Academic literature on the topic 'Structural interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structural interaction"
JOHNSTON, RICHARD D., and GEOFFREY W. BARTON. "Structural interaction analysis." International Journal of Control 41, no. 4 (April 1985): 1005–13. http://dx.doi.org/10.1080/0020718508961179.
Full textPooler, James. "Structural Spatial Interaction∗." Professional Geographer 45, no. 3 (August 1993): 297–305. http://dx.doi.org/10.1111/j.0033-0124.1993.00297.x.
Full textGursoy, Attila, Ozlem Keskin, and Ruth Nussinov. "Topological properties of protein interaction networks from a structural perspective." Biochemical Society Transactions 36, no. 6 (November 19, 2008): 1398–403. http://dx.doi.org/10.1042/bst0361398.
Full textGuven-Maiorov, Emine, Chung-Jung Tsai, and Ruth Nussinov. "Structural host-microbiota interaction networks." PLOS Computational Biology 13, no. 10 (October 12, 2017): e1005579. http://dx.doi.org/10.1371/journal.pcbi.1005579.
Full textOke, S. A., and M. K. O. Ayomoh. "The hybrid structural interaction matrix." International Journal of Quality & Reliability Management 22, no. 6 (August 2005): 607–25. http://dx.doi.org/10.1108/02656710510604917.
Full textAnton, M., and F. Casciati. "Structural control against failure interaction." Journal of Structural Control 5, no. 1 (June 1998): 63–73. http://dx.doi.org/10.1002/stc.4300050104.
Full textLee, Bong-Jin. "S2c2-1 Structure and Protein-Protein Interaction of Helicobacter Pylori Proteins(S2-c2: "Structural biology reveals macromolecular interaction",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S127. http://dx.doi.org/10.2142/biophys.46.s127_4.
Full textZHU, ZHENGWEI, ANDREY TOVCHIGRECHKO, TATIANA BARONOVA, YING GAO, DOMINIQUE DOUGUET, NICHOLAS O'TOOLE, and ILYA A. VAKSER. "LARGE-SCALE STRUCTURAL MODELING OF PROTEIN COMPLEXES AT LOW RESOLUTION." Journal of Bioinformatics and Computational Biology 06, no. 04 (August 2008): 789–810. http://dx.doi.org/10.1142/s0219720008003679.
Full textDeBlasio, Stacy L., Juan D. Chavez, Mariko M. Alexander, John Ramsey, Jimmy K. Eng, Jaclyn Mahoney, Stewart M. Gray, James E. Bruce, and Michelle Cilia. "Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology." Journal of Virology 90, no. 4 (December 9, 2015): 1973–87. http://dx.doi.org/10.1128/jvi.01706-15.
Full textHakes, Luke, David L. Robertson, Stephen G. Oliver, and Simon C. Lovell. "Protein Interactions from Complexes: A Structural Perspective." Comparative and Functional Genomics 2007 (2007): 1–5. http://dx.doi.org/10.1155/2007/49356.
Full textDissertations / Theses on the topic "Structural interaction"
Lea, Patrick D. "Fluid Structure Interaction with Applications in Structural Failure." Thesis, Northwestern University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3605735.
Full textMethods for modeling structural failure with applications for fluid structure interaction (FSI) are developed in this work. Fracture as structural failure is modeled in this work by both the extended finite element method (XFEM) and element deletion. Both of these methods are used in simulations coupled with fluids modeled by computational fluid dynamics (CFD). The methods presented here allow the fluid to pass through the fractured areas of the structure without any prior knowledge of where fracture will occur. Fracture modeled by XFEM is compared to an experimental result as well as a test problem for two phase coupling. The element deletion results are compared with an XFEM test problem, showing the differences and similarities between the two methods.
A new method for modeling fracture is also proposed in this work. The new method combines XFEM and element deletion to provide a robust implementation of fracture modeling. This method integrates well into legacy codes that currently have element deletion functionality. The implementation allows for application by a wide variety of users that are familiar with element deletion in current analysis tools. The combined method can also be used in conjunction with the work done on fracture coupled with fluids, discussed in this work.
Structural failure via buckling is also examined in an FSI framework. A new algorithm is produced to allow for structural subcycling during the collapse of a pipe subjected to a hydrostatic load. The responses of both the structure and the fluid are compared to a non-subcycling case to determine the accuracy of the new algorithm.
Overall this work looks at multiple forms of structural failure induced by fluids modeled by CFD. The work extends what is currently possible in FSI simulations.
García, García Julio Abraham. "Reduction of seismically induced structural vibrations considering soil-structure interaction." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969246390.
Full textRahgozar, Mohammad Ali Carleton University Dissertation Engineering Civil. "Semismic soil-structure interaction analysis of structural base shear amplification." Ottawa, 1993.
Find full textTan, Mengmeng. "Structural optimization of polypod-like structured DNA based on structural analysis and interaction with cells." Kyoto University, 2020. http://hdl.handle.net/2433/253233.
Full textCampagna, Anne. "Structural analysis of protein interaction networks." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/84111.
Full textLas funciones de las proteínas resultan de la manera con la que interaccionan entre ellas. Los experimentos de alto rendimiento han permitido identificar miles de interacciones de proteínas que forman parte de redes grandes y complejas. En esta tesis, utilizamos la información de estructuras de proteínas para estudiar las redes de interacciones de proteínas. Con esta información, se puede entender como las proteínas interaccionan al nivel molecular y con este conocimiento se puede identificar las interacciones que pueden ocurrir al mismo tiempo de las que están incompatibles. En base a este principio, hemos desarrollado un método que permite estudiar las redes de interacciones de proteínas con un punto de vista mas dinámico de lo que ofrecen clásicamente. Además, al combinar este método con minería de la literatura y Los datos de la proteomica hemos construido la red de interacciones de proteínas asociada con la Rodopsina, un receptor acoplado a proteínas G y hemos identificado sus sub--‐módulos funcionales. Estos análisis surgieron una novel vıa de señalización hacia la regulación del citoesqueleto y el trafico vesicular por Rodopsina, además de su papel establecido en la visión.
Stalker, R. "Engineer-computer interaction for structural monitoring." Thesis, Lancaster University, 2000. http://eprints.lancs.ac.uk/11792/.
Full textThorpe, Christopher John. "Structural analysis of MHC : peptide interaction." Thesis, Birkbeck (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321649.
Full textSouthall, Stacey Mary. "Structural studies of protein interaction modules." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615774.
Full textGallagher, Timothy. "Towards multi-scale reacting fluid-structure interaction: micro-scale structural modeling." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53483.
Full textSribalaskandarajah, Kandiah. "A computational framework for dynamic soil-structure interaction analysis /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10180.
Full textBooks on the topic "Structural interaction"
International Conference on Soil Dynamics and Earthquake Engineering (4th 1989 Mexico City, Mexico). Structural dynamics and soil-structure interaction. Edited by Cakmak A. S. 1934- and Herrera Ismael. Ashurst: Computational Mechanics, 1989.
Find full textEngineers, Institution of Structural. Soil-structure interaction: The real behaviour of structures. London: The Institution of Structural Engineers, 1989.
Find full textThurston, Gaylen A. Modal interaction in postbuckled plates: Theory. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Find full textFrajzyngier, Zygmunt. Explaining language structure through systems interaction. Philadelphia, PA: John Benjamins Pub., 2003.
Find full textFrajzyngier, Zygmunt. Explaining language structure through systems interaction. Amsterdam: Benjamins, 2002.
Find full textFenves, Gregory L. Evaluation of soil-structure interaction in buildings during earthquakes. Sacramento, Calif: California Dept. of Conservation, Division of Mines and Geology, Office of Strong Motion Studies, 1992.
Find full textThompson, Catherine Isabelle. Protein interaction studies on the rotavirus non-structural protein NSP1. [s.l.]: typescript, 1999.
Find full textWolf, John P. Soil-structure-interaction analysis in time domain. Englewood Cliffs, N.J: Prentice Hall, 1988.
Find full textEuropean Committee for Standardization. Eurocode 7: Geotechnical design. London: British Standards Institution, 1995.
Find full textEuropean Committee for Standardization. Eurocode 7: A commentary. London: Construction Research Communications Ltd., 1998.
Find full textBook chapters on the topic "Structural interaction"
Aerts, Diederik, and Sandro Sozzo. "Entanglement Zoo I: Foundational and Structural Aspects." In Quantum Interaction, 84–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45912-6_8.
Full textAerts, Diederik, and Sandro Sozzo. "Entanglement Zoo I: Foundational and Structural Aspects." In Quantum Interaction, 84–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54943-4_8.
Full textDaley, C. G., C. Ferregut, and R. Brown. "Structural Risk Model of Arctic Shipping." In Ice-Structure Interaction, 507–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84100-2_25.
Full textde Miranda Batista, Eduardo. "Modelling Buckling Interaction." In Phenomenological and Mathematical Modelling of Structural Instabilities, 135–94. Vienna: Springer Vienna, 2005. http://dx.doi.org/10.1007/3-211-38028-0_3.
Full textAerts, Diederik, and Sandro Sozzo. "What is Quantum? Unifying Its Micro-physical and Structural Appearance." In Quantum Interaction, 12–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15931-7_2.
Full textTumanov, A. V., and V. N. Shlyannikov. "Damage Accumulation and Growth Models for the Creep-Fatigue Interaction." In Structural Integrity, 112–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47883-4_20.
Full textModi, V. J., and F. Welt. "On the Control of Instabilities in Fluid-Structure Interaction Problems." In Structural Control, 473–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3525-9_32.
Full textZiegler, Jürgen, and Markus Specker. "Navigation Patterns – Pattern Systems Based on Structural Mappings." In Engineering Human Computer Interaction and Interactive Systems, 224–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11431879_14.
Full textSchmidt, Thomas. "Structural Reasons in Rational Interaction." In Rationality, Rules, and Structure, 131–46. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9616-9_8.
Full textClough, Ray W. "A Structural Engineer’s View of Soil-Structure-Interaction." In Developments in Dynamic Soil-Structure Interaction, 91–109. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1755-5_5.
Full textConference papers on the topic "Structural interaction"
Dayal, Vinay, and Ilyas Mohammed. "Crack interaction in composites." In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1454.
Full textYurkovich, Rudy. "Wing-tail interaction flutter revisited." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1447.
Full textLiu, Hongjun, Jie Liu, and Jun Teng. "Control-Structure Interaction in Structural Vibration Control." In 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)196.
Full textSchuster, Sven, Sandro Schulze, and Ina Schaefer. "Structural feature interaction patterns." In the Eighth International Workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2556624.2556640.
Full textHeller, R., and S. Thangjitham. "Probabilistic service life prediction for creep-fatigue interaction." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1560.
Full textOBAYASHI, SHIGERU, and GURU GURUSWAMY. "Unsteady shock-vortex interaction on a flexible delta wing." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1109.
Full textIBRAHIM, R. "Experimental investigation of structural autoparametric interaction under random excitation." In 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-779.
Full textFERMAN, M., M. HEALEY, and M. RICHARDSON. "Durability prediction of complex panels with fluid-structure interaction." In 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2220.
Full textKim, M., S. Lee, A. Kabe, M. Kim, S. Lee, and A. Kabe. "Consistent and lumped area formulations in fluid-structure interaction." In 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1089.
Full textLIU, C. "Three-dimensional finite element analysis of crack-defect interaction." In 31st Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-927.
Full textReports on the topic "Structural interaction"
Ladias, John A. Structural Basis for the BRCA1 Interaction With Branched DNA. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada429692.
Full textKennedy, R. P., R. H. Kincaid, and S. A. Short. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2. Office of Scientific and Technical Information (OSTI), March 1985. http://dx.doi.org/10.2172/5817815.
Full textZha, Ge-Chenga, Ming-Ta Yang, and Fariba Fahroo. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada452028.
Full textEbeling, Robert, and Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/39881.
Full textZabelina, Irina Alexandrovna, and Ekaterina Alexandrovna Klevakina. Assessment of structural changes in the economy of the transboundary of interaction between the Russian Federation and the PRC. Ljournal, 2017. http://dx.doi.org/10.18411/0131-2812-2017-1-36-48.
Full textSpottswood, S. M., Timothy J. Beberniss, and Thomas G. Eason. Structural Response Prediction: Full-field, Dynamic Pressure and Displacement Measurements of a Panel Excited by Shock Boundary-layer Interaction. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada618183.
Full textBenaroya, Haym, and Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada382782.
Full textIsaac, Daron, and Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada435321.
Full textMartinez-Sanchez, Manuel, and John Dugundji. Fluid Dynamic - Structural Interactions of Labyrinth Seals. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada174461.
Full textLove, E., and R. L. Taylor. Acoustic-structure interaction problems. Final report. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/110709.
Full text