Academic literature on the topic 'Strongly interacting quantum systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Strongly interacting quantum systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Strongly interacting quantum systems"

1

Kasztelan, Christian. "Strongly Interacting Quantum Systems out of Equilibrium." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-124827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Antonio, R. G. "Quantum computation and communication in strongly interacting systems." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469437/.

Full text
Abstract:
Each year, the gap between theoretical proposals and experimental endeavours to create quantum computers gets smaller, driven by the promise of fundamentally faster algorithms and quantum simulations. This occurs by the combination of experimental ingenuity and ever simpler theoretical schemes. This thesis comes from the latter perspective, aiming to find new, simpler ways in which components of a quantum computer could be built. We first search for ways to create quantum gates, the primitive building blocks of a quantum computer. We find a novel, low-control way of performing a two-qubit gate on qubits encoded in a decoherence-free subspace, making use of many-body interactions that may already be present. This includes an analysis of the effect of control errors and magnetic field fluctuations on the gate. We then present novel ways to create three-qubit Toffoli and Fredkin gates in a single step using linear arrays of qubits, including an assessment of how well these gates could perform, for quantum or classical computation, using state-of-the-art ion trap and silicon donor technology. We then focus on a very different model from the normal circuit model, combining ideas from measurement-based quantum computation (MBQC) and holonomic quantum computation. We generalise an earlier model to show that all MBQC patterns with a property called gflow can be converted into a holonomic computation. The manifestation of the properties of MBQC in this adiabatically driven model is then explored. Finally, we investigate ways in which quantum information can be communicated between distant parties, using minimally engineered spin chains. The viability of using 1D Wigner crystals as a quantum channel is analysed, as well as schemes using ideal uniform spin chains with nextneighbour interactions, and edge-locking effects.
APA, Harvard, Vancouver, ISO, and other styles
3

Thomson, Steven. "The effects of disorder in strongly interacting quantum systems." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9441.

Full text
Abstract:
This thesis contains four studies of the effects of disorder and randomness on strongly correlated quantum phases of matter. Starting with an itinerant ferromagnet, I first use an order-by-disorder approach to show that adding quenched charged disorder to the model generates new quantum fluctuations in the vicinity of the quantum critical point which lead to the formation of a novel magnetic phase known as a helical glass. Switching to bosons, I then employ a momentum-shell renormalisation group analysis of disordered lattice gases of bosons where I show that disorder breaks ergodicity in a non-trivial way, leading to unexpected glassy freezing effects. This work was carried out in the context of ultracold atomic gases, however the same physics can be realised in dimerised quantum antiferromagnets. By mapping the antiferromagnetic model onto a hard-core lattice gas of bosons, I go on to show the importance of the non-ergodic effects to the thermodynamics of the model and find evidence for an unusual glassy phase known as a Mott glass not previously thought to exist in this model. Finally, I use a mean-field numerical approach to simulate current generation quantum gas microscopes and demonstrate the feasibility of a novel measurement scheme designed to measure the Edwards-Anderson order parameter, a quantity which describes the degree of ergodicity breaking and which has never before been experimentally measured in any strongly correlated quantum system. Together, these works show that the addition of disorder into strongly interacting quantum systems can lead to qualitatively new behaviour, triggering the formation of new phases and new physics, rather than simply leading to small quantitative changes to the physics of the clean system. They provide new insights into the underlying physics of the models and make direct connection with experimental systems which can be used to test the results presented here.
APA, Harvard, Vancouver, ISO, and other styles
4

Carleo, Giuseppe. "Spectral and dynamical properties of strongly correlated systems." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4289.

Full text
Abstract:
In the first part of the Thesis we mostly concentrate on spectral properties of strongly correlated systems and on their equilibrium properties. This is accomplished by the general concept of imaginary-time dynamics which we apply to a number of different problems in which different strengths of this approach emerge. In Chapter 1 we introduce the formalism that allows for a connection between the quantum and the classical worlds. The connection is established by means of the imaginary-time quantum evolution which, under certain circumstances, is shown to be equivalent to a classical stochastic process. It is further shown that exact static and spectral properties of correlated systems can be obtained when this mapping is feasible. The relationship between the imaginary-time dynamics in different frameworks such as the path-integral and the perturbative one is also underlined. In Chapter 2 we present a specific implementation of the general ideas previously presented. In particular we introduced an extension to lattice systems of the Reptation Monte Carlo algorithm [30] which benefits of a sampling scheme based on directed updates. Specific improvements over the existing methodologies consist in the unbiased evaluation of the imaginary-time path integrals for bosons and a systematic scheme to improve over the Fixed-node approximation for fermions. Applications to the Hubbard and the Heisenberg models are presented. In Chapter 3 we demonstrate the application of the imaginary-time dynamics to the exact study of spectral properties. Subject of our attention is a highly anharmonic and correlated quantum crystal such as Helium 4 at zero temperature.[33] Concerning this system, we have obtained the first ab-initio complete phonon dispersion in good agreement with neutron spectroscopy experiments. Moreover, we have also studied the density excitations of solid helium in a region of wave-vectors in between the collective (phonon) and the single-particle regimes, where the presence of residual coherence in the dynamics shows analogies between the highly anharmonic crystal and the superfluid phase. In Chapter 4 we introduce a novel method, based on the imaginary-time dynamics, to obtain unbiased estimates of fermionic properties.[34] By means of this method and of a very accurate variational state, we provide strong evidence for the stability of a saturated ferromagnetic phase in the high-density regime of the two-dimensional infinite-U Hubbard model. By decreasing the electron density, we observe a discontinuous transition to a paramagnetic phase, accompanied by a divergence of the susceptibility on the paramagnetic side. This behavior, resulting from a high degeneracy among different spin sectors, is consistent with an infinite-order phase transition scenario. In Chapter 5 the use of imaginary-time dynamics in the context of finite-temperature response functions is highlighted. As an application, we study an intriguing quantum phase featuring both glassy order and Bose-Einstein condensation. [35] We introduce and validate a model for the role of geometrical frustration in the coexistence of off-diagonal long range order with an amorphous density profile. The exact characterization of the response of the system to an external density perturbation is what allows here to establish the existence of a spin-glass phase. The differences between such a phase and the otherwise insulating "Bose glasses" are further elucidated in the Chapter. In the second part of the Thesis we focus our attention on the dynamics of closed systems out of equilibrium. This is accomplished by both non-stochastic exact methods for the dynamics and the introduction of a novel time-dependent Variational Monte Carlo scheme. In Chapter 6 exact diagonalization schemes and renormalization-based methods for one-dimensional systems are introduced. We identify key phenomenological traits resulting from the many-body correlation in closed systems driven sufficiently away from equilibrium.[31] We provide evidences that the dynamics of interacting lattice bosons away from equilibrium can be trapped into extremely long-lived inhomogeneous metastable states. The slowing down of incoherent density excitations above a threshold energy, much reminiscent of a dynamical arrest on the verge of a glass transition, is identified as the key feature of this phenomenon. In Chapter 7 we present an extension to dynamical properties of the Variational Quantum Monte Carlo method.[32] This is accomplished by introducing a general class of time-dependent variational states which is based on the mapping of the many-body dynamics onto an instantaneous ground-state problem. The application of the method to the experimentally relevant quantum quenches of interacting bosons reveals the accuracy and the reliability of the introduced numerical scheme. We indeed obtain for the first time a consistent variational description of the approach to the equilibrium of local observables and underline the origin of the metastability and glassy behavior previously identified. In the very last part we draw our conclusions and show some possible paths for stimulating future research.
APA, Harvard, Vancouver, ISO, and other styles
5

Akhanjee, Shimul. "Classical and quantum aspects of strongly interacting one-dimensional systems." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679376391&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grover, Tarun Ph D. Massachusetts Institute of Technology. "Applied fractionalization : quantum phases and phase transitions of strongly interacting systems." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/68973.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 131-136).<br>Strongly correlated systems present interesting challenges in condensed matter physics. On the one hand, the theoretical work in the last two decades suggests that strong interactions may lead to new phases and phase transitions of matter that don't fit paradigms such as Fermi liquid theory or Landau's theory of phase transitions. On the other hand, there are actual materials which are undoubtedly governed by strong interactions and indeed do not fit the conventional paradigms but whose behavior often doesn't quite match our theoretical expectations. This gap between theory and experiments is slowly narrowing owing to the discovery of new materials and recent advances in numerical simulations. As an example, the material K - (ET)2Cu 2(CN) 3 exhibits metallic specific heat in its insulating phase. This is indicative of the theoretically proposed phenomena of 'fractionalization' where elementary excitations in a phase carry quantum numbers that are fractions of that corresponding to an electron. Similarly, there is growing numerical evidence of the theoretical phenomena of 'deconfined quantum criticality', where quantum Berry phases lead to emergence of fractionalized particles right at the phase transition. In this thesis we study phenomena where the concept of fractionalization is a useful tool to explore new phases and phase transitions. Most of our examples are in the context of frustrated quantum magnets. Along the way, we also explore topics such as quantum numbers of topological defects and non-abelian phases of matter. Whenever possible, we compare theoretical predictions with experimental and numerical data. We also discuss deconfined quantum criticality in the context of metallic systems where it opens the route to phase transitions very different from the conventional spin-density wave instability of Fermi surface.<br>by Tarun Grover.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
7

Yan, Mi. "Quantum Dynamics of Strongly-Interacting Bosons in Optical Lattices with Disorder." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/87432.

Full text
Abstract:
Ultracold atoms in optical lattices offer an important tool for studying dynamics in many-body interacting systems in a pristine environment. This thesis focuses on three theoretical works motivated by recent optical lattice experiments. In the first, we theoretically study the center of mass dynamics of states derived from the disordered Bose-Hubbard model in a trapping potential. We find that the edge states in the trap allow center of mass motion even with insulating states in the center. We identify short and long-time mechanisms for edge state transport in insulating phases. We also argue that the center of mass velocity can aid in identifying a Bose-glass phase. Our zero temperature results offer important insights into mechanisms of transport of atoms in trapped optical lattices while putting bounds on center of mass dynamics expected at non-zero temperature. In the second work, we study the domain wall expansion dynamics of strongly interacting bosons in 2D optical lattices with disorder in a recent experiment {[}J.-y. Choi et al., Science 352, 1547 (2016)]. We show that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system. The last work features our study of phase diagrams of the 2D Bose-Hubbard model in an optical lattice with synthetic spin-orbit coupling. We investigate the transitions between superfluids with different phase patterns, which may be detected by measuring the spin-dependent momentum distribution.<br>Ph. D.<br>Ultracold atoms in optical lattices, a periodic potential generated by laser beams, offer an important tool for quantum simulations in a pristine environment. Motivated by recent optical lattice experiments with the implementation of disorder and synthetic spin-orbit coupling, we utilize Gutzwiller mean-field theory (GMFT) to study the dynamics of disordered state in an optical lattice under the sudden shift of the harmonic trap, the domain wall expansion of strongly interacting bosons in 2D lattices with disorder, and spin-orbit-driven transitions in the Bose-Hubbard model. We argue that the center of mass velocity can aid in identifying a Bose-glass phase. Our findings show that evidence for many-body localization claimed in experiments [J.-y. Choi et al., Science 352, 1547 (2016)] must lie in the differences between GMFT and experiments. We also find that strong spin-orbit coupling alone can generate superfluids with finite momentum and staggered phase patterns.
APA, Harvard, Vancouver, ISO, and other styles
8

Shotter, Martin David. "The development of techniques to prepare and probe at single atom resolution strongly interacting quantum systems ot uitracold atoms." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Romanovsky, Igor Alexandrovich. "Novel properties of interacting particles in small low-dimensional systems." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07102006-041659/.

Full text
Abstract:
Thesis (Ph. D.)--Physics, Georgia Institute of Technology, 2007.<br>Landman, Uzi, Committee Member ; Yannouleas, Constantine, Committee Member ; Bunimovich, Leonid, Committee Member ; Chou, Mei-Yin, Committee Member ; Pustilnik, Michael, Committee Member.
APA, Harvard, Vancouver, ISO, and other styles
10

Czischek, Stefanie [Verfasser], and Thomas [Akademischer Betreuer] Gasenzer. "Simulating Strongly Interacting Quantum Spin Systems–From Critical Dynamics Towards Entanglement Correlations in a Classical Artificial Neural Network / Stefanie Czischek ; Betreuer: Thomas Gasenzer." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/119790431X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!