the same stress constraint for tension and compression; slenderness and buckling e ects need to be taken into account. For this case, the search space will no longer simply be some sample search space, but will consist of real sections taken from the Southern African Steel Construction Handbook, SAISC (2008). Finally, the research will investigate what is needed to optimise a proper real life structure, the Eskom Self-Supporting Suspension 518H Tower. It will address a wide variety of topics, such as modelling the structure as realistically as possible, to investigating key aspects that might make the problem di erent from standard benchmarking problems and what kind of steps can be taken to over-come possible issues and errors. The algorithm runs in parallel with a nite element method program, provided by Dr G.C. van Rooyen, which analyses the solutions obtained from the algorithm and ensures structural feasibility.
AFRIKAANSE OPSOMMING: Die ontwerp van staal strukture moet 'n sekere optimalisasie proses in sluit wat die aanvanklike ontwerp ontwikkel na 'n meer ekonomiese nale ontwerp, terwyl die nuwe ontwerp nog steeds aan al die aanvanklike ontwerp kriteria voldoen. 'n Kandidaat optimeringstegniek wat voorgestel word deur hierdie navorsing is die genetiese algoritme. Die genetiese algoritme (GA) is 'n optimaliserings tegniek wat ge- ïnspireer was deur evolusionêre beginsels soos die oorlewing van die sterkste (ook bekend as natuurlike seleksie). Dit werk deur die skep van 'n bevolking van individue wat 'kompeteer' met mekaar om dit te maak na die volgende generasie. Elke individu bied 'n oplossing vir die probleem. Oorlewende oplossings wat voortplant deur middel van die volgende generasie is tipies 'beter' of ' kser' as die individue wat uitgesterf het, dus word 'n proses van optimalisering word saamgestel. Hierdie proses gaan voort totdat 'n bepaalde konvergensie kriteria voldoen is (bv. 'n gespesi seerde aantal generasies), waar na die beste individu in die bevolking dien as die uiteindelike oplossing vir die probleem. Hierdie studie ondersoek die genetiese algoritme, waarna 'n algoritme aangebied word om die uitdagings van strukturele optimalisering aan te spreek. Hierdie algoritme het alleenlik te doen met snit optimalisering; meetkunde, topologie en vorm optimalisering is buite die bestek van hierdie navorsing. Die motief agter die gebruik van 'n genetiese algoritme in hierdie studie is grootliks te danke aan sy vermoë om diskrete soek ruimtes te hanteer; klassieke soek metodes word gewoonlik beperk tot 'n vorm van 'n helling tegniek waarvoor die soektog ruimte deurlopende moet wees. Die algoritme is ook gekies as gevolg van sy vermoë om doeltre end deur groot soektog ruimtes te soek, wat gewoonlik die geval vir 'n strukturele probleem met optimering is. Die genetiese algoritme se prestasie sal ondersoek word deur die gebruik van standaarde toetse. Standarde toetse word gedoen vir beide vlak en ruimte kappe, die 10 - en 25 element vakwerk. Sulke probleme word tipies met spanning en verplasing beperkings ontleed. Na a oop van die bekragtiging van die algoritme, word praktiese probleme hanteer. Die eerste stap in die rigting sou wees om die 160 element vakwerk toets probleem te ondersoek. Hierdie probleem sal e ens aangepas word deur die toepassing van die Suid-Afrikaanse ontwerp standaarde, SANS (2005) aan die ontwerp. Dit is 'n meer realistiese benadering in vergelyking met net gespesi seerde spanning en verplasing beperkings as gevolg van die feit dat 'n element nie net eenvoudig dieselfde spanning beperking vir spanning en druk toegeken kan word nie; slankheid en knik e ekte moet ook in ag geneem word. In hierdie geval sal die soek ruimte nie meer net meer eenvoudig 'n sekere teoretiese soek ruimte wees nie, maar sal bestaan uit ware snitte wat uit die Suid Afrikaanse Konstruksie Handboek kom, SAISC (2008). Ten slotte sal die navorsing ondersoek instel na 'n standaard Eskom Transmissie toring en dit sal 'n wye verskeidenheid van onderwerpe aanspreek, soos om die modellering van die struktuur so realisties as moontlik te maak, tot die ondersoek van sleutelaspekte wat die probleem verskillend van standaard toets probleme maak en ook watter soort stappe geneem kan word om moontlike probleme te oor-kom. Die algoritme werk in parallel met 'n eindige element metode program, wat deur Dr GC van Rooyen verskaf is, wat die oplossings ontleed van die algoritme en verseker dat die struktuur lewensvatbaar is.
Barry, Mamadou Aliou. "Optimisation des structures nanophotoniques pour le photovoltaïque." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC096/document.
Full textThe present manuscript deals with the problem of the design in photonics, i.e. to determine which is the best way to assemble nanometric elements to reach a desired optical response. Different algorithms are tested. One algorithm in particular seems well adapted to this kind of problem, and allows to retrieve the most emblematic photonic structures which a present in nature on the tegument of insects or on the wings of butterflies. Applied to the case of an anti-reflective coating for a photovoltaic device, the algorithm has produced a particularly counter intuivite but efficient structure. This clearly demonstrates the potential of such an approach
Laamiri, Hassan. "Optimisation methods in structural systems reliability." Thesis, Imperial College London, 1991. http://hdl.handle.net/10044/1/46878.
Full textPritchard, Thomas J. "Novel techniques in structural layout optimisation." Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419635.
Full textBuckney, Neil. "Optimisation of wind turbine blade structural topology." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633206.
Full textWood, Derren Wesley. "Dual sequential approximation methods in structural optimisation." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20033.
Full textENGLISH ABSTRACT: This dissertation addresses a number of topics that arise from the use of a dual method of sequential approximate optimisation (SAO) to solve structural optimisation problems. Said approach is widely used because it allows relatively large problems to be solved efficiently by minimising the number of expensive structural analyses required. Some extensions to traditional implementations are suggested that can serve to increase the efficacy of such algorithms. The work presented herein is concerned primarily with three topics: the use of nonconvex functions in the definition of SAO subproblems, the global convergence of the method, and the application of the dual SAO approach to large-scale problems. Additionally, a chapter is presented that focuses on the interpretation of Sigmund’s mesh independence sensitivity filter in topology optimisation. It is standard practice to formulate the approximate subproblems as strictly convex, since strict convexity is a sufficient condition to ensure that the solution of the dual problem corresponds with the unique stationary point of the primal. The incorporation of nonconvex functions in the definition of the subproblems is rarely attempted. However, many problems exhibit nonconvex behaviour that is easily represented by simple nonconvex functions. It is demonstrated herein that, under certain conditions, such functions can be fruitfully incorporated into the definition of the approximate subproblems without destroying the correspondence or uniqueness of the primal and dual solutions. Global convergence of dual SAO algorithms is examined within the context of the CCSA method, which relies on the use and manipulation of conservative convex and separable approximations. This method currently requires that a given problem and each of its subproblems be relaxed to ensure that the sequence of iterates that is produced remains feasible. A novel method, called the bounded dual, is presented as an alternative to relaxation. Infeasibility is catered for in the solution of the dual, and no relaxation-like modification is required. It is shown that when infeasibility is encountered, maximising the dual subproblem is equivalent to minimising a penalised linear combination of its constraint infeasibilities. Upon iteration, a restorative series of iterates is produced that gains feasibility, after which convergence to a feasible local minimum is assured. Two instances of the dual SAO solution of large-scale problems are addressed herein. The first is a discrete problem regarding the selection of the point-wise optimal fibre orientation in the two-dimensional minimum compliance design for fibre-reinforced composite plates. It is solved by means of the discrete dual approach, and the formulation employed gives rise to a partially separable dual problem. The second instance involves the solution of planar material distribution problems subject to local stress constraints. These are solved in a continuous sense using a sparse solver. The complexity and dimensionality of the dual is controlled by employing a constraint selection strategy in tandem with a mechanism by which inconsequential elements of the Jacobian of the active constraints are omitted. In this way, both the size of the dual and the amount of information that needs to be stored in order to define the dual are reduced.
AFRIKAANSE OPSOMMING: Hierdie proefskrif spreek ’n aantal onderwerpe aan wat spruit uit die gebruik van ’n duale metode van sekwensi¨ele benaderde optimering (SBO; sequential approximate optimisation (SAO)) om strukturele optimeringsprobleme op te los. Hierdie benadering word breedvoerig gebruik omdat dit die moontlikheid skep dat relatief groot probleme doeltreffend opgelos kan word deur die aantal duur strukturele analises wat vereis word, te minimeer. Sommige uitbreidings op tradisionele implementerings word voorgestel wat kan dien om die doeltreffendheid van sulke algoritmes te verhoog. Die werk wat hierin aangebied word, het hoofsaaklik betrekking op drie onderwerpe: die gebruik van nie-konvekse funksies in die defini¨ering van SBO-subprobleme, die globale konvergensie van die metode, en die toepassing van die duale SBO-benadering op grootskaalse probleme. Daarbenewens word ’n hoofstuk aangebied wat fokus op die interpretasie van Sigmund se maasonafhanklike sensitiwiteitsfilter (mesh independence sensitivity filter) in topologie-optimering. Dit is standaard praktyk om die benaderde subprobleme as streng konveks te formuleer, aangesien streng konveksiteit ’n voldoende voorwaarde is om te verseker dat die oplossing van die duale probleem ooreenstem met die unieke stasionˆere punt van die primaal. Die insluiting van niekonvekse funksies in die definisie van die subprobleme word selde gepoog. Baie probleme toon egter nie-konvekse gedrag wat maklik deur eenvoudige nie-konvekse funksies voorgestel kan word. In hierdie werk word daar gedemonstreer dat sulke funksies onder sekere voorwaardes met vrug in die definisie van die benaderde subprobleme inkorporeer kan word sonder om die korrespondensie of uniekheid van die primale en duale oplossings te vernietig. Globale konvergensie van duale SBO-algoritmes word ondersoek binne die konteks van die CCSAmetode, wat afhanklik is van die gebruik en manipulering van konserwatiewe konvekse en skeibare benaderings. Hierdie metode vereis tans dat ’n gegewe probleem en elk van sy subprobleme verslap word om te verseker dat die sekwensie van iterasies wat geproduseer word, toelaatbaar bly. ’n Nuwe metode, wat die begrensde duaal genoem word, word aangebied as ’n alternatief tot verslapping. Daar word vir ontoelaatbaarheid voorsiening gemaak in die oplossing van die duaal, en geen verslappings-tipe wysiging word benodig nie. Daar word gewys dat wanneer ontoelaatbaarheid te¨engekom word, maksimering van die duaal-subprobleem ekwivalent is aan minimering van sy begrensingsontoelaatbaarhede (constraint infeasibilities). Met iterasie word ’n herstellende reeks iterasies geproduseer wat toelaatbaarheid bereik, waarna konvergensie tot ’n plaaslike KKT-punt verseker word. Twee gevalle van die duale SBO-oplossing van grootskaalse probleme word hierin aangespreek. Die eerste geval is ’n diskrete probleem betreffende die seleksie van die puntsgewyse optimale veselori¨entasie in die tweedimensionele minimum meegeefbaarheidsontwerp vir veselversterkte saamgestelde plate. Dit word opgelos deur middel van die diskrete duale benadering, en die formulering wat gebruik word, gee aanleiding tot ’n gedeeltelik skeibare duale probleem. Die tweede geval behels die oplossing van in-vlak materiaalverspredingsprobleme onderworpe aan plaaslike spanningsbegrensings. Hulle word in ’n kontinue sin opgelos met die gebruik van ’n yl oplosser. Die kompleksiteit en dimensionaliteit van die duaal word beheer deur gebruik te maak van ’n strategie om begrensings te selekteer tesame met ’n meganisme waardeur onbelangrike elemente van die Jacobiaan van die aktiewe begrensings uitgelaat word. Op hierdie wyse word beide die grootte van die duaal en die hoeveelheid inligting wat gestoor moet word om die duaal te definieer, verminder.
Qian, Connie Cheng. "Structural optimisation of discontinuous carbon fibre composites." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14542/.
Full textUthman, Zana. "Configurational forces in structural and continuum optimisation." Thesis, University of Sheffield, 2008. http://etheses.whiterose.ac.uk/91/.
Full textLiu, Jing-Sheng. "Integrated structural and electromagnetic optimisation of large terrestrial and space antenna structures." Thesis, University of Surrey, 1997. http://epubs.surrey.ac.uk/843480/.
Full textProos, Kaarel. "Evolutionary structural optimisation as a robust and reliable design tool." Connect to full text, 2002. http://hdl.handle.net/2123/519.
Full textTitle from title screen (viewed Apr. 28, 2008). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the School of Aeronautical, Mechatronic and Mechanical Engineering. Includes bibliographical references. Also available in print form.
Books on the topic "Structural Optimisation"
Bhavikatti, S. S. Structural optimisation using sequential linear programming. New Delhi: Vikas Publishing House Pvt., 2003.
Find full textBendsøe, Martin P. Optimization of structural topology, shape, and material. Berlin: Springer, 1995.
Find full textMiravete, A. Optimisation of design of composite structures. Cambridge: Woodhead, 1996.
Find full textCroccolo, Dario. Motorbike Suspensions: Modern design and optimisation. London: Springer London, 2013.
Find full textKilkki, Juha. Automated formulation of optimisation models for steel beam structures. Lappeenranta, Finland: Lappeenranta University of Technology, 2002.
Find full textJ, Twining Carole, and Taylor Chris J, eds. Statistical models of shape: Optimisation and evaluation. London: Springer, 2008.
Find full textSAS World Conference (6th 1989 Gournay-sur-Marne, France). FEMCAD-89, structural analysis and optimization: Proceedings of the Sixth SAS-World Conference = FEMCAD-89, calcul et optimisation des structures. Edited by Liebowitz Harold 1924-, Davies Glyn A. O, and IITT-International. Gournay-sur-Marne, France: IITT International, 1989.
Find full textP, Kamat Manohar, ed. Structural optimization: Status and promise. Washington, DC: American Institute of Aeronautics and Astronautics, 1993.
Find full textSáez, Doris. Optimisation of Industrial Processes at Supervisory Level: Application to Control of Thermal Power Plants. London: Springer London, 2002.
Find full textAdeli, Hojjat. Cost optimization of structures: Fuzzy logic, genetic algorithms, and parallel computing. Chichester, England: Wiley, 2006.
Find full textBook chapters on the topic "Structural Optimisation"
Jose, Anitta, Rajesh P. Nair, B. Sanoob, and Jose Paul. "Structural Optimisation of Helideck Structure Using FEM." In Lecture Notes in Civil Engineering, 505–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26365-2_47.
Full textWellen, Heinrich, and Peter Bartholomew. "Structural Optimisation in Aircraft Construction." In Computer Aided Optimal Design: Structural and Mechanical Systems, 955–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83051-8_29.
Full textJones, R., P. Chaperon, and J. P. G. Sawyer. "Structural Optimisation With Damage Tolerance Constraints." In Ageing Studies and Lifetime Extension of Materials, 601–8. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1215-8_66.
Full textMorris, A. J. "Potential of AI Methods in Optimisation." In Computer Aided Optimal Design: Structural and Mechanical Systems, 1026. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83051-8_37.
Full textLecina, G. "Design Process with Optimisation Present State." In Computer Aided Optimal Design: Structural and Mechanical Systems, 1027–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83051-8_38.
Full textQuerin, O. M., G. P. Steven, and Y. M. Xie. "Advances in Evolutionary Structural Optimisation: 1992-2000." In Topology Optimization of Structures and Composite Continua, 227–36. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0910-2_16.
Full textJalili, Shahin. "Application of Cultural Algorithms to Structural Optimisation." In Engineering Optimization: Methods and Applications, 235–55. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4633-2_9.
Full textBallo, Federico Maria, Massimiliano Gobbi, Giampiero Mastinu, and Giorgio Previati. "Structural Optimisation in Road Vehicle Components Design." In Optimal Lightweight Construction Principles, 233–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60835-4_13.
Full textJoseph, Amrutha, and P. E. Kavitha. "Structural Optimisation of Hyperbolic Paraboloid Shell Foundation." In Lecture Notes in Civil Engineering, 395–403. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80312-4_35.
Full textMunk, David J., Gareth A. Vio, Grant P. Steven, and Timoleon Kipouros. "Producing Smart Pareto Sets for Multi-objective Topology Optimisation Problems." In Advances in Structural and Multidisciplinary Optimization, 145–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67988-4_10.
Full textConference papers on the topic "Structural Optimisation"
Costa, R., and S. Pinho. "Structural Optimisation for Damage Tolerance." In VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.110.
Full text"Topology Optimisation for High Frequency Vibration Energy Harvesting." In Structural Health Monitoring. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901311-2.
Full textBALLISAT, ALEXANDER, PAUL WILCOX, and ANTHONY CROXFORD. "Model Based Optimisation of Ultrasonic Corrosion Measurement." In Structural Health Monitoring 2019. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/shm2019/32205.
Full textCoenders, Jeroen, and Hamish Pearse-Danker. "Integration of manufacturability in structural optimisation." In IABSE Symposium, Weimar 2007: Improving Infrastructure Worldwide. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2007. http://dx.doi.org/10.2749/222137807796120210.
Full textBARTHOLOMEW, P. "A New Approach to the Optimisation of Structures Subject to Frequency Constraints." In 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1092.
Full textWang, Lina, A. Williams, and Raul Llamas. "Aircraft wing structural optimisation with manufacturing considerations." In 8th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-4842.
Full textHouda, Maryam, and Dagmar Reinhardt. "Structural Optimisation for 3D Printing Bespoke Geometries." In CAADRIA 2018: Learning, Prototyping and Adapting. CAADRIA, 2018. http://dx.doi.org/10.52842/conf.caadria.2018.1.235.
Full textHouda, Maryam, and Dagmar Reinhardt. "Structural Optimisation for 3D Printing Bespoke Geometries." In CAADRIA 2018: Learning, Prototyping and Adapting. CAADRIA, 2018. http://dx.doi.org/10.52842/conf.caadria.2018.1.235.
Full textRUFAI, OLUBUKOLA, MAYANK GAUTAM, PRASAD POTLURI, and MATTHIEU GRESIL. "Optimisation of Optical Fibres for Structural Health Monitoring Through Micro-braiding." In Structural Health Monitoring 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/shm2017/13937.
Full textMira, L. Alegria, N. De Temmerman, and C. Preisinger. "Structural optimisation of deployable scissor structures using new computational methods." In HPSM2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/hpsm120421.
Full text