Academic literature on the topic 'Strontium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Strontium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Strontium"
Tomczyk-Warunek, Agnieszka, Karolina Turżańska, Agnieszka Posturzyńska, Filip Kowal, Tomasz Blicharski, Inés Torné Pano, Anna Winiarska-Mieczan, et al. "Influence of Various Strontium Formulations (Ranelate, Citrate, and Chloride) on Bone Mineral Density, Morphology, and Microarchitecture: A Comparative Study in an Ovariectomized Female Mouse Model of Osteoporosis." International Journal of Molecular Sciences 25, no. 7 (April 6, 2024): 4075. http://dx.doi.org/10.3390/ijms25074075.
Full textMurray, T. "Elementary Scots the Discovery of Strontium." Scottish Medical Journal 38, no. 6 (December 1993): 188–89. http://dx.doi.org/10.1177/003693309303800611.
Full textChristgau, Stephan, Jette Odderhede, Kenny Stahl, and Jens E. T. Andersen. "StrontiumD-glutamate hexahydrate and strontium di(hydrogenL-glutamate) pentahydrate." Acta Crystallographica Section C Crystal Structure Communications 61, no. 6 (May 13, 2005): m259—m262. http://dx.doi.org/10.1107/s0108270105011820.
Full textMAKHIJANI, ARJUN. "STRONTIUM." Chemical & Engineering News 81, no. 36 (September 8, 2003): 100. http://dx.doi.org/10.1021/cen-v081n036.p100.
Full textStahl, Kenny, Jens E. T. Andersen, and Stephan Christgau. "Strontium diibuprofenate dihydrate, strontium malonate sesquihydrate, strontium diascorbate dihydrate and strontium 2-oxidobenzoate hydrate at 120 K." Acta Crystallographica Section C Crystal Structure Communications 62, no. 4 (March 18, 2006): m144—m149. http://dx.doi.org/10.1107/s0108270106005464.
Full textLi, Duo, Shuang Gan, Junfeng Li, Zihan Dong, Qi Long, Shuwei Qiu, Yahong Zhou, and Changyu Lu. "Hydrochemical Characteristics and Formation Mechanism of Strontium-Rich Groundwater in Shijiazhuang, North China Plain." Journal of Chemistry 2021 (March 24, 2021): 1–10. http://dx.doi.org/10.1155/2021/5547924.
Full textGoblet, C., and Y. Mounier. "Activation of skinned muscle fibers by calcium and strontium ions." Canadian Journal of Physiology and Pharmacology 65, no. 4 (April 1, 1987): 642–47. http://dx.doi.org/10.1139/y87-107.
Full textLiu, Chenglun, Longjun Xu, Xueyan Yang, Tiefeng Peng, and Jianjun Ren. "Preparation of strontium ferrite from strontium residue." Chinese Journal of Geochemistry 31, no. 1 (January 5, 2012): 74–77. http://dx.doi.org/10.1007/s11631-012-0551-9.
Full textLi, Gui Qiang, Shou De Wang, Chao Nan Yin, and Ling Chao Lu. "Influence of Strontium Doping on Sintering and Performance of Alite-Rich Cement Clinker." Advanced Materials Research 168-170 (December 2010): 482–87. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.482.
Full textTurżańska, Karolina, Agnieszka Tomczyk-Warunek, Maciej Dobrzyński, Maciej Jarzębski, Rafał Patryn, Joanna Niezbecka-Zając, Monika Wojciechowska, Aneta Mela, and Aneta Zarębska-Mróz. "Strontium Ranelate and Strontium Chloride Supplementation Influence on Bone Microarchitecture and Bone Turnover Markers—A Preliminary Study." Nutrients 16, no. 1 (December 27, 2023): 91. http://dx.doi.org/10.3390/nu16010091.
Full textDissertations / Theses on the topic "Strontium"
Lehnen, Peer. "Relaxoreigenschaften von Strontium-Barium-Niobat - Relaxor Properties of Strontium-Barium-Niobate." Gerhard-Mercator-Universitaet Duisburg, 2001. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-12132001-102821/.
Full textMcNicholas, Kyle M. "Characterization of Native Point Defects in Barium Strontium Titanate / Strontium Titanate Heterostructures." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337970955.
Full textMarshall, Matthew Spiro James. "Nanostructured strontium titanate surfaces." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509992.
Full textJia, Jingyi. "Strontium -90 Radiation Detection." Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-23308.
Full textSinger, David Marc. "Uranium and strontium (bio)geochemistry : limits on uranium and strontium mobility in the environment /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textLanglais, Joseph. "Strontium extraction by aluminothermic reduction." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22447.
Full textAn experimental program involving eight experiments was carried out. The experimental procedure consisted in essence of melting the aluminum reductant in a crucible and adding the source material, SrCO$ sb3,$ and other reactant (Mg or Bi). (Abstract shortened by UMI.)
Millen, James. "A cold strontium Rydberg gas." Thesis, Durham University, 2011. http://etheses.dur.ac.uk/849/.
Full textScaffidi, Thomas. "Unconventional superconductivity in strontium ruthenate." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:af08bf3f-3934-48f1-89af-a897948172fb.
Full textFuentes, López-Doriga Víctor. "Resistive Switching in Strontium Iridates." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671961.
Full textEsta Tesis estudia las propiedades de conmutación resistiva en capas delgadas de la serie de Ruddlensen-Popper de Iridatos de Estroncio (Srn+1IrnO3n+1), poniendo el foco en los efectos de las transiciones metal-aislante de estas fases en las características de la conmutación resistiva. Con el objetivo de alcanzar este propósito, la deposición de iridatos mediante la pulverización catódica es estudiada. En el transcurso de la investigación se encontró que la pulverización catódica, a diferencia de la deposición por pulsos de láser, presenta un crecimiento preferencial para el miembro perovskita de la familia con desviaciones en la estequiometría nominal. Este crecimiento está controlado principalmente por procesos cinéticos i posee un gran efecto de reemisión observado a altas temperaturas. Una caracterización microstructural completa nos muestra que las capas obtenidas son planas, estables, homogéneas y poseen un alto nivel de cristalinidad. Además, las condiciones de deposición de estas capas fueron alteradas para ajustar la morfología de las capas des de topografías planas a nanoestructuras con agujeros, los cuales pueden ser ordenados de acuerdo con el sustrato. Con el objetivo de tener un punto de comparación, capas de Sr2IrO4 han sido crecidas mediante deposición por pulsos de láser. Una vez obtenidas capas de alta calidad de las fases SrIrO3 y Sr2IrO4, sus propiedades eléctricas son evaluadas. Por una parte, las capas de Sr2IrO4 presentaron un comportamiento aislante, el cual refleja su naturaleza de aislante de Mott, por otra parte, las capas gruesas de SrIrO3 mostraron un estado base semimetálico. Reduciendo el grosor de estas últimas una transición Metal-Aislante puede ser desencadenada a bajas temperaturas. Este régimen, el cual exhibe magnetoresistencia negativa a bajas temperaturas, está en consonancia con el mecanismo de localización débil en 2D, indicando el desorden como el origen de la transición. Una reducción a grosores más bajos lleva el sistema a un cambio abrupto hacia un comportamiento totalmente aislante acompañado por un incremento significativo de la magnetoresistencia negativa i un desplazamiento leve en el balance de los portadores, el cual fue medido por efecto Hall. Este comportamiento puede ser atribuido a una localización fuerte de Anderson. Las capas nanoestructuradas también presentaron la misma transición pero con una evolución más suave de sus propiedades. Las medidas eléctricas locales realizadas con Microscopía de fuerza Atómica de corriente y la microscopía de sonda Kelvin probaron que ambas fases poseen propiedades robustas de conmutación resistiva. Sin embargo, el estado base electrónico de cada capa tiene un impacto en las características de la conmutación. Mientras que las capas semimetálicas de SrIrO3 mostraron una transiciónsuave entre los estados de resistencia, las capa ultradelgadas aislantes presentaron un voltaje umbral a 2 V. esta conmutación más abrupta es replicada también por las capas aislantes de Sr2IrO4, que exhibieron un lindar a 4,5 V. Un modelo de mecanismo basado en la adición y substracción de vacantes de oxígeno en la superficie de las capas es propuesto para explicar los resultados obtenidos. Los cambios de estado de resistencia son atribuidos a desplazamientos en el nivel de Fermi de los materiales. Por una parte, la continuidad de estados electrónicos en capas semimetálicas causa una conmutación suave. Por otra parte, la presencia de estados localizados de Anderson o una separación energética de Mott crea una barrera energética que fuerza al sistema a una conmutación más abrupta modelada por el voltaje umbral.
The present thesis studies the Resistive Switching properties in Ruddlensen-Popper strontium iridates (Srn+1IrnO3n+1) thin films, focusing on the effect of Metal-Insulator Transitions of these phases in the Resistive Switching features. In order to achieve this purpose, the deposition of iridates by sputtering is studied. During the course of the research it was found that the sputtering technique, unlike the more studied PLD, presents a preferential growth for the perovskite member of the family (SrIrO3) with deviations from the nominal stoichiometry. This growth is mainly controlled by kinetic processes with a large resputtering effect observed at high temperatures. A complete microstructural characterization has shown that the obtained films are flat, stable, homogeneous and possess a high level of crystallinity. Additionally, the conditions of deposition in these films were altered to tune the morphology of the film from flat to a nanostructured topography with holes that can be ordered according to the underlying substrate. For the sake of comparison, Sr2IrO4 films were grown by PLD. After obtaining high quality films of the SrIrO3 and Sr2IrO4 phases, their electrical properties are evaluated. While Sr2IrO4 films presented an insulating behavior, which reflects their Mott insulator nature, the thick perovskite SrIrO3 films showed a semimetallic ground state. As the thickness of the SrIrO3 film is reduced a Metal-Insulator Transition is triggered at low temperature. This regime, exhibiting negative magnetoresistance at low temperature, is in well agreement with the Weak localization mechanism in 2D indicating the disorder as the origin of the transition. Further lowering the thickness leads to an abrupt change of behavior to a fully insulating film that is accompanied by a significant increase of the negative magnetoresistance and a slight change in the balance between carriers as measured by Hall Effect. This behavior may be attributed to strong Anderson-like localization. The nanostructured films also presented the same transition but with a softer evolution of the properties. Local electric measurements performed with Conductive Atomic Force Microscopy and Kelvin Probe Force Microscopy proved that both studied phases possess robust bipolar Resistive Switching. Nevertheless, the electronic ground state of each film has a significant impact on the characteristics of this switching. While the thick semimetallic SrIrO3 films showed a smooth transition between resistance states, the insulating thinnest films presented a clear threshold at 2 V. This more abrupt switching is also replicated by the insulating Sr2IrO4 film, which exhibited a 4.5 V threshold. A mechanism model based in the addition or subtraction of oxygen vacancies in the interface of the films is proposed to explain the observed results. The changes in the resistance state are attributed to shifts in the Fermi level of the materials. On one hand, the continuum of electronic states in the semimetallic films causes a soft switching. On the other hand, the presence of Anderson localized states or a Mott band gap create an energy barrier that forces the system into a more abrupt switching shaped by a threshold.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
Branfield, Thomas. "Aspects of strontium titanate nanomaterials." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.682183.
Full textBooks on the topic "Strontium"
Paul, Howe, World Health Organization, Inter-Organization Programme for the Sound Management of Chemicals, and International Labour Organisation, eds. Strontium and strontium compounds. Geneva: World Health Organization, 2010.
Find full textUnited States. Agency for Toxic Substances and Disease Registry. Division of Toxicology. Strontium. Atlanta, GA: Division of Toxicology, Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances Disease Registry, 2004.
Find full textOber, Joyce A. Strontium--uses, supply, and technology. Washington, DC: U.S. Dept. of the Interior, Bureau of Mines, 1989.
Find full textFerrell, John E. Strontium: A chapter from Mineral facts and problems, 1985 edition. [Washington, D.C.?]: U.S. Dept. of the Interior, Bureau of Mines, 1985.
Find full textMeasurements, National Council on Radiation Protection and. Some aspects of strontium radiobiology. Bethesda, MD: The Council, 1991.
Find full textPathak, Pankaj, and Dharmendra K. Gupta, eds. Strontium Contamination in the Environment. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15314-4.
Full textIndependent Review Group on Retention of Organs at Post-Mortem. Report on strontium-90 research. [Edinburgh: Stationery Office], 2002.
Find full textBasabe, Jacqueline. Gel-processing of strontium ferrite. Manchester: University of Manchester, 1993.
Find full textLeung, Kon H. The Strontium Molecular Lattice Clock. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47647-1.
Full textMonz, Ludwin. Eine neue, optische Methode zum Spurennachweis von Strontium-90 und Strontium-89 in Umweltproben. [s.l.]: [s.n.], 1992.
Find full textBook chapters on the topic "Strontium"
Nebel, Oliver. "Strontium." In Encyclopedia of Earth Sciences Series, 1–3. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_138-1.
Full textNebel, Oliver. "Strontium." In Encyclopedia of Earth Sciences Series, 1377–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_138.
Full textMeißner, D., and T. Arndt. "Strontium." In Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_2924-1.
Full textMeißner, D., and T. Arndt. "Strontium." In Springer Reference Medizin, 2229–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_2924.
Full textBrookins, Douglas G. "Strontium." In Eh-pH Diagrams for Geochemistry, 166–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73093-1_59.
Full textBurton, James H. "Strontium isotopes." In Encyclopedia of Geoarchaeology, 916–19. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-1-4020-4409-0_28.
Full textNebel, Oliver, and Jessica A. Stammeier. "Strontium Isotopes." In Encyclopedia of Earth Sciences Series, 1–6. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_137-1.
Full textNebel, Oliver, and Jessica A. Stammeier. "Strontium Isotopes." In Encyclopedia of Earth Sciences Series, 1379–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_137.
Full textBährle-Rapp, Marina. "Strontium Acetate." In Springer Lexikon Kosmetik und Körperpflege, 535. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10128.
Full textBährle-Rapp, Marina. "Strontium Chloride." In Springer Lexikon Kosmetik und Körperpflege, 535. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10129.
Full textConference papers on the topic "Strontium"
Vuchkov, N. K., and D. N. Astadjov. "Strontium recombination laser." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cthq4.
Full textKillian, T. C., Y. N. Martinez, P. G. Mickelson, S. B. Nagel, P. Pellegrini, and R. Côté. "Ultracold Collisions in Atomic Strontium." In Laser Science. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ls.2007.lwh1.
Full textYasuda, M., T. Kishimoto, M. Takamoto, and H. Katori. "Photoassociation spectroscopy of ultracold strontium." In International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1560870.
Full textBarwood, G. P., P. Gill, H. A. Klein, K. Hosaka, G. Huang, S. N. Lea, H. S. Margolis, K. Szymaniec, and B. R. Walton. "Trapped strontium ion optical clock." In International Conference on Space Optics 2006, edited by Errico Armandillo, Josiane Costeraste, and Nikos Karafolas. SPIE, 2017. http://dx.doi.org/10.1117/12.2308177.
Full textMitchell, Lee, Bernard Phlips, Emily G. Jackson, Theodore T. Finne, Richard S. Woolf, and Neil Johnson. "Strontium Iodide Radiation Instrumentation (SIRI)." In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX, edited by Oswald H. Siegmund. SPIE, 2017. http://dx.doi.org/10.1117/12.2272606.
Full textPallecchi, Ilaria, Giuseppe Grassano, Daniele Marre, Luca Pellegrino, Marina Putti, and Antonio S. Siri. "Strontium titanate field effect heterostructures." In AeroSense 2000, edited by Davor Pavuna and Ivan Bozovic. SPIE, 2000. http://dx.doi.org/10.1117/12.397858.
Full textWenkun Zhu and Xuegang Luo. "Microbiological precipitation of strontium carbonate." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965957.
Full textLyon, Mary, James L. Archibald, Christopher J. Erickson, and Dallin S. Durfee. "Laser Cooled Strontium Ion Source." In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.jtua64.
Full textBookjans, E., S. Bilicki, G. Vallet, R. Letargat, and J. Lodewyck. "Operational strontium optical lattice clocks." In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). IEEE, 2016. http://dx.doi.org/10.1109/cpem.2016.7540549.
Full textBober, M., A. Tonoyan, A. Gogyan, M. Witkowski, M. Zawada, P. Ablewski, S. Bilicki, et al. "Strontium Optical Atomic Clocks in KL FAMO Blue Detuned Lattice for Strontium Atoms and Project of a Continuous Active Optical Clock with Cold Strontium Atoms." In 2019 Joint Conference of the IEEE International Frequency Control Symposium anEuropean Frequency and Time Forum (EFTF/IFC). IEEE, 2019. http://dx.doi.org/10.1109/fcs.2019.8856092.
Full textReports on the topic "Strontium"
Hoeffner, S. L. Strontium Sorption onto SRP Soils. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/782826.
Full textBone, Alexandria N. Optimization of a Strontium Aluminate. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1376499.
Full textT. A. Todd, T. A. Todd, J. D. Law, and R. S. Herbst. Cesium and Strontium Separation Technologies Literature Review. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/910643.
Full textDuff, M. C. Characterization of Sorbed Strontium on Monosodium Titanate. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/786589.
Full textQuinlan, Kenneth P., Robert M. Hilton, and Joseph A. Adamski. Preparation of the Superconductor Substrate: Strontium Titanate. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada206800.
Full textMonetti, M. A. Worldwide deposition of strontium-90 through 1990. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/243453.
Full textD. D. Brown A. S. Nagel. Strontium-90 Error Discovered in Subcontract Laboratory Spreadsheet. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/12185.
Full textMei, Renwei. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1347721.
Full textHeid, Christy A., Brian P. Ketchel, Gary L. Wood, Richard J. Anderson, and Gregory J. Salamo. 3-D Holographic Display Using Strontium Barium Niobate. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada338490.
Full textWeld, David M. Quantum Simulation and Quantum Sensing with Ultracold Strontium. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada623194.
Full text