Academic literature on the topic 'Structural models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structural models"
Jaguljnjak Lazarević, Antonia, Mario Uroš, and Ana Čengija. "FUNDAMENTAL MODELS OF STRUCTURAL STABILITY." Rudarsko-geološko-naftni zbornik 32, no. 2 (March 2017): 37–46. http://dx.doi.org/10.17794/rgn.2017.2.5.
Full textArellano-Valle, R. B., and H. Bolfarine. "Elliptical structural models." Communications in Statistics - Theory and Methods 25, no. 10 (January 1996): 2319–41. http://dx.doi.org/10.1080/03610929608831841.
Full textSánchez, Brisa N., Esben Budtz-Jørgensen, Louise M. Ryan, and Howard Hu. "Structural Equation Models." Journal of the American Statistical Association 100, no. 472 (December 2005): 1443–55. http://dx.doi.org/10.1198/016214505000001005.
Full textDe Stavola, Bianca L., and Rhian M. Daniel. "Marginal Structural Models." Epidemiology 23, no. 2 (March 2012): 233–37. http://dx.doi.org/10.1097/ede.0b013e318245847e.
Full textAmemiya, Takeshi. "Structural duration models." Journal of Statistical Planning and Inference 49, no. 1 (January 1996): 39–52. http://dx.doi.org/10.1016/0378-3758(95)00029-1.
Full textSarkisov, Gari N. "Structural models of water." Uspekhi Fizicheskih Nauk 176, no. 8 (2006): 833. http://dx.doi.org/10.3367/ufnr.0176.200608b.0833.
Full textVallat, Brinda, Benjamin Webb, John Westbrook, Hongsuda Tangmunarunkit, Serban Voinea, Carl Kesselman, Andrej Sali, and Helen M. Berman. "Archiving Integrative Structural Models." Biophysical Journal 120, no. 3 (February 2021): 266a. http://dx.doi.org/10.1016/j.bpj.2020.11.1702.
Full textMueller, Charles W., Kenneth A. Bollen, and J. Scott Long. "Testing Structural Equation Models." Contemporary Sociology 23, no. 1 (January 1994): 160. http://dx.doi.org/10.2307/2074955.
Full textClogg, Clifford C., Kenneth A. Bollen, and J. Scott Long. "Testing Structural Equation Models." Social Forces 73, no. 3 (March 1995): 1161. http://dx.doi.org/10.2307/2580595.
Full textDillon, William R., Kenneth A. Bollen, and J. Scott Long. "Testing Structural Equation Models." Journal of Marketing Research 33, no. 3 (August 1996): 374. http://dx.doi.org/10.2307/3152134.
Full textDissertations / Theses on the topic "Structural models"
Lievin-Lieven, Nicholas Andrew John. "Validation of structural dynamic models." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46413.
Full textAdhikari, Sondipon. "Damping models for structural vibration." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620975.
Full textFonseca, Jose Manuel Rios. "Uncertainty in structural dynamic models." Thesis, Swansea University, 2005. https://cronfa.swan.ac.uk/Record/cronfa42563.
Full textCreamer, Nelson Glenn. "Identification of linear structural models." Diss., Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/53631.
Full textPh. D.
Cerqueira, Pedro Henrique Ramos. "Structural equation models applied to quantitative genetics." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-05112015-145419/.
Full textModelos causais têm sido muitos utilizados em estudos em diferentes áreas de conhecimento, a fim de compreender as associações ou relações causais entre variáveis. Durante as últimas décadas, o uso desses modelos têm crescido muito, especialmente estudos relacionados à sistemas biológicos, uma vez que compreender as relações entre características são essenciais para prever quais são as consequências de intervenções em tais sistemas. Análise do grafo (AG) e os modelos de equações estruturais (MEE) são utilizados como ferramentas para explorar essas relações. Enquanto AG nos permite buscar por estruturas causais, que representam qualitativamente como as variáveis são causalmente conectadas, ajustando o MEE com uma estrutura causal conhecida nos permite inferir a magnitude dos efeitos causais. Os MEE também podem ser vistos como modelos de regressão múltipla em que uma variável resposta pode ser vista como explanatória para uma outra característica. Estudos utilizando MEE em genética quantitativa visam estudar os efeitos genéticos diretos e indiretos associados aos indivíduos por meio de informações realcionadas aos indivíduas, além das característcas observadas, como por exemplo o parentesco entre eles. Neste contexto, é tipicamente adotada a suposição que as características observadas são relacionadas linearmente. No entanto, para alguns cenários, relações não lineares são observadas, o que torna as suposições mencionadas inadequadas. Para superar essa limitação, este trabalho propõe o uso de modelos de equações estruturais de efeitos polinomiais mistos, de segundo grau ou seperior, para modelar relações não lineares. Neste trabalho foram desenvolvidos dois estudos, um de simulação e uma aplicação a dados reais. O primeiro estudo envolveu a simulação de 50 conjuntos de dados, com uma estrutura causal completamente recursiva, envolvendo 3 características, em que foram permitidas relações causais lineares e não lineares entre as mesmas. O segundo estudo envolveu a análise de características relacionadas ao gado leiteiro da raça Holandesa, foram utilizadas relações entre os seguintes fenótipos: dificuldade de parto, duração da gestação e a proporção de morte perionatal. Nós comparamos o modelo misto de múltiplas características com os modelos de equações estruturais polinomiais, com diferentes graus polinomiais, a fim de verificar os benefícios do MEE polinomial de segundo grau ou superior. Para algumas situações a suposição inapropriada de linearidade resulta em previsões pobres das variâncias e covariâncias genéticas diretas, indiretas e totais, seja por superestimar, subestimar, ou mesmo atribuir sinais opostos as covariâncias. Portanto, verificamos que a inclusão de um grau de polinômio aumenta o poder de expressão do MEE.
Grafe, Henning. "Model updating of large structural dynamics models using measured response functions." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325047.
Full textValeinis, Janis. "Confidence bands for structural relationship models." Doctoral thesis, [S.l.] : [s.n.], 2007. http://webdoc.sub.gwdg.de/diss/2007/valeinis.
Full textDe, Antonio Liedo David. "Structural models for macroeconomics and forecasting." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210142.
Full textcentral debates in empirical macroeconomic modeling.
Chapter 1, entitled “A Model for Real-Time Data Assessment with an Application to GDP Growth Rates”, provides a model for the data
revisions of macroeconomic variables that distinguishes between rational expectation updates and noise corrections. Thus, the model encompasses the two polar views regarding the publication process of statistical agencies: noise versus news. Most of the studies previous studies that analyze data revisions are based
on the classical noise and news regression approach introduced by Mankiew, Runkle and Shapiro (1984). The problem is that the statistical tests available do not formulate both extreme hypotheses as collectively exhaustive, as recognized by Aruoba (2008). That is, it would be possible to reject or accept both of them simultaneously. In turn, the model for the
DPP presented here allows for the simultaneous presence of both noise and news. While the “regression approach” followed by Faust et al. (2005), along the lines of Mankiew et al. (1984), identifies noise in the preliminary
figures, it is not possible for them to quantify it, as done by our model.
The second and third chapters acknowledge the possibility that macroeconomic data is measured with errors, but the approach followed to model the missmeasurement is extremely stylized and does not capture the complexity of the revision process that we describe in the first chapter.
Chapter 2, entitled “Revisiting the Success of the RBC model”, proposes the use of dynamic factor models as an alternative to the VAR based tools for the empirical validation of dynamic stochastic general equilibrium (DSGE) theories. Along the lines of Giannone et al. (2006), we use the state-space parameterisation of the factor models proposed by Forni et al. (2007) as a competitive benchmark that is able to capture weak statistical restrictions that DSGE models impose on the data. Our empirical illustration compares the out-of-sample forecasting performance of a simple RBC model augmented with a serially correlated noise component against several specifications belonging to classes of dynamic factor and VAR models. Although the performance of the RBC model is comparable
to that of the reduced form models, a formal test of predictive accuracy reveals that the weak restrictions are more useful at forecasting than the strong behavioral assumptions imposed by the microfoundations in the model economy.
The last chapter, “What are Shocks Capturing in DSGE modeling”, contributes to current debates on the use and interpretation of larger DSGE
models. Recent tendency in academic work and at central banks is to develop and estimate large DSGE models for policy analysis and forecasting. These models typically have many shocks (e.g. Smets and Wouters, 2003 and Adolfson, Laseen, Linde and Villani, 2005). On the other hand, empirical studies point out that few large shocks are sufficient to capture the covariance structure of macro data (Giannone, Reichlin and
Sala, 2005, Uhlig, 2004). In this Chapter, we propose to reconcile both views by considering an alternative DSGE estimation approach which
models explicitly the statistical agency along the lines of Sargent (1989). This enables us to distinguish whether the exogenous shocks in DSGE
modeling are structural or instead serve the purpose of fitting the data in presence of misspecification and measurement problems. When applied to the original Smets and Wouters (2007) model, we find that the explanatory power of the structural shocks decreases at high frequencies. This allows us to back out a smoother measure of the natural output gap than that
resulting from the original specification.
Doctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
Konarski, Roman. "Sensitivity analysis for structural equation models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22893.pdf.
Full textGungor, Murat Kahraman. "Structural models for large software systems." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2006. http://proquest.umi.com/login?COPT=REJTPTU0NWQmSU5UPTAmVkVSPTI=&clientId=3739.
Full textBooks on the topic "Structural models"
Westland, J. Christopher. Structural Equation Models. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12508-0.
Full textWestland, J. Christopher. Structural Equation Models. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16507-3.
Full textFieldhouse, John. Biochemical structural models. [Wymondham, Melton Mowbray, Leicestershire: Witmehá Productions, 1989.
Find full textFieldhouse, John. Biochemical structural models. 2nd ed. Wymondham, Melton Mowbray, Leicestershire: Witmehá Productions, 1993.
Find full textBarry, Hilson, ed. Basic structural behaviour: Understanding structures from models. London: T. Telford, 1993.
Find full textGodehardt, Erhard. Graphs as Structural Models. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-322-96310-9.
Full textA, Bollen Kenneth, and Long J. Scott, eds. Testing structural equation models. Newbury Park: Sage Publications, 1993.
Find full textUniversity College Dublin. School of Architecture. Structures models. Dublin: University College Dublin, School of Architecture, 1998.
Find full textFernández-Villaverde, Jesús. How structural are structural parameters? Cambridge, Mass: National Bureau of Economic Research, 2007.
Find full textStronge, W. J. Dynamic models for structural plasticity. London: Springer Verlag, 1993.
Find full textBook chapters on the topic "Structural models"
Albuquerque, Paulo, and Bart J. Bronnenberg. "Structural Models." In International Series in Quantitative Marketing, 203–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53469-5_7.
Full textGaliani, Sebastian, and Juan Pantano. "Structural Models." In Handbook of Labor, Human Resources and Population Economics, 1–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-57365-6_52-1.
Full textRots, J. G. "Numerical models in DIANA." In Structural Masonry, 46–71. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003077961-3.
Full textHilbert, Sven, and Matthias Stadler. "Structural Equation Models." In Encyclopedia of Personality and Individual Differences, 5253–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_1285.
Full textGómez, Víctor. "Multivariate Structural Models." In Linear Time Series with MATLAB and OCTAVE, 245–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20790-8_7.
Full textPlassmann, Engelbert. "Structural ECM Models." In Contributions to Economics, 61–79. Heidelberg: Physica-Verlag HD, 2003. http://dx.doi.org/10.1007/978-3-642-57336-1_4.
Full textBauldry, Shawn. "Structural Equation Models." In Encyclopedia of Gerontology and Population Aging, 1–3. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69892-2_566-1.
Full textRosenblum, Michael. "Marginal Structural Models." In Targeted Learning, 145–60. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9782-1_9.
Full textRaghunathan, Trivellore, Patricia A. Berglund, and Peter W. Solenberger. "Structural Equation Models." In Multiple Imputation in Practice, 110–19. Boca Raton, Florida : CRC Press, [2019] | Authors have developed a software for analyzing mathematical data, IVEware.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315154275-7.
Full textMatzkin, Rosa L. "Nonparametric Structural Models." In The New Palgrave Dictionary of Economics, 1–7. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_2163-1.
Full textConference papers on the topic "Structural models"
BENAROYA, HAYM, and HOWARD FLEISHER. "Probabilistic aircraft structural dynamics models." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-921.
Full textSMITH, SUZANNE, and CHRISTOPHER BEATTIE. "Secant-method adjustment for structural models." In 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1278.
Full textKordt, M., H. Lusebrink, and G. Schullerus. "Nonlinear model reduction of structural dynamic aircraft models." In 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-1757.
Full textSacks, Michael S. "Tissue-Level Structural Constitutive Models." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1925.
Full textEnelund, Mikael, and Peter Olsson. "Damping described by fading memory models." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1181.
Full textHOLLKAMP, J., and S. BATILL. "Time series models for nonlinear systems." In 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1197.
Full textBARBERO, E., and S. SONTI. "Micromechanical models for pultruded composite beams." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1045.
Full textHasselman, Timothy, Jon Chrostowski, and Timothy Ross. "Propagation of modeling uncertainty through structural dynamic models." In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1316.
Full textHAJELA, P., and L. BERKE. "Neurobiological Computational Models in Structural Analysis and Design." In 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1133.
Full textCRAWLEY, EDWARD, and ERIC ANDERSON. "Detailed models of piezoceramic actuation of beams." In 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1388.
Full textReports on the topic "Structural models"
Batman, Joe, Larry Howard, and Bill Schelker. An Introduction to Structural Models. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada268151.
Full textFair, Ray. VAR Models as Structural Approximations. Cambridge, MA: National Bureau of Economic Research, January 1988. http://dx.doi.org/10.3386/w2495.
Full textGaliani, Sebastian, and Juan Pantano. Structural Models: Inception and Frontier. Cambridge, MA: National Bureau of Economic Research, April 2021. http://dx.doi.org/10.3386/w28698.
Full textKuether, Robert J., Jonel Ortiz, and Mark Chen. Model Order Reduction of Nonviscously Damped Structural Dynamic Models. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475503.
Full textKoşar, Gizem, and Cormac O'Dea. Expectations Data in Structural Microeconomic Models. Cambridge, MA: National Bureau of Economic Research, May 2022. http://dx.doi.org/10.3386/w30094.
Full textHAMMERAND, DANIEL C., SAMUEL W. KEY, J. T. ODEN, I. BAKUSKA, G. RODIN, C. BAJAJ, S. PRUDHOMME, and K. VEMAGANTI. Structural Simulations Using Multi-Resolution Material Models. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/789595.
Full textChen, Le-Yu. Identification of structural dynamic discrete choice models. Institute for Fiscal Studies, May 2009. http://dx.doi.org/10.1920/wp.cem.2009.0809.
Full textWeijters, Bert. Analyzing Experimental Data in Structural Equation Models. Instats Inc., 2023. http://dx.doi.org/10.61700/zclk0a8vgkfaa706.
Full textAttansio, Orazio, and Debbie Blair. Structural modelling in policymaking. Centre for Excellence and Development Impact and Learning (CEDIL), November 2018. http://dx.doi.org/10.51744/cip9.
Full textRomero-Chamorro, José Vicente, and Sara Naranjo-Saldarriaga. Weather Shocks and Inflation Expectations in Semi-Structural Models. Banco de la República Colombia, November 2022. http://dx.doi.org/10.32468/be.1218.
Full text