Academic literature on the topic 'Structural geology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural geology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Structural geology"

1

Weber, John, and Kurt L. Frankel. "Structural Geology." Eos, Transactions American Geophysical Union 92, no. 20 (May 17, 2011): 174. http://dx.doi.org/10.1029/2011eo200009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lelubre, Maurice. "Structural geology." Earth-Science Reviews 30, no. 3-4 (June 1991): 330. http://dx.doi.org/10.1016/0012-8252(91)90009-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lisle, Richard. "Structural geology." Journal of Structural Geology 15, no. 6 (June 1993): 809. http://dx.doi.org/10.1016/0191-8141(93)90065-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghute, Bhagwan. "Structural Geology." Journal of Palaeosciences 72, no. 1 (July 14, 2023): 67–68. http://dx.doi.org/10.54991/jop.2023.1850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Searight, Thomas Kay, and David Henry Malone. "A Geologic Mapping Problem for Structural Geology Class." Journal of Geoscience Education 44, no. 3 (May 1996): 253–58. http://dx.doi.org/10.5408/1089-9995-44.3.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adhitya, Bagus, Hari Wiki Utama, Anggi Deliana Siregar, Magdalena Ritonga, and Yulia Morsa Said. "Pembuatan maket geologi struktur sebagai bahan ajar di Jurusan Teknik Kebumian Fakultas Sains dan Teknologi Universitas Jambi." Transformasi: Jurnal Pengabdian Masyarakat 17, no. 2 (December 31, 2021): 279–86. http://dx.doi.org/10.20414/transformasi.v17i2.4020.

Full text
Abstract:
[Bahasa]: Geologi Struktur adalah salah satu mata kuliah yang ada pada kurikulum Program Studi Teknik Geologi, Teknik Pertambangan dan Teknik Geofisika yang dikelola oleh Jurusan Teknik Kebumian. Mata kuliah ini mempelajari bentukan atau struktur batuan penyusun kerak bumi, arsitektur batuan penyusun kerak bumi, dan bagaimana proses pembentukan struktur geologi. Identifikasi masalah yang ditemui adalah belum optimalnya hasil pembelajaran pada mata kuliah geologi struktur pada masa pandemi karena tidak adanya alat praktikum yang dapat digunakan untuk menggantikan kegiatan observasi lapangan. Di sisi lain observasi lapangan terhadap struktur geologi secara langsung sulit untuk dilaksanakan dan memiliki resiko yang cukup besar. Solusi dari permasalahan tersebut adalah dilakukan pembuatan maket geologi struktur taman bumi (Geopark) Merangin, Jambi. Kegiatan pengabdian kepada masyarakat ini bertujuan untuk membuat maket geologi struktur sebagai bahan ajar yang dapat menjadi alternatif pembelajaran dan praktikum pengukuran struktur dasar di masa pandemi Covid-19. Metode yang digunakan dalam menyelesaikan permasalahan mitra adalah metode problem solving. Dari hasil pengukuran strike & dip diperoleh kedudukan pada sayap kiri lipatan maket geologi struktur berarah N 218oE/38o (Barat Daya) sedangkan pada sayap kanan lipatan maket geologi struktur berarah N 25oE/24o (Timur Laut). Maket geologi yang dibuat memiliki struktur berupa antiklin dengan bagian tengah mengalami pergeseran karena struktur sesar. Hasil analisis data struktur sesar merupakan sesar mendatar naik kanan, dengan kedudukan bidang sesar N 42°E/66°, Plunge/Bearing 80°N 87°E, dan Rake 45°. Pembuatan maket geologi struktur sangat bemanfaat dalam menambah pemahaman mahasiswa pada mata kuliah geologi struktur. Mahasiswa dapat mengetahui pengukuran struktur dasar sebelum terjun ke lapangan secara langsung sehingga mereka akan lebih siap saat melakukan kuliah lapangan. Kata Kunci: maket geologi struktur, bahan ajar, geopark Merangin [English]: Structural Geology is one of the courses in the curriculum of Geological Engineering, Mining Engineering, and Geophysical Engineering managed by the Department of Earth Engineering. This course studies the formation or structure of the rocks that make up the earth's crust, the architecture of the rocks that make up the earth's crust, and how the geological structure is formed. The problems identified were the non-optimal learning outcomes in the structural geology course during the pandemic and the absence of practical tools that can be used for field observation activities. On the other hand, field observations of geological structures directly are very difficult to carry out and have great risks. The solution to this problem is to make a geological structure scale model of the Earth Park (Geopark) Merangin, Jambi. This community service program aims to create structural geology mockups as teaching materials that can be alternative learning and practicum for measuring basic structures during the Covid-19 pandemic. The method used in this program was problem-solving. From the result of the strike and dip measurement, the position was obtained on the left-wing of the geological model fold of the structure withN N 218oE/38o direction (Southwest). While on the right-wing of the geological model fold of the structure, the direction was N 218oE/38o (Northeast). The developed geological scale model has a structure in the form of an anticline with the center shifting due to the fault. Data analysis resulted in the position of the fault plane N 42°E/66°, Plunge/Bearing 80°N 87°E, and Rake 45°. Making a structural geology scale model is very useful in increasing students' understanding of the structural geology course. They can know the measurement of basic structures before going to the field directly so that the students will be better prepared when doing the field trip. Keywords: structural geology mockup, teaching materials, merangin geopark
APA, Harvard, Vancouver, ISO, and other styles
7

Bailey, Christopher McNeill. "An Integrative Geologic Mapping Project for Structural-Geology Courses." Journal of Geoscience Education 46, no. 3 (May 1998): 245–51. http://dx.doi.org/10.5408/1089-9995-46.3.245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peacock, David. "3-D Structural Geology." Earth-Science Reviews 51, no. 1-4 (August 2000): 213–14. http://dx.doi.org/10.1016/s0012-8252(00)00013-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hancock, P. L. "Principles of structural geology." Journal of Structural Geology 8, no. 6 (January 1986): 721. http://dx.doi.org/10.1016/0191-8141(86)90079-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Treagus, J. E. "Foundations of Structural Geology." Journal of Structural Geology 11, no. 8 (January 1989): 1057. http://dx.doi.org/10.1016/0191-8141(89)90061-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Structural geology"

1

McClay, K. R. "Structural geology and tectonics /." Title page, contents and abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09SD/09sdm126.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiani, Tayebeh. "Modeling for geospatial database : application to structural geology data : application to structural geology data." Paris 6, 2010. http://www.theses.fr/2010PA066057.

Full text
Abstract:
L’objectif de cette étude est de créer un modèle de base de données dans un système d’information géographique afin d’archiver, analyser, présenter et de diffuser des données observées lors des analyses de géologie structurale. Le modèle de données est conçu pour atteindre quatre objectifs: établir un vocabulaire partagé par les spécialistes, modéliser les concepts de géologie structurale, produire des cartes dérivées des cartes géologiques d’Iran et fonctionner avec un logiciel de système d’information géographique. Un ensemble de classes conceptuelles est alors identifié pour représenter les concepts de base de la géologie structurale pour les objets contacts, plis, foliations, fractures (failles et joints), linéations et zones de cisaillement. Un modèle conceptuel unifié est construit pour chaque famille. Puis, le modèle logique de données, présenté en langage UML à l’aide de diagrammes de classes statiques, est développé. Les étapes dans l’élaboration du modèle de données incluent l’identification des classes, la création des diagrammes de classes, la déclaration des attributs et des associations. Les cartes géologiques d’Iran au 1:250 000 sont ici utilisées comme base de présentation d’un modèle conceptuel permettant l’unification et la préparation d’une légende unique d’un ensemble pilote de quatre cartes. Les résultats de l’étude fondent les principaux concepts et les structures des données pour représenter l’information spatiale en géologie structurale et fournissent un modèle pour créer une base de données permettant la gestion des données de géologie structurale avec un système d’information géographique
APA, Harvard, Vancouver, ISO, and other styles
3

Lisle, Richard John. "Techniques of quantitative structural geology." Thesis, University of Birmingham, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, John Frederick. "Structural geology of the Ohio Shale." Connect to resource, 1996. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1163610177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zahid, Khandaker Uddin Ashraf. "Provenance and basin tectonics of Oligocene-Miocene sequences of the Bengal Basin, Bangladesh." Auburn, Ala., 2005. http://repo.lib.auburn.edu/2005%20Fall/Thesis/ZAHID_KHANDAKER_14.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bauer, Tobias. "Structural and sedimentological reconstruction of the inverted Vargfors basin : a base for 4D-modelling." Licentiate thesis, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17596.

Full text
Abstract:
The Palaeoproterozoic Skellefte mining district in northern Sweden covers an area of 120 by 30 km and is one of the most important mining districts in Europe, producing mainly Zn, Cu, Pb, As and Au from volcanogenic massive sulfide (VMS) and orogenic gold deposits.Detailed mapping of structures and stratigraphy within the sedimentary Vargfors Group combined with a structural analysis revealed a syn-extensional fault pattern of NW-SE-trending normal faults and associated NE-SW-trending transfer faults, creating the segmented sedimentary Vargfors basin. It comprises distinct fault-bound compartments, which incluence the sedimentary stratigraphy in each of these compartments.Syn-rift subsidence affected the sedimentary conditions from near-shore to shallow submarine environment.Intensive fault movements associated with mafic volcanic activity along these faults resulted in the rapid uplift of the oldest phase of the Jörn intrusive complex and/or subsidence of its surrounding areas. Subsequent erosion of the intrusive rocks led to the formation of a tonalite to granodiorite bearing conglomeratic sequence, representing an alluvial fan. Further uplift to the north of the district resulted in the erosion of Arvidsjaur volcanic rocks and the formation of a braided river system. Subsidence of the intrusive complex and/or a sedimentary coverage on top of the same caused a break in sedimentation of tonalite to granodiorite clasts. Stratigraphical evolution of the sedimentary rocks and the Vargfors Group - Skellefte Group contact relationships show that rifting started in the centre and proceeded with time towards SE and NW. Subsequent basin inversion resulted in the reactivation of the existing normal faults along a carbonate-rich basal layer forming asymmetric synclines. Primary geometries of sedimentary strata within each fault-bound compartment controlled their deformation styles. Furthermore, strain was partitioned into the faults, forming high strain zones along the basin margins, where foliations parallel the main faults, and low strain domains in the core of the basin, where foliation is oblique to the main structural grain of the basin. This oblique foliation is either a result of a rotating stress field or a transpressional regime. This case study on basin inversion gives implications for accretion processes along the Svecokarelian Craton margin as well as forthe formation of VMS-deposits and their possible transposition. Basic modelling of the main geological boundaries in the central Skellefte district was performed by integrating data from regional to outcrop scale using the GoCAD (Paradigm) software platform. Available data included geographical and geological data, which were imported from ArcGIS (ESRI) as well as drill-hole data, seismic profiles, resistivity and gravimetry profiles and EM-profiles. Creation of the main geological boundaries utilized GoCAD and SPARSE (Mirageoscience) algorithms, whereas structural geological data was exclusively modelled with SPARSE. Furthermore, this study provides a base for refining the 3-dimensional model and developing a 4-dimensional model, showing the geological evolution of the Skellefte district.
Godkänd; 2010; 20101029 (tobbau); LICENTIATSEMINARIUM Ämnesområde: Malmgeologi/Ore Geology Examinator: Professor Pär Weihed, Luleå tekniska universitet Diskutant: Dr Peter Sorjonen-Ward, GTK, Kuopio, Finland Tid: Torsdag den 16 december 2010 kl 10.00 Plats: F531, Luleå tekniska universitet
APA, Harvard, Vancouver, ISO, and other styles
7

Metzger, Nicolai. "Structural controls on the shear zone hosted, IOCG-style Kiskamavaara Cu-Co-Au mineralization." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74068.

Full text
Abstract:
Sweden is the largest producer of iron ore in the European Union, as well as amongst the top producers for base and precious metals. Much of its mineral wealth derives from northern Norrbotten, type locality of the Kiruna-type-magnetite-apatite ores. Besides the massive iron ore bodies, the region is further recognized as important iron-oxide-copper-gold (IOCG) province, with the world class, Aitik Cu-Au-Ag-(Mo) deposit as its most prominent example (1061 Mt with 0,22% Cu; 0,15ppm Au; 1.3ppm Ag), (Wanhainen et al. 2012, Boliden 2017). The close spatial relation between Aitik, further IOCG style mineralization and the Nautanen Deformation Zone (NDZ), a crustal-scale, approximately N-S trending shear system provides important insights into the complex connection between deformation, reactivated fault systems and the different mineralizing events affecting the area during the Svecofennian period (1.9-1.8 Ga). Whereas this connection is well constrained within the Gällivare mining district (c.f. Martinsson and Wanhainen 2004, Wanhainen et al. 2012, Bauer et al. 2018, Lynch et al. 2018), the northern and southern continuations of the NDZ and its potential to host further mineralization remain unknown. During this study, an area around the Kiskamavaara Cu-Co-Au mineralization was investigated to link its tectonic evolution with regional metallogenic events and compare its alterations and structural regime to that of the highly prospective NDZ. It is suggested that the region was affected by at least two deformation events, D1 and D2, both causing a characteristic alteration assemblage, structural patterns and related mineralization. The identification of pseudotachylitic structures and supergene mineralization argues for a late, brittle, upper crustal event with hydrothermal character during D2. Constraining the Kiskamavaara Cu-Co-Au mineralization to this event allows to propose a genetic link to the known IOCG-style mineralization in the Nautanen area that are generally related to a late, 1.80 Ga period of hydrothermal activity. It is suggested that the Cu-Au mineralization in the Kiskamvaara and Nautanen area formed under similar conditions, hence arguing for a single high strain zone in favor over several locally constrained zones of crustal weakening. If supported in further studies, this finding of a highly prospective NDZ beyond its known extend, might justify more intense exploration in highly strained lithologies between the Kiskamavaara and Nautanen area, as well as north of Mattavaara and south of Gällivare.
APA, Harvard, Vancouver, ISO, and other styles
8

White, Thomas West Steltenpohl Mark G. "Geology of the 1:24,000 Tallassee, Alabama, Quadrangle, and its implications for southern Appalachian tectonics." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Geology_and_Geography/Thesis/White_Thomas_41.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tozer, Craig Hampton. "The influence of inherited structures on the Cenozoic orogeny of the Kyrgyz Tien Shan /." view abstract or download file of text, 2004. http://wwwlib.umi.com/cr/uoregon/fullcit?p3147837.

Full text
Abstract:
Thesis (Ph. D.)--University of Oregon, 2004.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 171-180). Also available for download via the World Wide Web; free to University of Oregon users.
APA, Harvard, Vancouver, ISO, and other styles
10

Andersson, Joel. "Structural evolution of two ore-bearing Palaeoproterozoic metasupracrustal belts in the Kiruna area, Northwestern Fennoscandian Shield." Licentiate thesis, Luleå tekniska universitet, Geovetenskap och miljöteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72034.

Full text
Abstract:
In this project, two key study areas in the northwestern Fennoscandian Shield are under investigation. The “Western supracrustal belt” and “Central Kiruna area” are both located along lithotectonically comparable Rhyacian-Orosirian metasupracrustal belts and both areas are characterized by iron oxide-apatite (IOA) and iron oxide-copper-gold (IOCG)-style mineralizations and related hydrothermal alterations. The area is in general well studied but the structural evolution remains unresolved. In order to build a structural framework for the Kiruna area, the number of deformation events, kinematics, geometries, mineralogy and interrelationships of the dominant structures are under focus in this study. The paired structural-alteration configuration is targeted in order to constrain the relative timing of dominant structures and mineral alteration parageneses in order to use these systems as structural vectors of mineralized systems. Furthermore, the Orosirian stratigraphy is re-evaluated in order to constrain the pre-compressional geological history of the study areas. This is important as it controls the character of the structural development during subsequent compression forming the sub-surface architecture as we see today. The Orosirian stratigraphy suggests the development of a syn-extensional basin in Kiruna where iron oxide-apatite deposits were emplaced. This basin was subsequently inverted accompanied by shearing, folding, and faulting during D1 and D2, refolded during D3, and further fractured during D4. The shortening directions inferred during the deformation events suggest a clockwise rotation of the stress field from NE-SW (D1) to E-W (D2) and finally NNW-SSE (D3). Regional scapolite ± albite alteration is interpreted to be coeval with regional amphibole + magnetite alteration during D1. Mineral alteration parageneses linked to D2 is more potassic in character and often structurally controlled by shear zones. As a regional generalization, the potassic dominated D2-alteration is characterized by sericite ± epidote ± biotite ± chlorite ± magnetite ± sulphide ± K-feldspar. Fe- and Cu-sulphides are concentrated into brittle D2-structures suggesting that a IOCG-style of mineralization can be linked to the potassic D2 event. This implies that iron oxide-apatite emplacement can be linked to the basin development phase, whereas epigenetic Fe- and Cu-sulphides are linked to the basin inversion-phase of the geological evolution, and hence, separated in time and probably not directly genetically linked in Kiruna.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Structural geology"

1

Tevelev, Aleksandr. Structural Geology. ru: INFRA-M Academic Publishing LLC., 2016. http://dx.doi.org/10.12737/18076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhattacharya, A. R. Structural Geology. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

1938-, Moores Eldridge M., ed. Structural geology. New York: W.H. Freeman, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1938-, Moores Eldridge M., ed. Structural geology. 2nd ed. New York, NY: W.H. Freeman, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Park, R. G. Foundations of structural geology. 2nd ed. London: Blackie, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, R. G. Foundations of structural geology. 2nd ed. Glasgow: Blackie, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bayly, Brian. Mechanics in Structural Geology. New York, NY: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4613-9166-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Groshong, Richard H. 3-D Structural Geology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03912-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Groshong, Richard H. 3-D Structural Geology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-31055-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, R. G., ed. Foundations of Structural Geology. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-6576-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Structural geology"

1

Bhattacharya, A. R. "Introduction to Structural Geology." In Structural Geology, 3–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhattacharya, A. R. "Mechanisms of Rock Deformation." In Structural Geology, 319–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhattacharya, A. R. "Strain." In Structural Geology, 47–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhattacharya, A. R. "Attitudes of Structures." In Structural Geology, 17–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhattacharya, A. R. "Concept of Deformation." In Structural Geology, 97–110. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bhattacharya, A. R. "Foliation." In Structural Geology, 271–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhattacharya, A. R. "Folds." In Structural Geology, 113–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bhattacharya, A. R. "Shear-Sense Indicators." In Structural Geology, 357–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhattacharya, A. R. "Deformation and Metamorphism." In Structural Geology, 373–84. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bhattacharya, A. R. "Contractional Regime and Thrust Faults." In Structural Geology, 205–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80795-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Structural geology"

1

Gillespie, P., G. Digranes, and B. Graham. "Structural Curvature Analysis from Borehole Image Interpretation." In Fourth EAGE Borehole Geology Workshop. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.2021626004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kozlowski, E. "Structural Geology of the NW Neuquina Basin." In 4th Simposio Bolivariano - Exploracion Petrolera en las Cuencas Subandinas. European Association of Geoscientists & Engineers, 1991. http://dx.doi.org/10.3997/2214-4609-pdb.115.001eng.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fakhari, Mohammad D. "REVISITING THE STRUCTURAL GEOLOGY OF NORTHWESTERN OHIO." In 50th Annual GSA North-Central Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016nc-275634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marza, P., L. I. Trøan, B. A. Bakke, F. Perna, V. de Leeuw, A. Khan, M. Bower, and H. Charef-Khodja. "Accurate Structural Model in Near-well Space from Borehole Images." In EAGE Borehole Geology Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20142334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pettinelli, R. "Campano-Lucano Apennine Sector - Allochtonous Sheets Structural Setting." In EAGE Conference on Geology and Petroleum Geology of the Mediterranean and Circum-Mediterranean Basins. European Association of Geoscientists & Engineers, 2000. http://dx.doi.org/10.3997/2214-4609.201406014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lavecchia, Giusy. "STRUCTURAL GEOLOGY FOR SEISMOTECTONICS: AN INTERDISCIPLINARY 3D APPROACH." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eichelberger, Nathan, and William B. Hawkins. "Fault Risk Assessment Using Quantitative Structural Geology Techniques." In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2019. http://dx.doi.org/10.15530/urtec-2019-420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Hajri, A., I. Callegari, E. Holzbecher, J. Matter, P. Gouze, D. Roubinet, R. Leprovost, and G. Lods. "Structural and Hydrogeological Study at Oman Drilling Project-BA Site." In Third EAGE Borehole Geology Workshop. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bourke, L., and O. Salafonov. "Borehole image structural modelling and synthetic dip modelling in 3D." In Third EAGE Borehole Geology Workshop. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rice, Aaron K., and Philip J. Bradley. "COMPILED STRUCTURAL DATA FOR CHATHAM COUNTY, NC - UTILIZING GIS TO UNRAVEL STRUCTURAL GEOLOGY PROBLEMS." In 68th Annual GSA Southeastern Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019se-326519.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Structural geology"

1

Eisbacher, G. H. Structural geology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ryan, J. J., and E. C. Syme. Geology, structural geology, central Flin Flon Belt, Manitoba. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1997. http://dx.doi.org/10.4095/209232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ryan, J. J., and E. C. Syme. Geology, structural geology, central Flin Flon Belt, Manitoba. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sanborn-Barrie, M., and T. Skulski. Structural geology, central Sturgeon Lake area, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1998. http://dx.doi.org/10.4095/209936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eisbacher, G. H. Structural geology of northwestern Devon Island, Arctic Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/132834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hall, M. H. Structural geology of the Fairbanks Mining District, central Alaska. Alaska Division of Geological & Geophysical Surveys, 1985. http://dx.doi.org/10.14509/1162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mcclay, K. R. Aspects of the Structural Geology of the Buchans area. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lau, M. H. S., and W. C. Brisbin. Structural geology of the San Antonio Mine, Bissett, Manitoba. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/208177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wildland, A. D., and T. J. Naibert. Structural geology of the Mount Fairplay-Ladue River area. Alaska Division of Geological & Geophysical Surveys, 2021. http://dx.doi.org/10.14509/30738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naibert, T. J. Structural geology observations in the northeast Tanacross map area. Alaska Division of Geological & Geophysical Surveys, 2020. http://dx.doi.org/10.14509/30541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography