Academic literature on the topic 'Structural dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Structural dynamics"

1

Moon, F. C., and E. H. Dowell. "Structural Dynamics." Applied Mechanics Reviews 38, no. 10 (October 1, 1985): 1287–89. http://dx.doi.org/10.1115/1.3143694.

Full text
Abstract:
While much of the linear theory of structural dynamics has been codified in numerous computer software, important problems remain such as inverse methods (modal synthesis or system identification) and optimization problems. Nonlinear problems, however, are a fertile ground for new research, especially those involving large deformations (e.g., crash simulation) and material nonlinearities. Structure interaction problems will continue to be a fruitful area of research including fluid-structure dynamics and interaction with acoustic noise, thermal fields, soils, and electromagnetic forces. For example, new knowledge about unsteady flows around bluff bodies is needed to make significant progress with dynamic interaction problems with bridge and building structures in unsteady winds. A new field which shows great promise for application is the theory of feedback control of flexible structures. Advances in this area could pay off in near-space engineering and robotics. The training of new researchers with backgrounds in both structural dynamics and control theory and experience is a high priority for the control-structure field, however.
APA, Harvard, Vancouver, ISO, and other styles
2

Harding, J. E. "Structural dynamics." Journal of Constructional Steel Research 7, no. 2 (January 1987): 150–51. http://dx.doi.org/10.1016/0143-974x(87)90027-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Corotis, R. B. "Structural dynamics." Structural Safety 12, no. 3 (October 1993): 248. http://dx.doi.org/10.1016/0167-4730(93)90009-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ali, S. A. "Structural dynamics." Engineering Structures 8, no. 4 (October 1986): 287–88. http://dx.doi.org/10.1016/0141-0296(86)90042-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Doltsinis, J. St. "Structural dynamics." Forschung im Ingenieurwesen 53, no. 3 (May 1987): 93. http://dx.doi.org/10.1007/bf02558718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Çakmak, A. Ş. "Structural dynamics." Soil Dynamics and Earthquake Engineering 14, no. 2 (January 1995): 159. http://dx.doi.org/10.1016/0267-7261(95)90000-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blockley, David. "Structural dynamics." Structural Safety 15, no. 3 (September 1994): 237–38. http://dx.doi.org/10.1016/0167-4730(94)90042-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chergui, Majed. "Launching Structural Dynamics." Structural Dynamics 7, no. 6 (November 2020): 060401. http://dx.doi.org/10.1063/4.0000063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Htun, Khin Thanda, and Kyaw Kaung Cho. "Experimental in Structural Dynamics Base Isolation System: Modelling." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 326–35. http://dx.doi.org/10.31142/ijtsrd21704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kam, Joanna, Andrew C. Demmert, Justin R. Tanner, Sarah M. McDonald, and Deborah F. Kelly. "Structural dynamics of viral nanomachines." TECHNOLOGY 02, no. 01 (March 2014): 44–48. http://dx.doi.org/10.1142/s2339547814500034.

Full text
Abstract:
Rotavirus double-layered particles (DLPs) are formed immediately following entry of virions into a host cell. To study the structural dynamics of actively transcribing rotavirus DLPs, we implemented high resolution imaging procedures along with automated computing routines to visualize mRNA synthesis at the nanoscale. Our combined technologies demonstrate a new approach to monitor dynamic structural processes, such as capsid rearrangements, that may be applied to the study of other viruses.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Structural dynamics"

1

Malhotra, Gaurav. "Dynamics of structural priming." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/2751.

Full text
Abstract:
This thesis is about how our syntactic choice changes with linguistic experience. Studies on syntactic priming show that our decisions are influenced by sentences that we have recently heard or recently spoken. They also show that not all sentences have an equal amount of influence; that repetition of verbs increases priming (the lexical-boost effect) and that some verbs are more susceptible to priming than others. This thesis explores how and why syntactic decisions change with time and what these observations tell us about the cognitive mechanism of speaking. Specifically, we set out to develop a theoretical account of syntactic priming. Theoretical accounts require mathematical models and this thesis develops a sequence of mathematical models for understanding various aspects of syntactic priming. Cognitive processes are modelled as dynamical systems that can change their behaviour when they process information. We use these dynamical systems to investigate how each episode of language comprehension or production affects syntactic decisions. We also use these systems to investigate how long priming persists, how groups of consecutive sentences affect structural decisions, why repeating words leads to greater syntactic priming and what this tells us about how words, concepts and syntax are cognitively represented. We obtain two kinds of results by simulating these mathematical models. The first kind of results reveal how syntactic priming evolves over time. We find that structural priming itself shows a gradual decay with time but the lexical enhancement of priming decays catastrophically – a result consistent with experimental observations. We also find that consecutive episodes of language processing add up nonlinearly in memory, which challenges the design of some existing psycholinguistic experiments. The second kind of results reveal how our syntax module might be connected to other cognitive modules. We find that the lexical enhancement of syntactic priming might be a consequence of how the modules of attention and working memory influence syntactic decisions. These models suggest a mechanism of priming that is in contrast to a previous prediction-based account. This prediction-based account proposes that we actively predict what we hear and structural priming is due to error-correction whenever our predictions do not match the stimuli. In contrast, our account embodies syntactic priming in cognitive processes of attention, working memory and long-term memory. It asserts that our linguistic decisions are not based solely on abstract rules but also depend on the cognitive implementation of each module. Our investigations also contribute a novel theoretical framework for studying syntactic priming. Previous studies analyse priming using error-correction or Hebbian learning algorithms. We introduce the formalism of dynamical systems. This formalism allows us to trace the effect of information processing through time. It explains how residual activation from a previous episode might play a role in structural decisions, thereby enriching our understanding of syntactic priming. Since these dynamical systems are also used to model neural processes, this theoretical framework brings our understanding of priming one step closer to its biological implementation, bridging the gap between neural processes and abstract thoughts.
APA, Harvard, Vancouver, ISO, and other styles
2

Bruun, Karianne. "Structural Dynamics of Subsea Structures in Earthquake Prone Regions." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-24328.

Full text
Abstract:
Med utviklingen som har funnet sted innenfor den norske oljebransjen de siste årene har både teknologien og utfordringene blitt mer komplekse. Subsea-operasjoner har blitt mer vanlig og gir utslag i at det på havbunnen i mange felt er sammenkoblede systemer av konstruksjoner. I relasjon til seismisk aktivitet reises da spørsmålet om disse systemene med brønner, rør og andre konstruksjoner kan tåle å bli utsatt for et jordskjelv av en viss størrelse. For å ta et steg i retningen av å besvare dette spørsmålet, dreier denne hovedoppgaven seg om studien av en beskyttelseskonstruksjon som utsettes for grunnakselerasjoner funnet ved probabilistisk evaluering av valgte jordskjelvdata tilgjengelig for den norske kontinentalsokkelen.Den valgte konstruksjonen er lokalisert i Åsgårdfeltet på Haltenbanken vest for midt-Norge. Det er en ganske liten og slank konstruksjon hvis funksjon er å beskytte oljeinstallasjoner fra eventuelle skader forårsaket fra trål og fallende objekter i forbindelse med fiskeriindustrien. I modelleringen av konstruksjonen vurderes den som et produkt av tre forskjellige systemer. Det første systemet er konstruksjonen alene, det andre systemet er jordsystemet og det tredje er fluidsystemet. Dermed ble tre modeller laget der de forskjellige systemegenskapene (fjærer/dempere, hydrodynamiske krefter) ble introdusert stegvis.For å undersøke konstruksjonens respons i forhold til påsatte grunnakselerasjoner, måtte representative tidsrekker for jordskjelv brukes. Disse tidsrekkene ble funnet ved hjelp av probabilistisk vurdering av en syntetisk jorskjelvkatalog. Denne jordskjelvkatalogen ble generert ved å bruke Gutenberg-Richter relasjonen, og de tilhørende parametrene og områdene de gjelder for ble funnet i en rapport angående seismisk inndeling av Norge \cite{zonation}. Jordskjelvparameteren som ble valgt var maksimum grunnakselerasjon (PGA) i både horisontal og vertikal retning estimert ved en relasjon funnet av Ambraseys, med flere \cite{ambhor}\cite{ambver}. Videre ble ordningsstatistikk brukt på de genererte PGA-verdiene ved å bruke Gumbels fordeling for maksima. De resulterende PGA-verdiene i horisontal og vertikal retning ble så brukt for å finne en passende tidsrekke for akselerasjon i en database over jordskjelv for Europa og Midtøsten \cite{esmd}. Deretter ble disse akselerasjonene påsatt de tre modellene og responsen ble evaluert ved ikkelineær direkte implisitt integrasjon. Videre ble en modal analysis av responene utført på den fullt neddykkede modellen for sammenlikningens skyld. Enda en tidsserie ble også påsatt den fullt neddykkede modellen som ble generert basert på det området med høyest seismisk aktivitet, funnet i rapporten nevnt ovenfor for å vurdere det verst tenkelige tilfellet.Resultatene av disse analysene viste at med introduksjon av jord-konstruksjon-interaksjon modellert ved fjærer og dempere, så økte forskyvningene sammenliknet med den fast innspente modellen (konstruksjonen alene). Videre så økte forskyvningene ytterligere ved å introdusere hydrodynamiske krefter. På grunn av små forskyvninger dominerte treghetskreftene responsen for den neddykkede modellen. Med tanke på konstruksjonens oppførsel så ble konstruksjonen nesten ikke affisert av de påsatte grunnakselerasjonene - som er et godt tegn. Imidlertid er det vanskelig å konkludere hvordan andre typer konstruksjoner som rør og platformer ville ha respondert hvis de ble utsatt for de samme grunnakselerasjonene ettersom disse har mye større dimensjoner og annerledes geometri.
APA, Harvard, Vancouver, ISO, and other styles
3

Koksal, Sertac. "Development And Comparative Evaluation Of A New Structural Modification Method In Application To Aircraft Structures." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607557/index.pdf.

Full text
Abstract:
In the development of engineering products, it is necessary to predict dynamic properties of the modified structures. Achieving such predictions by using the structural properties of the original structure and information on the modifications is commonly referred to as structural modification analysis. In this thesis, Ö
zgü
ven&rsquo
s Structural Modification Method and Sherman-Morrison Method are selected as exact methods for structural modifications to predict the dynamics of a locally modified structure. Also, a new structural modification method named as &ldquo
Extended Successive Matrix Inversion Method&rdquo
is developed in this study. These three methods are implemented in a software developed herein, called &ldquo
Structural Modification Toolbox&rdquo
. The software uses modal analysis results of MSC Nastran©
for the original structure and calculates the modified frequency response functions by any of the methods above. In order to validate the software, direct modal analysis results of MSC Nastran©
for the frequency response functions of the modified structure are used. The methods are compared in terms of computational time, and the effectivity of each method is studied as a function of modification size to determine which of these methods is more suitable. In order to investigate the application of the methods and compare their results with experimental ones, modal tests are conducted on a scaled aircraft structure. The solutions are compared with test results obtained from modified test structure. Additionally, the software is used for comparison of real aircraft test results and frequency response functions of the modified structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Edwards, William. "Structural Dynamics in Novel Electrolytes." Thesis, University of Kent, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Balmés, Etienne. "Modelling structural dynamics for control." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/42519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sribalaskandarajah, Kandiah. "A computational framework for dynamic soil-structure interaction analysis /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Molano-Arévalo, Juan Camilo. "Conformational Dynamics of Biomolecules by Trapped Ion Mobility Spectrometry Dynamics." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3647.

Full text
Abstract:
One of the main goals in structural biology is to understand the folding mechanisms and three-dimensional structure of biomolecules. Many biomolecular systems adopt multiple structures as a function of their microenvironment, which makes them difficult to be characterized by traditional structural biology tools (e.g., NMR, X-ray crystallography). As an alternative, complementary tools that can capture and sample multiple conformations needed to be developed. In the present work, we pioneered the application of a new variant of ion mobility spectrometry, trapped ion mobility spectrometry (TIMS), which provides high mobility resolving power and the possibility to study kinetically trapped intermediates as a function of the starting solution (e.g., pH and organic content) and gas-phase conditions (e.g., collisional activation, molecular dopants, hydrogen/deuterium back-exchange). When coupled to mass spectrometry (TIMS-MS), action spectroscopy (IRMPD), molecular dynamics and biochemical approaches (e.g., fluorescence lifetime spectroscopy), a comprehensive description of the biomolecules dynamics and tridimensional structural can be obtained. These new set of tools were applied for the first time to the study of Flavin Adenine Dinucleotide (FAD), Nicotineamide Adenine Dinucleotide (NAD), globular protein cytochrome c (cyt c), the 31 knot YibK protein, 52 knot ubiquitin C terminal hydrolase (UCH) protein, and the 61 knot halo acid dehydrogenase (DehI) protein.
APA, Harvard, Vancouver, ISO, and other styles
8

Kaplan, Matthew Frederick. "Implementation of automated multilevel substructuring for frequency response analysis of structures." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blien, Uwe, and Helge Sanner. "Structural change and regional employment dynamics." Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2007/1442/.

Full text
Abstract:
A casual look at regional unemployment rates reveals that there are vast differences, which cannot be explained by different institutional settings. Our paper attempts to trace these differences in the labor market performance back to the regions' specialization in products that are more or less advanced in their product cycle. The model we develop shows how individual profit and utility maximization endogenously yields higher employment levels in the beginning. In later phases, however, employment decreases in the presence of process innovation. Our model suggests that the only way to escape from this vicious circle is to specialize in products that are at the beginning of their "economic life". The model is based on an interaction of demand and supply side forces.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Gan. "Fe model validation for structural dynamics." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272107.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Structural dynamics"

1

Mukhopadhyay, Madhujit. Structural Dynamics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69674-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krätzig, W. B., O. T. Bruhns, H. L. Jessberger, K. Meskouris, H. J. Niemann, G. Schmid, F. Stangenberg, A. N. Kounadis, and G. I. Schuëller. Structural Dynamics. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paz, Mario. Structural Dynamics. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4684-0018-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paz, Mario. Structural Dynamics. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-7918-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schuëller, G. I., ed. Structural Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-88298-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paz, Mario, and William Leigh. Structural Dynamics. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4615-0481-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paz, Mario. Structural Dynamics. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-9907-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paz, Mario, and Young Hoon Kim. Structural Dynamics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-94743-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strømmen, Einar N. Structural Dynamics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01802-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vértes, Györ°gy. Structural dynamics. Amsterdam: Elsevier, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Structural dynamics"

1

Teng, Quincy. "Protein Dynamics." In Structural Biology, 289–310. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3964-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riggs, H. Ronald, and Solomon Yim. "Structural Dynamics." In Springer Handbook of Ocean Engineering, 851–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-16649-0_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gasch, Robert, and Jochen Twele. "Structural dynamics." In Wind Power Plants, 272–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22938-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Isaac, Philip. "Structural Dynamics." In Design Engineering Refocused, 140–51. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119164838.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Williams, M. S., and J. D. Todd. "Structural dynamics." In Structures, 374–409. London: Macmillan Education UK, 2000. http://dx.doi.org/10.1007/978-1-349-90789-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Black, Jonathan T. "Structural Dynamics." In Testing Large Ultra-Lightweight Spacecraft, 173–210. Reston ,VA: American Institute of Aeronautics and Astronautics, Inc., 2017. http://dx.doi.org/10.2514/5.9781624104657.0173.0210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ohayon, Roger, and Christian Soize. "Structural Dynamics." In Encyclopedia of Applied and Computational Mathematics, 1424–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chau, K. T. "Structural Dynamics." In Applications of Differential Equations in Engineering and Mechanics, 239–90. Boca Raton:Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2019] | bibliographical references and indexes.|: CRC Press, 2019. http://dx.doi.org/10.1201/9780429470646-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gayed, Ramez, and Amin Ghali. "Structural dynamics." In Structural Analysis Fundamentals, 437–82. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429286858-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schuëller, G. I. "Introduction." In Structural Dynamics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-88298-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Structural dynamics"

1

Gawronski, W., and W. Gawronski. "Almost-balanced structural dynamics." In 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khalessi, M. "Design of structural tests for verification of structural reliability." In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

BENAROYA, HAYM, and HOWARD FLEISHER. "Probabilistic aircraft structural dynamics models." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

PAEZ, THOMAS. "Nonlinear structural system modelling." In 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LIBRESCU, L., L. MEIROVITCH, and O. SONG. "Integrated Structural Tailoring and Adaptive Control of Advanced Flight Vehicle Structural Vibration." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CRUSE, T., O. BURNSIDE, Y. T. WU, E. POLCH, and P. FINK. "Probabilistic structural analysis methods for select space propulsion system structural components (PSAM)." In 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Centolanza, Louis, Edward Smith, and Benoy Kumar. "Refined structural modeling and structural dynamics of elastically tailored composite rotor blades." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

WEAVER, M., K. GRAMOLL, and R. ROACH. "STRUCTURAL ANALYSIS OF A FLEXIBLE STRUCTURAL MEMBER PROTRUDING INTO AN INTERIOR FLOW FIELD." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

GAONKAR, G., and D. PETERS. "Review of dynamic inflow modeling for rotorcraft flight dynamics." In 27th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grimsley, Frank. "B-2 Structural Integrity Program." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1466.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Structural dynamics"

1

Inman, Daniel J., Armaghan Salhian, and Pablo Tarazaga. Structural Dynamics of Cable Harnessed Spacecraft Structures. Fort Belvoir, VA: Defense Technical Information Center, July 2013. http://dx.doi.org/10.21236/ada588127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Red-Horse, J. R. Structural system identification: Structural dynamics model validation. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/469145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dayal, Kaushik. Dynamics of Structural Phase Transformations Using Molecular Dynamics. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada606824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reese, Garth M. Sierra Structural Dynamics Theory Manual. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1226110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reese, Garth M. Sierra Structural Dynamics User's Notes. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1226111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baz, Amr R. Virtual Structural Dynamics, Acoustics and Control. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada395200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bunting, Gregory, Nathan K. Crane, David M. Day, Clark R. Dohrmann, Brian Anthony Ferri, Robert C. Flicek, Sean Hardesty, et al. Sierra Structural Dynamics - Users Notes 4.50. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1474020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Crane, Nathan K. Sierra Structural Dynamics Code Verification Plan. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1493843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reese, Garth M., and Sierra Structural Dynamics Development Team. Sierra Structural Dynamics?User?s Notes. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1494182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gali, Jordi, and Mark Gertler. Inflation Dynamics: A Structural Econometric Analysis. Cambridge, MA: National Bureau of Economic Research, February 2000. http://dx.doi.org/10.3386/w7551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography