Academic literature on the topic 'Structural New South Wales'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural New South Wales.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Structural New South Wales"

1

Branagan, D. F., and H. Pedram. "The Lapstone structural complex, New South Wales." Australian Journal of Earth Sciences 37, no. 1 (March 1990): 23–36. http://dx.doi.org/10.1080/08120099008727902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stubley, M. P. "Structural analysis of the Mystery Bay area, New South Wales." Australian Journal of Earth Sciences 36, no. 4 (December 1989): 479–93. http://dx.doi.org/10.1080/08120098908729505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maxwell, Ken. "Preservation of Historic Bridges in New South Wales, Australia." Structural Engineering International 13, no. 2 (May 2003): 133–36. http://dx.doi.org/10.2749/101686603777964829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fergusson, C. L., A. Bray, and P. Hatherly. "Cenozoic Development of the Lapstone Structural Complex, Sydney Basin, New South Wales." Australian Journal of Earth Sciences 58, no. 1 (February 2011): 49–59. http://dx.doi.org/10.1080/08120099.2011.534505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hart, Barbara F., and Janet Chaseling. "Optimizing Landfill Ground Water Analytes-New South Wales, Australia." Groundwater Monitoring & Remediation 23, no. 2 (May 2003): 111–18. http://dx.doi.org/10.1111/j.1745-6592.2003.tb00677.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faiz, M. M., and A. C. Hutton. "COAL SEAM GAS IN THE SOUTHERN SYDNEY BASIN, NEW SOUTH WALES." APPEA Journal 37, no. 1 (1997): 415. http://dx.doi.org/10.1071/aj96025.

Full text
Abstract:
The coal seam gas content of the Late Permian Illawarra Coal Measures ranges from Methane that occurs within the basin was mainly derived as a by-product of coalification. Most of the CO2 was derived from intermittent magmatic activity between the Triassic and the Tertiary. This gas has subsequently migrated, mainly in solution, towards structural highs and accumulated in anticlines and near sealed faults.The total desorbable gas content of the coal seams is mainly related to depth, gas composition and geological structure. At depths
APA, Harvard, Vancouver, ISO, and other styles
7

Rickard, M. J., K. G. McQueen, and P. Hayden. "Structural controls on the Cowarra gold deposit near Bredbo, southeastern New South Wales." Australian Journal of Earth Sciences 43, no. 2 (April 1996): 201–15. http://dx.doi.org/10.1080/08120099608728248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moore, John C., and Rex Glencross-Grant. "Characterising native hardwood timber bridges in New South Wales, Australia." Proceedings of the Institution of Civil Engineers - Construction Materials 171, no. 6 (December 2018): 246–56. http://dx.doi.org/10.1680/jcoma.17.00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ties, P., R. D. Shaw, and G. C. Geary. "THE PETROLEUM PROSPECTIVITY OF THE CLARENCE-MORETON BASIN IN NEW SOUTH WALES." APPEA Journal 25, no. 1 (1985): 15. http://dx.doi.org/10.1071/aj84002.

Full text
Abstract:
The Clarence-Moreton Basin covers an area of some 28 000 km2 in north-eastern New South Wales and south-eastern Queensland. The basin is relatively unexplored, with a well density in New South Wales of one per 1600 km2. Since 1980, Endeavour Resources and its co-venturers have pursued an active exploration programme which has resulted in the recognition of significant petroleum potential in the New South Wales portion of the basin.Previous studies indicated that the Upper Triassic to Lower Cretaceous Clarence-Moreton Basin sequence in general, lacked suitable reservoirs and had poor source- rock potential. While exinite rich, oil-prone source rocks were recognised in the Middle Jurassic Walloon Coal Measures, they were considered immature for oil generation. Moreover, during the 1960's the basin acquired a reputation as an area where seismic records were of poor quality.These ideas are now challenged following the results of a new round of exploration which commenced in the New South Wales portion of the basin in 1980. This exploration has involved the acquisition of over 1000 km of multifold seismic data, the reprocessing of some 200 km of existing single fold data, and the drilling of one wildcat well. Over twenty large structural leads have been identified, involving trapping mechanisms ranging from simple drape to antithetic and synthetic fault blocks associated with normal and reverse fault dependent and independent closures.The primary exploration targets in the Clarence- Moreton Basin sequence are Lower Jurassic sediments comprising a thick, porous and permeable sandstone unit in the Bundamba Group, and channel and point-bar sands in the Marburg Formation. Source rocks in these and the underlying Triassic coal measures are gas-prone and lie at maturity levels compatible with gas generation. In contrast, it was established from the results of Shannon 1 that the Walloon Coal Measures are mature for oil generation and this maturity regime is now considered to be applicable to most of the basin in New South Wales.A consideration of reservoir and source rock distribution, together with structural trends across the basin in Petroleum Exploration Licences 258 and 259, has led to the identification of three prospective fairways, two of which involve shallow oil plays. Exploration of these fairways is currently the focus of an ongoing programme of further seismic data acquisition and drilling.
APA, Harvard, Vancouver, ISO, and other styles
10

Bartlett, Mark, Deborah Hatcher, and Amanda Johnson. "Total quality management in accredited New South Wales hospitals: A public/private comparison." Australian Health Review 20, no. 4 (1997): 49. http://dx.doi.org/10.1071/ah970049.

Full text
Abstract:
Analysis of data collected in a 1994?95 survey of accredited New South Waleshospitals examined the adoption of key elements of total quality management practicein the public and private sectors. In a number of areas of practice widely consideredto be central to a hospital?s total quality management efforts, there was no statisticallysignificant difference between the two sectors. Where differences existed, total qualitymanagement practices more likely to be adopted by public hospitals were limited intheir scope and likely to be explained by structural peculiarities. In contrast, privatehospitals were more likely to adopt practices more critical to the successfulimplementation of total quality management.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Structural New South Wales"

1

Scott, Justin Robert. "Fractal and multifractal fault simulation : application using soft data and analogues at Wyong, New South Wales, Australia /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19562.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roach, Ian C., and n/a. "The setting, structural control, geochemistry and mantle source of the Monaro Volcanic Province, southeastern New South Wales." University of Canberra. Applied Science, 1999. http://erl.canberra.edu.au./public/adt-AUC20061107.131113.

Full text
Abstract:
The Monaro Volcanic Province (MVP) is an Oligocene-Eocene intraplate basaltic lava field situated in the Southern Highlands of New South Wales between the towns of Cooma and Bombala. The lava pile of the MVP consists of basal sub-alkali rocks (olivine tholeiite, transitional basalt) capped by a number of thick ankaramite lavas, above which lie less numerous alkali rocks including alkali olivine basalt, nepheline basanite and olivine nephelinite. Intercalated with the lava flows are massive and matrix-supported alkali and ankaramitic hyaloclastites, alkali pillow basalts, rare tuffs, bauxitic weathering profiles, lacustrine sediments and reworked late Cretaceous to early Tertiary river gravels. The lava pile is intruded through by numerous volcanic plugs and dykes and rare maars. Volcanic centres are principally concentrated in two NW-SE trending zones parallel to major crustal-scale fractures in the Palaeozoic basement. Centres almost always lie over the intersections of two or more conjugate strike-slip or transverse fractures. The stratigraphy, whole-rock geochemistry and Sr and Nd isotopic signatures of rocks from the MVP indicate magma-genesis initially from an asthenospheric source with EM1 characteristics, gradually becoming more lithospheric with DM source characteristics. The long-lived nature of the MVP rules out a mantle plume-type source for magmas. Instead, a diapiric source is envisaged. The MVP mantle xenolith suite appears to have equilibrated at slightly higher temperatures for given pressures than the Newer Volcanics Province suite suggesting the palaeogeotherm for the MVP was slightly hotter than the "South East Australian" geotherm. Large amounts of amphibole (pargasitic hornblende, pargasite, ferroan pargasite and kaersutite) occuring within the more silica-undersaturated rocks of the MVP, and rarely within Iherzolitic xenoliths, are interpreted to have formed as selvages on mantle veins in contact with peridotite beneath the MVP. Amphiboles were later sampled by magmas rising through the same conduits and were brought to the surface. MVP ankaramite lavas feature < 2cm clinopyroxene porphyrocrysts, the cores of which are shown to have crystallised at ca. 18 kb pressure or ca. 54 km depth. This defines the base of the local crust within the MVP region. Data from the MVP support a landscape evolution model based on the isostatic rise of the Southern Highlands due to voluminous magmatic underplating since the Cretaceous. Data further support limited denudation since the Early Tertiary based on a pulsatory but high palaeogeotherm.
APA, Harvard, Vancouver, ISO, and other styles
3

Henry, Amber Dawn. "Fracture reactivation and gold mineralization in the epithermal environment : structural evolution of the Endeavour 42 gold deposit, New South Wales, Australia." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1192.

Full text
Abstract:
The development of an open pit mine at the Endeavour 42 (E42) epithermal gold deposit, situated in the Junee-Narromine Volcanic Belt of the Ordovician Macquarie Arc, central New South Wales, has provided a 3D view of the structurally controlled deposit which was hitherto not available due to the paucity of outcrop in the region. Outcropping geological relationships present a complicated history of overprinting structural deformation and vein events, including the spatial characterization of the gold-mineralizing system. Host rocks consisting of interbedded sedimentary and resedimented volcaniclastic facies, trachyandesite and porphyritic andesite lavas and intrusions (coherent and autoclastic facies), intruded by a large diorite sill, were initially tilted and faulted, followed by the emplacement of multiple dyke phases along faults. Economic gold mineralization at E42 is restricted to faults, fault-hosted breccias, and veins, and was deposited over a period spanning two distinct structural regimes. Early gold-bearing veins are steeply dipping and interpreted as forming coevally along two sets of faults and dykes within a tensional stress regime. High grade fault-hosted, hydrothermally cemented breccia intervals are included temporally with early gold-bearing veins based on comparable mineralogy and steep, fault parallel orientations. Crosscutting the early steep gold-bearing vein sets are two populations of coeval inclined gold-bearing veins, dipping moderately to the southwest and northwest, respectively, which formed in a compressional stress regime with tension directed subvertically. The E42 epithermal deposit likely developed in the period of overall crustal extension, ca. 443-433 Ma, following Phase 1 of the Late Ordovician – Early Silurian Benambran Orogeny. The generation of permeability, styles of fracture propagation, and the reactivation of pre-existing planes of weakness in the rock package are key factors in the development and current geometry of the E42 gold deposit. High grade veins and faults are commonly flanked by sericite-quartz ± carbonate alteration haloes, which exhibit consistent geochemical patterns for metals and pathfinder elements, both laterally away from structures, and vertically within the deposit. Au, Ag, As, Hg, Sb, Tl, Cu, Pb, and Zn, all display increasing concentrations towards high-grade structures, as well as higher up in the epithermal system, with varying dispersion haloes.
APA, Harvard, Vancouver, ISO, and other styles
4

Kivunja, Charles. "The structural and cultural dynamics of a multi-campus college : a case study inquiry of four multi-campus colleges in New South Wales /." View Thesis, 2006. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20060629.093746/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robinson, Geoffrey 1963. "How Labor governed : social structures and the formation of public policy during the New South Wales Lang government of November 1930 to May 1932." Monash University, Dept. of History, 2001. http://arrow.monash.edu.au/hdl/1959.1/9164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sims, Neil C., and n/a. "The landscape-scale structure and functioning of floodplains." University of Canberra. Resource, Environmental & Heritage Sciences, 2004. http://erl.canberra.edu.au./public/adt-AUC20050706.095439.

Full text
Abstract:
Floodplains are amongst the most productive and biodiverse ecosystems. The structure and functioning of floodplains is controlled by the interaction of intermittent inundation with the floodplain landscape. These interactions create highly complex and dynamic ecosystems that are difficult to study at large scales. Consequently, most research of floodplains has been conducted at small spatial and temporal scales. Inundation of floodplains can extend over many square kilometres, however, which unifies the floodplain landscape into an integrated ecosystem operating at the landscape scale. The lack of data and poor understanding of the landscape-scale structure and functioning of floodplains limits the possibility of managing floodplains sustainably as pressure for exploitation of their resources increases. This thesis quantifies the landscape-scale relationship between the frequency and patterns of inundation, the composition and structure of the landscape, and the functioning of the floodplain landscape in terms of the distribution and dynamics of plant growth vigour over an area of approximately 376,000 ha on the Lower Balonne Floodplain; highly biodiverse, semi-arid floodplain ecosystem that straddles the state border between New South Wales and Queensland approximately 500 km inland from the eastern coast of Australia. Mean annual rainfall at St.George, to the north of the study area, is approximately 400�450 mm per year, and median annual evaporation is approximately 2000 mm per year. Plants and animals on the floodplain are therefore heavily dependent upon flooding for survival. This project is based on the analysis of 13 Landsat Thematic Mapper satellite images captured over a 10-year period during which land and water resource development increased substantially. There is now concern that development activities have affected the functioning of the floodplain to the detriment of the natural environment and agricultural productivity. The impacts from these activities on the functioning of the floodplain are not yet known, however. Inundation of the Lower Balonne Floodplain was mapped using a two-part process involving a band ratio to identify deep clear water, and a change detection analysis to identify areas of shallower inundation. This analysis shows that, in contrast with most floodplains, the main flowpath of the Lower Balonne Floodplain runs along its central axis away from river channels, which flow along the floodplain�s outer edges. Inundation propagates from the centre of the floodplain out towards river channels as flood discharge volumes increase. Variations in the spatial pattern of inundated patches within the inundated extent create distinctive aquatic habitat and connectivity conditions at different flow levels. These can be described in terms of three connectivity phases: (I) Disconnected, in which isolated patches of inundation occur at low flows and river channels are hydrologically dislocated from the floodplain; (II) Interaction, where increased hydrological connectivity between inundated patches, and between the floodplain and the river channels at moderate flows, may enable significant exchange of materials, organisms and energy; and (III) Integration, in which almost the entire floodplain landscape is connected by open water during large magnitude floods. There is an abrupt transition in inundation patterns as flows increase between 60,000 ML day-1 and 65,000 ML day-1 (ARI 2 to 2.3 years) in which inundation patterns transform from being relatively disconnected into a highly integrated network of patches. These patterns may have significant consequences for the structure and functioning of the floodplain. Increases in flows across this small range may therefore mark an important ecological flow threshold on this system. Water resource development impacts have changed the relative frequency of flows on the Lower Balonne Floodplain, which will probably affect the sequence of connectivity phases over time. The most likely impact of these changes will be to create a floodplain that is drier overall than under natural flow conditions, and that has a smaller and wetter area of high inundation frequency. The relationship between inundation and the structure of the floodplain landscape was examined by comparing a landcover map showing the distribution and character of 10 landcover types to the inundation frequency maps. Landcover types were mapped from a multi-date Reference Image composite of seven images captured over a period of 10 years. The Reference Image improves landcover discrimination by at least 14% over classification of a single-date image, and has an overall accuracy between 82.5% and 85% at the landscape-scale. The Reference Image shows that the landscape of the Lower Balonne Floodplain is a highly fragmented mosaic of diverse landcover types distributed in association with inundation frequency. Stratifying the floodplain into zones of frequent and rare inundation shows that frequently inundated areas have a less fragmented but less diverse landscape structure than rarely inundated areas. Assessment of the functioning of each landcover types within the floodplain ecosystem, based on landscape pattern metric analysis, indicates that the function of landcover types also changes between inundation frequency zones. Most importantly, these changes include a transformation of the matrix landcover type, which controls the character and dynamics of the ecosystem overall, from Open Grassland to Coolibah Open Woodland in the frequently inundated zone. The landscape structure of the Lower Balonne Floodplain has been affected by development impacts, which include clearing of native vegetation, isolation of parts of the floodplain from natural inundation events by the construction of levee banks and drainage channels, and grazing impacts. Changes to the inundation regime may also affect the structure of the floodplain landscape. Over the long term, these changes are likely to create a larger area of Open Grassland and a smaller area of Coolibah Open Woodland as the zone of frequent inundation becomes smaller and wetter. To examine the functioning of the floodplain ecosystem, the inundation maps were compared to remotely sensed indexes of plant growth vigour at the landscape and landcover-type scales. The dynamics of plant growth vigour over time are influenced by factors operating at the regional, landscape and patch scales. Evaporation is the major control of growth vigour levels at the landscape scale, but each landcover type has a distinctive pattern of growth vigour dynamics that is related to its composition and location, and possibly its landscape structure. The association between the spatial distribution of plant growth vigour and inundation frequency is non-linear, with the highest growth vigour occurring where inundation occurs approximately once per year. This indicates a subsidy-stress interaction with water in which plant growth vigour is limited by soil anoxia in areas of frequent or long term inundation, and by drought stress in rarely inundated areas. A landscape-scale model of growth vigour dynamics, founded on the principles of Hierarchical Patch Dynamics and Landscape Ecology, was created from growth vigour measurements of each landcover type over time. This model was used to examine possible impacts of development activities on the functioning of the floodplain ecosystem. This model shows that the response of plant growth vigour development activities can be complex and subtle, and include a change in mean long-term growth vigour and an increased susceptibility to drought. The model also indicates that periods of high growth vigour can occur in substantially altered floodplain ecosystems. The model was also used to explore the levels of landcover change that might cause a threshold change in the functioning of the ecosystem, which may substantially alter the disturbance-response characteristics of the floodplain ecosystem. The model indicates a threshold change when the extent of Open Grassland is reduced by 30% of its extent in 1993, in which plant growth vigour response to disturbance is virtually inverted from that observed in the images. The temporal variability of plant growth vigour levels increases as the extent of Open Grassland is further reduced. This thesis makes a number of important contributions to our understanding of floodplain structure and functioning. It includes the development of new techniques suited to studying large diverse and complex landscapes at the landscape scale from satellite images, and provides quantitative data describing the links between the structure of floodplain landscapes and their functioning at the landscape scale. This work improves the understanding of floodplain ecosystems by integrating models of floodplain structure and functioning, which have been developed largely from smaller-scale studies of temperate and tropical floodplains, with landscape-scale measurements of this semi-arid system. This thesis also has implications for the Lower Balonne Floodplain by improving the level of information about this important ecosystem and providing baseline data against which the condition of the floodplain can be assessed in future.
APA, Harvard, Vancouver, ISO, and other styles
7

Washburn, Malissa. "Architecture of the Silurian sedimentary cover sequence in the Cadia porphyry Au-Cu district, NSW, Australia : implications for post-mineral deformation." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1064.

Full text
Abstract:
Alkalic porphyry style Au-Cu deposits of the Cadia district are associated with Late-Ordovician monzonite intrusions, which were emplaced during the final phase of Macquarie Arc magmatism at the end of the Benambran Orogeny. N-striking faults, including the curviplanar, northerly striking, moderately west-dipping basement thrust faults of the Cadiangullong system, developed early in the district history. NE-striking faults formed during rifting in the late Silurian. Subsequent E-W directed Siluro- Devonian extension followed by regional E-W shortening during the Devonian Tabberabberan Orogeny dismembered these intrusions, thereby superposing different levels porphyry Au-Cu systems as well as the host stratigraphy. During the late Silurian, the partially exhumed porphyry systems were buried beneath the Waugoola Group sedimentary cover sequence, which is generally preserved in the footwall of the Cadiangullong thrust fault system. The Waugoola Group is a typical rift-sag sequence, deposited initially in local fault-bounded basins which then transitioned to a gradually shallowing marine environment as local topography was overwhelmed. Basin geometry was controlled by pre-existing basement structures, which were subsequently inverted during the Devonian Tabberabberan Orogeny, offsetting the unconformity by up to 300m vertically. In the Waugoola Group cover, this shortening was accommodated via a complex network of minor detachments that strike parallel to major underlying basement faults. For this reason, faults and folds measured at the surface in the sedimentary cover can be used as a predictive tool to infer basement structures at depth.
APA, Harvard, Vancouver, ISO, and other styles
8

Cooper, Davis Pamela, and n/a. "Exploration of the Structure-of-Intellect - Learning Abilities Test in the context of learning difficulties in a rural area of NSW." University of Canberra. Education, 1992. http://erl.canberra.edu.au./public/adt-AUC20060704.123527.

Full text
Abstract:
The Structure-of-Intellect - Learning Abilities Test (SOI-LA) (Meeker, 1975) has an enthusiastic following in the USA, but is little-known in Australia. It is based on the Structure-of-Intellect model of J P Guilford, and through a series of up to 26 subtests, purports to identify 14 general learning abilities. Forms are designed to cater for students from Kindergarten to adult. In NSW, classroom teachers can have support for students with learning difficulties through the Support Teacher program; this support often falls far short of need, as there is a paucity of time and material resources. There is a need for a tool which can identify areas of both strength and weakness efficiently and suggest effective strategies to cater for the identified weaknesses; the Meeker paradigm is purported to address this need with a diagnostic approach which identifies learning disabilities which underlie and serve to maintain school-based learning difficulties, and prescribes materials and approaches for remediation. This study explores the first part of the Meeker paradigm, the diagnostic approach of the Structure-of-Intellect - Learning Abilities Test. This exploration is undertaken in the context of four rural Support Teachers and their student with learning difficulties from Grades 2-6. Rather than consider questions of the Test's validity, this study was designed to explore the Test's utility in the Support Teacher context, by giving the Support Teachers a working knowledge of the concepts of SOI-LA, and to compare the application of their knowledge with the information about their students' learning disabilities from the Test results. Problems are evident with the Support Teachers' knowledge and understanding of their students' disabilities; whist they felt comfortable about the approach which the Test takes, they felt they did not know their students well enough to make informed judgements about their disabilities. It was apparent from the study that the Support Teachers' understanding of the concepts of the Test was comparatively superficial, despite their impression that they did understand well. Several difficulties with the instrument itself are highlighted by this study; the assumptions underlying the derivation of the general ability scores are questioned, and the suitability of Test Forms for a learning disabled population of this age is open to criticism. The Structure-of-Intellect - Learning Abilities Test may have utility as an instrument for gaining information about a student's disability on an individual basis, and may be best in the hands of the School Counsellor.
APA, Harvard, Vancouver, ISO, and other styles
9

Rowling, Jill. "Cave Aragonites of New South Wales." University of Sydney. Geosciences, 2004. http://hdl.handle.net/2123/694.

Full text
Abstract:
Abstract Aragonite is a minor secondary mineral in many limestone caves throughout the world. It has been claimed that it is the second-most common cave mineral after calcite (Hill & Forti 1997). Aragonite occurs as a secondary mineral in the vadose zone of some caves in New South Wales. Aragonite is unstable in fresh water and usually reverts to calcite, but it is actively depositing in some NSW caves. A review of current literature on the cave aragonite problem showed that chemical inhibitors to calcite deposition assist in the precipitation of calcium carbonate as aragonite instead of calcite. Chemical inhibitors work by physically blocking the positions on the calcite crystal lattice which would have otherwise allowed calcite to develop into a larger crystal. Often an inhibitor for calcite has no effect on the aragonite crystal lattice, thus aragonite may deposit where calcite deposition is inhibited. Another association with aragonite in some NSW caves appears to be high evaporation rates allowing calcite, aragonite and vaterite to deposit. Vaterite is another unstable polymorph of calcium carbonate, which reverts to aragonite and calcite over time. Vaterite, aragonite and calcite were found together in cave sediments in areas with low humidity in Wollondilly Cave, Wombeyan. Several factors were found to be associated with the deposition of aragonite instead of calcite speleothems in NSW caves. They included the presence of ferroan dolomite, calcite-inhibitors (in particular ions of magnesium, manganese, phosphate, sulfate and heavy metals), and both air movement and humidity. Aragonite deposits in several NSW caves were examined to determine whether the material is or is not aragonite. Substrates to the aragonite were examined, as was the nature of the bedrock. The work concentrated on Contact Cave and Wiburds Lake Cave at Jenolan, Sigma Cave, Wollondilly Cave and Cow Pit at Wombeyan and Piano Cave and Deep Hole (Cave) at Walli. Comparisons are made with other caves. The study sites are all located in Palaeozoic rocks within the Lachlan Fold Belt tectonic region. Two of the sites, Jenolan and Wombeyan, are close to the western edge of the Sydney Basin. The third site, Walli, is close to a warm spring. The physical, climatic, chemical and mineralogical influences on calcium carbonate deposition in the caves were investigated. Where cave maps were unavailable, they were prepared on site as part of the study. %At Jenolan Caves, Contact Cave and Wiburds Lake Cave were examined in detail, %and other sites were compared with these. Contact Cave is located near the eastern boundary of the Late Silurian Jenolan Caves Limestone, in an area of steeply bedded and partially dolomitised limestone very close to its eastern boundary with the Jenolan volcanics. Aragonite in Contact Cave is precipitated on the ceiling as anthodites, helictites and coatings. The substrate for the aragonite is porous, altered, dolomitised limestone which is wedged apart by aragonite crystals. Aragonite deposition in Contact Cave is associated with a concentration of calcite-inhibiting ions, mainly minerals containing ions of magnesium, manganese and to a lesser extent, phosphates. Aragonite, dolomite and rhodochrosite are being actively deposited where these minerals are present. Calcite is being deposited where minerals containing magnesium ions are not present. The inhibitors appear to be mobilised by fresh water entering the cave as seepage along the steep bedding and jointing. During winter, cold dry air pooling in the lower part of the cave may concentrate minerals by evaporation and is most likely associated with the ``popcorn line'' seen in the cave. Wiburds Lake Cave is located near the western boundary of the Jenolan Caves Limestone, very close to its faulted western boundary with Ordovician cherts. Aragonite at Wiburds Lake Cave is associated with weathered pyritic dolomitised limestone, an altered, dolomitised mafic dyke in a fault shear zone, and also with bat guano minerals. Aragonite speleothems include a spathite, cavity fills, vughs, surface coatings and anthodites. Calcite occurs in small quantities at the aragonite sites. Calcite-inhibitors associated with aragonite include ions of magnesium, manganese and sulfate. Phosphate is significant in some areas. Low humidity is significant in two areas. Other sites briefly examined at Jenolan include Glass Cave, Mammoth Cave, Spider Cave and the show caves. Aragonite in Glass Cave may be associated with both weathering of dolomitised limestone (resulting in anthodites) and with bat guano (resulting in small cryptic forms). Aragonite in the show caves, and possibly in Mammoth and Spider Cave is associated with weathering of pyritic dolomitised limestone. Wombeyan Caves are developed in saccharoidal marble, metamorphosed Silurian Wombeyan Caves Limestone. Three sites were examined in detail at Wombeyan Caves: Sigma Cave, Wollondilly Cave and Cow Pit (a steep sided doline with a dark zone). Sigma Cave is close to the south east boundary of the Wombeyan marble, close to its unconformable boundary with effusive hypersthene porphyry and intrusive gabbro, and contains some unmarmorised limestone. Aragonite occurs mainly in a canyon at the southern extremity of the cave and in some other sites. In Sigma Cave, aragonite deposition is mainly associated with minerals containing calcite-inhibitors, as well as some air movement in the cave. Calcite-inhibitors at Sigma Cave include ions of magnesium, manganese, sulfate and phosphate (possibly bat origin), partly from bedrock veins and partly from breakdown of minerals in sediments sourced from mafic igneous rocks. Substrates to aragonite speleothems include corroded speleothem, bedrock, ochres, mud and clastics. There is air movement at times in the canyon, it has higher levels of CO2 than other parts of the cave and humidity is high. Air movement may assist in the rapid exchange of CO2 at speleothem surfaces. Wollondilly Cave is located in the eastern part of the Wombeyan marble. At Wollondilly Cave, anthodites and helictites were seen in an inaccessible area of the cave. Paramorphs of calcite after aragonite were found at Jacobs Ladder and the Pantheon. Aragonite at Star Chamber is associated with huntite and hydromagnesite. In The Loft, speleothem corrosion is characteristic of bat guano deposits. Aragonite, vaterite and calcite were detected in surface coatings in this area. Air movement between the two entrances of this cave has a drying effect which may serve to concentrate minerals by evaporation in some parts of the cave. The presence of vaterite and aragonite in fluffy coatings infers that vaterite may be inverting to aragonite. Calcite-inhibitors in the sediments include ions of phosphate, sulphate, magnesium and manganese. Cave sediment includes material sourced from detrital mafic rocks. Cow Pit is located near Wollondilly Cave, and cave W43 is located near the northern boundary of the Wombeyan marble. At Cow Pit, paramorphs of calcite after aragonite occur in the walls as spheroids with minor huntite. Aragonite is a minor mineral in white wall coatings and red phosphatic sediments with minor hydromagnesite and huntite. At cave W43, aragonite was detected in the base of a coralloid speleothem. Paramorphs of calcite after aragonite were observed in the same speleothem. Dolomite in the bedrock may be a source of magnesium-rich minerals at cave W43. Walli Caves are developed in the massive Belubula Limestone of the Ordovician Cliefden Caves Limestone Subgroup (Barrajin Group). At the caves, the limestone is steeply bedded and contains chert nodules with dolomite inclusions. Gypsum and barite occur in veins in the limestone. At Walli Caves, Piano Cave and Deep Hole (Deep Cave) were examined for aragonite. Gypsum occurs both as a surface coating and as fine selenite needles on chert nodules in areas with low humidity in the caves. Aragonite at Walli caves was associated with vein minerals and coatings containing calcite-inhibitors and, in some areas, low humidity. Calcite-inhibitors include sulfate (mostly as gypsum), magnesium, manganese and barium. Other caves which contain aragonite are mentioned. Although these were not major study sites, sufficient information is available on them to make a preliminary assessment as to why they may contain aragonite. These other caves include Flying Fortress Cave and the B4-5 Extension at Bungonia near Goulburn, and Wyanbene Cave south of Braidwood. Aragonite deposition at Bungonia has some similarities with that at Jenolan in that dolomitisation of the bedrock has occurred, and the bedding or jointing is steep allowing seepage of water into the cave, with possible oxidation of pyrite. Aragonite is also associated with a mafic dyke. Wyanbene cave features some bedrock dolomitisation, and also features low grade ore bodies which include several known calcite-inhibitors. Aragonite appears to be associated with both features. Finally, brief notes are made of aragonite-like speleothems at Colong Caves (between Jenolan and Wombeyan), a cave at Jaunter (west of Jenolan) and Wellington (240\,km NW of Sydney).
APA, Harvard, Vancouver, ISO, and other styles
10

Keogh, Andrew James, of Western Sydney Hawkesbury University, Faculty of Science and Technology, and School of Applied and Environmental Sciences. "Systems management of Glenbrook Lagoon, New South Wales." THESIS_FST_AES_Keogh_A.xml, 1996. http://handle.uws.edu.au:8081/1959.7/423.

Full text
Abstract:
Glenbrook Lagoon, an 8 hectare lake receiving rainfall runoff from a residential catchment, is experiencing nutrient enrichment problems expressed as excessive aquatic plant presence. This study aims to assess the relative nutrient contribution of the total system compartments, including catchment loading, water column, aquatic plants and surface sediment. This information is utilised in the formulation of management strategies which may produce a sustainable nutrient reduction and general improvement in the system. The total nutrient content of the aquatic system was determined to be high in comparison with the present nutrient loading from the catchment. The ideal management case considers nutrient reduction of the surface sediment compartment firstly, followed by the aquatic plant community, with the water column and catchment influence as relatively low priority compartments. Various strategies for managing these are proposed. The total system benefits of the ideal management case are reductions in nutrients, aquatic plant biovolume and suspended solid loading. Unavoidable constraints placed upon the ideal management case include the excessive aquatic plant presence restricting accessability to the surface sediment for dredging. The resulting best management case requires aquatic plant eradication prior to sediment management, with the total system benefits associated with the ideal management case being retained.
Master of Science (Hons)
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Structural New South Wales"

1

Australasian Conference on the Mechanics of Structures and Materials (16th 1999 Sydney, N.S.W.). Mechanics of structures and materials: Proceedings of the 16th Australasian Conference on the Mechanics of Structures and Materials, Sydney, New South Wales, Australia, 8-10 December 1999. Rotterdam: A.A. Balkema, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1953-, Griffith Gareth, and New South Wales Parliament, eds. Decision and deliberation: The parliament of New South Wales 1856-2003. Sydney: Federation Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Library Council of New South Wales., ed. A source of inspiration & delight: The buildings of the State Library of New South Wales since 1826. Sydney: Library Council of New South Wales, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Colwell, James B. Rig seismic research cruise 13: Structure and stratigraphy of the northeast Gippsland Basin and southern New South Wales margin : initial report. Canberra: Australian Govt. Pub. Service, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Colwell, James B. Rig seismic research cruise 13: Structure and stratigraphy of the northeast Gippsland Basin and southern New South Wales margin : initial report. Canberra: Australian Government Publishing Service, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ryan, Ver Bermoes, ed. New South Wales. 4th ed. Footscray, Vic: Lonely Planet, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

New South Wales: The New South Wales Additional Instructions 1986. London: HMSO, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sue, Kendrick, ed. The Shoalhaven: South Coast, New South Wales. Nowra, N.S.W: Lightstorm Pub., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Britts, M. G. Traffic law (New South Wales). Sydney: Lawbook Co., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holmes, G. G. Diatomite in New South Wales. [Sydney]: Dept. of Minerals and Energy, Geological Survey of New South Wales, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Structural New South Wales"

1

Thom, Bruce. "New South Wales." In Encyclopedia of the World's Coastal Landforms, 1229–38. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-1-4020-8639-7_225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Plowman, David, and Keri Spooner. "Unions in New South Wales." In Australian Unions, 104–21. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-11088-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laidlaw, Ronald W. "New South Wales 1821–51." In Mastering Australian History, 96–120. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09168-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wallace, Valerie. "Republicanism in New South Wales." In Scottish Presbyterianism and Settler Colonial Politics, 219–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70467-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frahm, Michael. "Australia: Ombudsman New South Wales." In Australasia and Pacific Ombudsman Institutions, 117–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33896-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chapman, D. M. "Australia--New South Wales and Queensland." In The GeoJournal Library, 415–22. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2999-9_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bird, Eric. "Lord Howe Island – (New South Wales)." In Encyclopedia of the World's Coastal Landforms, 1239–46. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-1-4020-8639-7_226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tyler, Michael J. "Frogs of western New South Wales." In Future of the Fauna of Western New South Wales, 155–60. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1994. http://dx.doi.org/10.7882/rzsnsw.1994.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ryan, Roberta, and Joseph Drew. "Performance Monitoring in New South Wales Australia." In Performance-Based Budgeting in the Public Sector, 61–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02077-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gramiccia, Gabriele. "With the alpacas to New South Wales." In The Life of Charles Ledger (1818–1905), 69–119. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09949-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Structural New South Wales"

1

Ancich, Eric, Maria Rashidi, Peter Buckley, and Maryam Ghodrat. "Review of the Most Common Repair Techniques for Reinforced Concrete Structures in Coastal Areas." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0370.

Full text
Abstract:
<p>Asset managers are faced with the challenge of maintaining concrete structures in coastal environment, within the financial constraints of maintenance budget allocations, such that they remain functionally and structurally safe for the remainder of their design lives. For these reasons concrete remediation is fast becoming an important component of asset management in coastal areas. This research describes remediation techniques and practice currently being employed by prominent public and private organisations responsible for maintaining concrete structures in the Illawarra region (New South Wales, Australia). These common remediation techniques range from conventional restoration, cathodic protection and structural strengthening. The research also considers the underlying factors used to evaluate the effectiveness of these techniques and practices. A model of good practice for concrete remediation in the Illawarra is developed from the literature and industry research undertaken. This model is developed for concrete suffering deterioration caused by the corrosion of steel reinforcement and is aimed to provide intelligent concrete remediation options based on sound principles and industry knowledge.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Linbin, Ping Li, and Yuan Liu. "Structural Reliability Based Design and Assessment Acceptance Criteria Development for Fixed Offshore Platforms in South China Sea Under Extreme Storm Conditions." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11476.

Full text
Abstract:
This paper presents a reliability based methodology to develop the design and assessment acceptance criteria for fixed offshore platforms in the northern South China Sea under extreme storm events. Firstly, the atmosphere, ocean and wave coupled numeric simulation model with site measurements verification is used to generate the time series directional waves, currents and winds for each refined grid point in the studied area during the past 40 years. Secondly, the storm and response based load statistics method is adopted to investigate the long term distribution of the extreme environmental load considering the joint occurrence of wave, current and wind. Thirdly a structural reliability method is proposed to quantify the probability of platform failure subjected to extreme storms. The environmental load factors for new design platforms in the northern South China Sea with different exposure categories are calibrated. Finally risk assessment is performed to develop the acceptance criteria for the exiting platforms in terms of reserve strength ratio based on the failure consequence and failure probability of platforms. Case studies are presented to illustrate the applications of the proposed method and how the reliability analysis results can be used in development of long term structural integrity management strategies.
APA, Harvard, Vancouver, ISO, and other styles
3

Platt, T. J. "New South Wales Incident Management System." In Ninth International Conference on Road Transport Information and Control. IEE, 1998. http://dx.doi.org/10.1049/cp:19980182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Senden, David van, and Douglas Lord. "Estuary Processes Investigation; New South Wales, Australia." In 27th International Conference on Coastal Engineering (ICCE). Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40549(276)288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marfella, Giorgio. "Seeds of Concrete Progress: Grain Elevators and Technology Transfer between America and Australia." In The 38th Annual Conference of the Society of Architectural Historians Australia and New Zealand. online: SAHANZ, 2022. http://dx.doi.org/10.55939/a4000pi5hk.

Full text
Abstract:
Modern concrete silos and grain elevators are a persistent source of interest and fascination for architects, industrial archaeologists, painters, photographers, and artists. The legacy of the Australian examples of the early 1900s is appreciated primarily by a popular culture that allocates value to these structures on aesthetic grounds. Several aspects of construction history associated with this early modern form of civil engineering have been less explored. In the 1920s and 1930s, concrete grain elevator stations blossomed along the railway networks of the Australian Wheat Belts, marking with their vertical presence the landscapes of many rural towns in New South Wales, Queensland, Victoria, and Western Australia. The Australian reception of this industrial building type of American origin reflects the modern nation-building aspirations of State Governments of the early 1900s. The development of fast-tracked, self-climbing methods for constructing concrete silos, a technology also imported from America, illustrates the critical role of concrete in that effort of nation-building. The rural and urban proliferation of concrete silos in Australia also helped establish a confident local concrete industry that began thriving with automatic systems of movable formwork, mastering and ultimately transferring these construction methods to multi-storey buildings after WWII. Although there is an evident link between grain elevators and the historiographical propaganda of heroic modernism, that nexus should not induce to interpret old concrete silos as a vestige of modern aesthetics. As catalysts of technical and economic development in Australia, Australian wheat silos also bear important significance due to the international technology transfer and local repercussions of their fast-tracked concrete construction methods.
APA, Harvard, Vancouver, ISO, and other styles
6

Salufu, Samuel, Rita Onolemhemhen, and Sunday Isehunwa. "Hydrocarbon Generation Indication from Source Rock to Reservoir Rock: Case Studies of Anambra and Abakaliki Basins South-Eastern Nigeria." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2560967-ms.

Full text
Abstract:
ABSTRACT This paper sought to use information from outcrop sections to characterize the source and reservoir rocks in a basin in order to give indication(s) for hydrocarbon generation potential in a basin in minimizing uncertainty and risk that are allied with exploration and field development of oil and gas, using subsurface data from well logs, well sections, seismic and core. The methods of study includes detailed geological, stratigraphical, geochemical, structural,, petro-graphical, and sedimentological studies of rock units from outcrop sections within two basins; Anambra Basin and Abakaliki Basin were used as case studies. Thirty eight samples of shale were collected from these Basins; geochemical analysis (rockeval) was performed on the samples to determine the total organic content (TOC) and to assess the oil generating window. The results were analyzed using Rock wares, Origin, and Surfer software in order to properly characterize the potential source rock(s) and reservoir rock(s) in the basins, and factor(s) that can favour hydrocarbon traps. The results of the geological, stratigraphical, sedimentological, geochemical, and structural, were used to developed a new model for hydrocarbon generation in the Basins. The result of the geochemical analysis of shale samples from the Anambra Basin shows that the TOC values are ≥ 1wt%, Tmax ≥ 431°C, Vitrinite reflectance values are ≥ 0.6%, and S1+S2 values are &gt; 2.5mg/g for Mamu Formation while shale samples from other formations within Anambra Basin fall out of these ranges. The shale unit in the Mamu Formation is the major source rock for oil generation in the Anambra Basin while others have potential for gas generation with very little oil generation. The shale samples from Abakaliki Basin shows that S1+S2 values range from&lt; 1 – 20mg/g, TOC values range from 0.31-4.55wt%, vitrinite reflectance ranges from 0.41-1.24% and Tmax ranges from423°C – 466°C. This result also shows that there is no source rock for oil generation in Abakaliki Basin; it is either gas or graphite. This observation indicates that all the source rocks within Abakaliki Basin have exceeded petroleum generating stage due to high geothermal heat resulting from deep depth or the shale units have not attained catagenesis stage as a result of S1+S2 values lesser than 2.5mg/g despite TOC values of ≥ 0.5wt% and vitrinite reflectance values of ≥ 0.6%. The novelty of this study is that the study has been able to show that here there is much more oil than the previous authors claimed, and the distribution of this oil and gas in the basins is controlled by two major factors; the pattern of distribution of the materials of the source rock prior to subsidence and during the subsidence period in the basin, and the pattern and the rate of tectonic activities, and heat flow in the basin. If these factors are known, it would help to reduce the uncertainties associated with exploration for oil and gas in the two basins.
APA, Harvard, Vancouver, ISO, and other styles
7

Solis-Navarro, Carlos, and Anna-Carin Brink. "Widening jointed reinforced concrete pavements on the Easing Sydney’s Congestion Program." In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/y0qxjehe.

Full text
Abstract:
The aim of this paper is to demonstrate how existing jointed reinforced concrete pavements (JRCPs) are incorporated in the design of new and/or widened lanes as part of the Easing Sydney's Congestion (ESC) Program. The ESC Program is one of the Transport for New South Wales' initiatives to meet the increasing demand for infrastructure in the state. At the inception of the Program in 2016, major capital expenditure was set over AU $2.1 billion over five years to 2021. NSW is the State in Australia with the largest number of concrete pavements in the urban road network; mostly JRCPs many of which are now more than 40 years old and surfaced with nominal 50 mm asphalt. As part of the more than 50 projects delivered, the existing concrete pavements required widening to allow for additional lanes and extension of turning lanes. Whilst the pavement designs had to meet minimum engineering standards with a design life of 40 years, they also needed to cater for rapid construction to mitigate disruption to road users in limited construction space. This paper will describe the approach used to gain information on the existing pavements, the different pavement structures constructed, the detailing of the widenings, the specification of various concrete mixes including high-early strength materials and lessons learnt from the construction phase.
APA, Harvard, Vancouver, ISO, and other styles
8

Conway, Andrew, Michelle Blom, Lee Naish, and Vanessa Teague. "An analysis of New South Wales electronic vote counting." In ACSW 2017: Australasian Computer Science Week 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3014812.3014837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clemente, Alejandro, Sergio Albero, Diego Velayos, Adrián Enríquez, Fernando Ibáñez, Birger Opgård, and Mario Rando. "The new City Bridge of Drammen: A structural insight." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1270.

Full text
Abstract:
<p>The new City Bridge of Drammen, or Bybrua in Norwegian, is a 258.9m long urban bridge that will cross the railway station and the river. This new structure, that replaces the existing bridge, will connect the main areas of the city, Strømsø to the south and Bragernes to the north. The final design is a collaboration between Degree of Freedom, Norconsult, SAAHA and Knight Architects, outstanding for its symbolism as major landmark of the city.</p><p>The long structural design process of this bridge has overcome significant challenges such as the poor ground conditions in the riverbed, finding and adequate erection sequence, large ice loads and the coordination between different owners and multiple interdisciplinary teams.</p><p>Also highlight the fact that this bridge has been completely modelled using BIM technologies for all the disciplines, emphasizing the steel parts and reinforced concrete elements.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

Allen, Lori E., Michael C. B. Ashley, Michael G. Burton, Stuart D. Ryder, John W. V. Storey, and Yinsheng Sun. "UNSWIRF: the University of New South Wales infrared Fabry-Perot." In Astronomical Telescopes & Instrumentation, edited by Albert M. Fowler. SPIE, 1998. http://dx.doi.org/10.1117/12.317242.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Structural New South Wales"

1

Reid, Andrew. Tackling gambling harm to improve health equity in New South Wales. Centre for Health Equity Training, Research and Evaluation, 2021. http://dx.doi.org/10.53714/igoo2131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kyi, D., J. Duan, A. Kirkby, and N. Stolz. Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): New South Wales: data release report. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chisholm, Emma-Kate, Carol Simpson, and Phillip Blevin. New SHRIMP U-Pb zircon ages from the New England Orogen, New South Wales : July 2010-June 2012. Geoscience Australia, 2014. http://dx.doi.org/10.11636/record.2014.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chisholm, E. I., P. L. Blevin, and C. J. Simpson. New SHRIMP U–Pb zircon ages from the New England Orogen, New South Wales: July 2012–June 2014. Geoscience Australia, 2014. http://dx.doi.org/10.11636/record.2014.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Waltenberg, K., P. L. Blevin, S. Bodorkos, and D. E. Cronin. New SHRIMP U-Pb zircon ages from the New England Orogen, New South Wales: July 2014-June 2015. Geoscience Australia and Geological Survey of New South Wales, 2015. http://dx.doi.org/10.11636/record.2015.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Armistead, S. E., and G. L. Fraser. New SHRIMP U-Pb zircon ages from the Cuttaburra and F1 prospects, southern Thomson Orogen, New South Wales. Geoscience Australia, 2015. http://dx.doi.org/10.11636/record.2015.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bodorkos, S., K. F. Bull, L. M. Campbell, M. A. Eastlake, P. J. Gilmore, and S. J. Triggs. New SHRIMP U-Pb ages from the central Lachlan Orogen and New England Orogen, New South Wales: July 2014-June 2015. Geoscience Australia and Geological Survey of New South Wales, 2016. http://dx.doi.org/10.11636/record.2016.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fraser, G. L., P. J. Gilmore, J. A. Fitzherbert, S. J. Trigg, L. M. Campbell, L. Deyssing, O. D. Thomas, et al. New SHRIMP U-Pb zircon ages from the Lachlan, southern Thomson and New England orogens, New South Wales: February 2011–June 2013. Geoscience Australia, 2014. http://dx.doi.org/10.11636/record.2014.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Armistead, S. E., R. G. Skirrow, G. L. Fraser, D. L. Huston, D. C. Champion, and M. D. Norman. Gold and intrusion-related Mo-W mineral systems in the southern Thomson Orogen, New South Wales. Geoscience Australia, 2017. http://dx.doi.org/10.11636/record.2017.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Garthwaite, M. C., and T. Fuhrmann. Subsidence monitoring in the Sydney Basin, New South Wales: results of the Camden Environmental Monitoring Project. Geoscience Australia, 2020. http://dx.doi.org/10.11636/record.2020.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography