Journal articles on the topic 'Structural Insights'

To see the other types of publications on this topic, follow the link: Structural Insights.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Structural Insights.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yates, Darran. "Structural insights." Nature Reviews Neuroscience 22, no. 4 (March 5, 2021): 195. http://dx.doi.org/10.1038/s41583-021-00453-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gross, Michael. "New structural insights." Current Biology 19, no. 16 (August 2009): R669—R670. http://dx.doi.org/10.1016/j.cub.2009.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuppuraj, Gopi, Fumiko Suzuki, Masahiko Ikeuchi, and Kei Yura. "3P050 Structural insights into enzyme-bound flavin adenine dinucleotides (FAD)(01A. Protein: Structure,Poster)." Seibutsu Butsuri 53, supplement1-2 (2013): S220. http://dx.doi.org/10.2142/biophys.53.s220_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Calderon-Villalobos, L. I., X. Tan, N. Zheng, and M. Estelle. "Auxin Perception--Structural Insights." Cold Spring Harbor Perspectives in Biology 2, no. 7 (May 26, 2010): a005546. http://dx.doi.org/10.1101/cshperspect.a005546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fogg, Christiana N. "Structural insights into RSV." Science 359, no. 6381 (March 15, 2018): 1227.21–1229. http://dx.doi.org/10.1126/science.359.6381.1227-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Xiaolei, Nazish Sayed, Annie Beuve, and Focco van den Akker. "Structural insights into sGC." BMC Pharmacology 7, Suppl 1 (2007): S37. http://dx.doi.org/10.1186/1471-2210-7-s1-s37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mainstone, Rowland J. "Structural Analysis, Structural Insights, and Historical Interpretation." Journal of the Society of Architectural Historians 56, no. 3 (September 1997): 316–40. http://dx.doi.org/10.2307/991244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tafur, Lucas, Jennifer Kefauver, and Robbie Loewith. "Structural Insights into TOR Signaling." Genes 11, no. 8 (August 4, 2020): 885. http://dx.doi.org/10.3390/genes11080885.

Full text
Abstract:
The Target of Rapamycin (TOR) is a highly conserved serine/threonine protein kinase that performs essential roles in the control of cellular growth and metabolism. TOR acts in two distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in humans), which maintain different aspects of cellular homeostasis and orchestrate the cellular responses to diverse environmental challenges. Interest in understanding TOR signaling is further motivated by observations that link aberrant TOR signaling to a variety of diseases, ranging from epilepsy to cancer. In the last few years, driven in large part by recent advances in cryo-electron microscopy, there has been an explosion of available structures of (m)TORC1 and its regulators, as well as several (m)TORC2 structures, derived from both yeast and mammals. In this review, we highlight and summarize the main findings from these reports and discuss both the fascinating and unexpected molecular biology revealed and how this knowledge will potentially contribute to new therapeutic strategies to manipulate signaling through these clinically relevant pathways.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Jin, Sizhuo Chen, and Ke Liu. "Structural insights into piRNA biogenesis." Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1865, no. 2 (February 2022): 194799. http://dx.doi.org/10.1016/j.bbagrm.2022.194799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yaxin, Guopeng Wang, Ningning Li, Yuxin Wang, Qinyu Zhu, Huarui Chu, Wenjun Wu, et al. "Structural insights into immunoglobulin M." Science 367, no. 6481 (February 6, 2020): 1014–17. http://dx.doi.org/10.1126/science.aaz5425.

Full text
Abstract:
Immunoglobulin M (IgM) plays a pivotal role in both humoral and mucosal immunity. Its assembly and transport depend on the joining chain (J-chain) and the polymeric immunoglobulin receptor (pIgR), but the underlying molecular mechanisms of these processes are unclear. We report a cryo–electron microscopy structure of the Fc region of human IgM in complex with the J-chain and pIgR ectodomain. The IgM-Fc pentamer is formed asymmetrically, resembling a hexagon with a missing triangle. The tailpieces of IgM-Fc pack into an amyloid-like structure to stabilize the pentamer. The J-chain caps the tailpiece assembly and bridges the interaction between IgM-Fc and the polymeric immunoglobulin receptor, which undergoes a large conformational change to engage the IgM-J complex. These results provide a structural basis for the function of IgM.
APA, Harvard, Vancouver, ISO, and other styles
11

Vacca, Irene. "Structural insights into archaeal chromatin." Nature Reviews Microbiology 15, no. 10 (August 30, 2017): 575. http://dx.doi.org/10.1038/nrmicro.2017.110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dadley-Moore, Davina. "Structural insights into calicivirus function." Nature Reviews Microbiology 4, no. 7 (July 2006): 490. http://dx.doi.org/10.1038/nrmicro1452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nogales, Eva. "Structural Insights into Microtubule Function." Annual Review of Biochemistry 69, no. 1 (June 2000): 277–302. http://dx.doi.org/10.1146/annurev.biochem.69.1.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ogle, James M., and V. Ramakrishnan. "STRUCTURAL INSIGHTS INTO TRANSLATIONAL FIDELITY." Annual Review of Biochemistry 74, no. 1 (June 2005): 129–77. http://dx.doi.org/10.1146/annurev.biochem.74.061903.155440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nogales, Eva. "Structural Insights into Microtubule Function." Annual Review of Biophysics and Biomolecular Structure 30, no. 1 (June 2001): 397–420. http://dx.doi.org/10.1146/annurev.biophys.30.1.397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kwon, Eunju, Deepak Pathak, Han-ul Kim, Pawan Dahal, Sung Chul Ha, Seung Sik Lee, Hyeongseop Jeong, et al. "Structural insights into stressosome assembly." IUCrJ 6, no. 5 (August 21, 2019): 938–47. http://dx.doi.org/10.1107/s205225251900945x.

Full text
Abstract:
The stressosome transduces environmental stress signals to SigB to upregulate SigB-dependent transcription, which is required for bacterial viability. The stressosome core is composed of RsbS and at least one of the RsbR paralogs. A previous cryo-electron microscopy (cryo-EM) structure of the RsbRA–RsbS complex determined under a D2 symmetry restraint showed that the stressosome core forms a pseudo-icosahedron consisting of 60 STAS domains of RsbRA and RsbS. However, it is still unclear how RsbS and one of the RsbR paralogs assemble into the stressosome. Here, an assembly model of the stressosome is presented based on the crystal structure of the RsbS icosahedron and cryo-EM structures of the RsbRA–RsbS complex determined under diverse symmetry restraints (nonsymmetric C1, dihedral D2 and icosahedral I envelopes). 60 monomers of the crystal structure of RsbS fitted well into the I-restrained cryo-EM structure determined at 4.1 Å resolution, even though the STAS domains in the I envelope were averaged. This indicates that RsbS and RsbRA share a highly conserved STAS fold. 22 protrusions observed in the C1 envelope, corresponding to dimers of the RsbRA N-domain, allowed the STAS domains of RsbRA and RsbS to be distinguished in the stressosome core. Based on these, the model of the stressosome core was reconstructed. The mutation of RsbRA residues at the binding interface in the model (R189A/Q191A) significantly reduced the interaction between RsbRA and RsbS. These results suggest that nonconserved residues in the conserved STAS folds between RsbS and RsbR paralogs determine stressosome assembly.
APA, Harvard, Vancouver, ISO, and other styles
17

Orengo, C. A., F. Pearl, J. Bray, A. Todd, and J. M. Thornton. "Functional Insights from Structural Families." Biochemical Society Transactions 28, no. 1 (February 1, 2000): A22. http://dx.doi.org/10.1042/bst028a022c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mueller, Kristen L. "Structural insights into capsid flexibility." Science 354, no. 6318 (December 15, 2016): 1387.16–1389. http://dx.doi.org/10.1126/science.354.6318.1387-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rouzer, Carol A., and Lawrence J. Marnett. "Cyclooxygenases: structural and functional insights." Journal of Lipid Research 50, Supplement (October 23, 2008): S29—S34. http://dx.doi.org/10.1194/jlr.r800042-jlr200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rintala-Dempsey, Anne C., Atoosa Rezvanpour, and Gary S. Shaw. "S100-annexin complexes - structural insights." FEBS Journal 275, no. 20 (September 15, 2008): 4956–66. http://dx.doi.org/10.1111/j.1742-4658.2008.06654.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sagong, Hye-Young, Hyeoncheol Francis Son, So Young Choi, Sang Yup Lee, and Kyung-Jin Kim. "Structural Insights into Polyhydroxyalkanoates Biosynthesis." Trends in Biochemical Sciences 43, no. 10 (October 2018): 790–805. http://dx.doi.org/10.1016/j.tibs.2018.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Berger, Imre, Alexandre G. Blanco, Rolf Boelens, Jean Cavarelli, Miquel Coll, Gert E. Folkers, Yan Nie, et al. "Structural insights into transcription complexes." Journal of Structural Biology 175, no. 2 (August 2011): 135–46. http://dx.doi.org/10.1016/j.jsb.2011.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Alcorlo, Martín, Andrés López-Perrote, Sandra Delgado, Hugo Yébenes, Marta Subías, César Rodríguez-Gallego, Santiago Rodríguez de Córdoba, and Oscar Llorca. "Structural insights on complement activation." FEBS Journal 282, no. 20 (August 31, 2015): 3883–91. http://dx.doi.org/10.1111/febs.13399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shamoo, Y. "Structural insights into BRCA2 function." Current Opinion in Structural Biology 13, no. 2 (April 2003): 206–11. http://dx.doi.org/10.1016/s0959-440x(03)00033-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Toor, Navtej, Kevin S. Keating, and Anna Marie Pyle. "Structural insights into RNA splicing." Current Opinion in Structural Biology 19, no. 3 (June 2009): 260–66. http://dx.doi.org/10.1016/j.sbi.2009.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sashital, Dipali G., and Jennifer A. Doudna. "Structural insights into RNA interference." Current Opinion in Structural Biology 20, no. 1 (February 2010): 90–97. http://dx.doi.org/10.1016/j.sbi.2009.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Glatt, Sebastian, and Christoph W. Müller. "Structural insights into Elongator function." Current Opinion in Structural Biology 23, no. 2 (April 2013): 235–42. http://dx.doi.org/10.1016/j.sbi.2013.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sosa, Brian A., Ulrike Kutay, and Thomas U. Schwartz. "Structural insights into LINC complexes." Current Opinion in Structural Biology 23, no. 2 (April 2013): 285–91. http://dx.doi.org/10.1016/j.sbi.2013.03.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ergun, Sabrina L., and Lingyin Li. "Structural Insights into STING Signaling." Trends in Cell Biology 30, no. 5 (May 2020): 399–407. http://dx.doi.org/10.1016/j.tcb.2020.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xue, Xiaoguang, Jin Wu, Federico Forneris, Daniel Ricklin, Patrizia Di Crescenzio, Christoph Schmidt, Joke Granneman, John D. Lambris, and Piet Gros. "Structural insights into cofactor activity." Immunobiology 221, no. 10 (October 2016): 1193. http://dx.doi.org/10.1016/j.imbio.2016.06.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Stauch, Benjamin, Linda C. Johansson, and Vadim Cherezov. "Structural insights into melatonin receptors." FEBS Journal 287, no. 8 (November 23, 2019): 1496–510. http://dx.doi.org/10.1111/febs.15128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dorwart, Michael, Patrick Thibodeau, and Philip Thomas. "Cystic fibrosis: recent structural insights." Journal of Cystic Fibrosis 3 (August 2004): 91–94. http://dx.doi.org/10.1016/j.jcf.2004.05.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Forouhar, Farhad, Alexandre Kuzin, Jayaraman Seetharaman, Insun Lee, Weihong Zhou, Mariam Abashidze, Yang Chen, et al. "Functional insights from structural genomics." Journal of Structural and Functional Genomics 8, no. 2-3 (June 23, 2007): 37–44. http://dx.doi.org/10.1007/s10969-007-9018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ling, Clarence, and Dmitri N. Ermolenko. "Structural insights into ribosome translocation." Wiley Interdisciplinary Reviews: RNA 7, no. 5 (April 27, 2016): 620–36. http://dx.doi.org/10.1002/wrna.1354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zabret, Jure, Stefan Bohn, Sandra K. Schuller, Oliver Arnolds, Madeline Möller, Jakob Meier-Credo, Pasqual Liauw, et al. "Structural insights into photosystem II assembly." Nature Plants 7, no. 4 (April 2021): 524–38. http://dx.doi.org/10.1038/s41477-021-00895-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Suarez, Irina, and Gilles Trave. "Structural Insights in Multifunctional Papillomavirus Oncoproteins." Viruses 10, no. 1 (January 15, 2018): 37. http://dx.doi.org/10.3390/v10010037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Roberts, George W., and David Leys. "Structural insights into UbiD reversible decarboxylation." Current Opinion in Structural Biology 75 (August 2022): 102432. http://dx.doi.org/10.1016/j.sbi.2022.102432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Thomas, Tim. "Structural and mechanical insights into cystinosin." Nature Structural & Molecular Biology 29, no. 10 (October 2022): 955. http://dx.doi.org/10.1038/s41594-022-00845-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Frank, Filipp, Eric A. Ortlund, and Xu Liu. "Structural insights into glucocorticoid receptor function." Biochemical Society Transactions 49, no. 5 (October 28, 2021): 2333–43. http://dx.doi.org/10.1042/bst20210419.

Full text
Abstract:
The glucocorticoid receptor (GR) is a steroid hormone-activated transcription factor that binds to various glucocorticoid response elements to up- or down- regulate the transcription of thousands of genes involved in metabolism, development, stress and inflammatory responses. GR consists of two domains enabling interaction with glucocorticoids, DNA response elements and coregulators, as well as a large intrinsically disordered region that mediates condensate formation. A growing body of structural studies during the past decade have shed new light on GR interactions, providing a new understanding of the mechanisms driving context-specific GR activity. Here, we summarize the established and emerging mechanisms of action of GR, primarily from a structural perspective. This minireview also discusses how the current state of knowledge of GR function may guide future glucocorticoid design with an improved therapeutic index for different inflammatory disorders.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhao, Yuguang, Fredrik Svensson, David Steadman, Sarah Frew, Amy Monaghan, Magda Bictash, Tiago Moreira, et al. "Structural Insights into Notum Covalent Inhibition." Journal of Medicinal Chemistry 64, no. 15 (July 22, 2021): 11354–63. http://dx.doi.org/10.1021/acs.jmedchem.1c00701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lundstrøm, Jon, and Daniel Bojar. "Structural insights into host–microbe glycointeractions." Current Opinion in Structural Biology 73 (April 2022): 102337. http://dx.doi.org/10.1016/j.sbi.2022.102337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Lili, Haoran Zhang, Panjing Lv, Yan Li, Maikun Teng, Yahui Liu, and Donghai Wu. "Structural Insights into Mouse H-FABP." Life 12, no. 9 (September 16, 2022): 1445. http://dx.doi.org/10.3390/life12091445.

Full text
Abstract:
Intracellular fatty acid-binding proteins are evolutionarily highly conserved proteins. The major functions and responsibilities of this family are the regulation of FA uptake and intracellular transport. The structure of the H-FABP ortholog from mouse (Mus musculus) had not been revealed at the time this study was completed. Thus, further exploration of the structural properties of mouse H-FABP is expected to extend our knowledge of the model animal’s molecular mechanism of H-FABP function. Here, we report the high-resolution crystal structure and the NMR characterization of mouse H-FABP. Our work discloses the unique structural features of mouse H-FABP, offering a structural basis for the further development of small-molecule inhibitors for H-FABP.
APA, Harvard, Vancouver, ISO, and other styles
43

Elliott, Richard M. "Orthobunyaviruses: recent genetic and structural insights." Nature Reviews Microbiology 12, no. 10 (September 8, 2014): 673–85. http://dx.doi.org/10.1038/nrmicro3332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hendrickson, W. A., E. Martinez-Hackert, and Q. Liu. "Structural insights into molecular chaperone activity." Acta Crystallographica Section A Foundations of Crystallography 64, a1 (August 23, 2008): C15. http://dx.doi.org/10.1107/s0108767308099571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Oliva, Maria A., Suzanne C. Cordell, and Jan Löwe. "Structural insights into FtsZ protofilament formation." Nature Structural & Molecular Biology 11, no. 12 (November 21, 2004): 1243–50. http://dx.doi.org/10.1038/nsmb855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sakmar, Thomas P., Santosh T. Menon, Ethan P. Marin, and Elias S. Awad. "Rhodopsin: Insights from Recent Structural Studies." Annual Review of Biophysics and Biomolecular Structure 31, no. 1 (June 2002): 443–84. http://dx.doi.org/10.1146/annurev.biophys.31.082901.134348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Herbst, Sabine, Noa Lipstein, Olaf Jahn, and Andrea Sinz. "Structural insights into calmodulin/Munc13 interaction." Biological Chemistry 395, no. 7-8 (July 1, 2014): 763–68. http://dx.doi.org/10.1515/hsz-2014-0134.

Full text
Abstract:
Abstract Munc13 proteins are essential presynaptic regulators that mediate synaptic vesicle priming and play a role in the regulation of neuronal short-term synaptic plasticity. All four Munc13 isoforms share a common domain structure, including a calmodulin (CaM) binding site in their otherwise divergent N-termini. Here, we summarize recent results on the investigation of the CaM/Munc13 interaction. By combining chemical cross-linking, photoaffinity labeling, and mass spectrometry, we showed that all neuronal Munc13 isoforms exhibit similar CaM binding modes. Moreover, we demonstrated that the 1-5-8-26 CaM binding motif discovered in Munc13-1 cannot be induced in the classical CaM target skMLCK, indicating unique features of the Munc13 CaM binding motif.
APA, Harvard, Vancouver, ISO, and other styles
48

Moiseenkova-Bell, Vera. "Structural Insights into TRPV Channel Gating." FASEB Journal 34, S1 (April 2020): 1. http://dx.doi.org/10.1096/fasebj.2020.34.s1.00174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Karakas, Erkan, Heather L. Wilson, Tyler N. Graf, Song Xiang, Sandra Jaramillo-Busquets, K. V. Rajagopalan, and Caroline Kisker. "Structural Insights into Sulfite Oxidase Deficiency." Journal of Biological Chemistry 280, no. 39 (July 27, 2005): 33506–15. http://dx.doi.org/10.1074/jbc.m505035200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Harrison, Charlotte. "Structural insights into allosteric GPCR drugs." Nature Reviews Drug Discovery 12, no. 12 (November 29, 2013): 906. http://dx.doi.org/10.1038/nrd4188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography