Dissertations / Theses on the topic 'Strongly correlated electronic system'

To see the other types of publications on this topic, follow the link: Strongly correlated electronic system.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Strongly correlated electronic system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Guarnaccia, Giuseppe. "Phase transitions in strongly correlated electronic systems." Doctoral thesis, Universita degli studi di Salerno, 2014. http://hdl.handle.net/10556/1844.

Full text
Abstract:
2012 - 2013
We studied the some type of phase transitions in Strongly Correlated Electronic Systems. In particular we rigorously established some exact properties of a multi-orbital Hubbard model, here formulated to describe a nematic phase transition. In the first step, using Bogoliubov’s inequality, we rigorously showed that the multiorbital Hubbard model with narrow bands, eventually in the presence of the spin-orbit coupling, does not exhibit long-range nematic order, in the low dimensions. This result holds at any finite temperature for both repulsive and attractive on-site Coulomb interactions, with and without spin-orbit coupling. In the following step, using the reflection positivity method, we showed that this model supports a staggered nematic order if repulsive or attractive on-site inter-orbital and intra-orbital interactions and off-site repulsive inter-orbital interaction are considered. Depending on the dimensions of the lattice where the model is defined, the order may or not may exist. Indeed, in three dimensions the order may exist at finite temperature, and we get the condition for its existence finding out an upper bound for the critical temperature. On the other hand, for two dimensional lattices, the order may exist at least in the ground state, if the hopping amplitude is small enough. Furthermore, in the final step, we studied the symmetry properties of the non-degenerate Hubbard model with spin-orbit interactions of Rashba and Dresselhaus type. These interactions break the rotational symmetry in spin space, so that the magnetic order cannot be excluded by using the Bogoliubov inequality method. Nevertheless, we rigorously show that the existence of the magnetic long-range orders may be ruled out when the Rashba and Dresselhaus coupling constants are equal in modulus, whereas the -pairing can be always ruled out, regardless of the microscopic parameters of the model. These results are obtained by imposing locally the SU(2) gauge symmetry on the lattice, and rewriting the spin-orbit interactions in such a way that they are included in the path ordered of the gauge field on lattice. [edited by author]
XII n.s.
APA, Harvard, Vancouver, ISO, and other styles
2

Derry, Philip. "Quasiparticle interference in strongly correlated electronic systems." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:f487c821-dbbb-4ebe-8b05-c13807379c2c.

Full text
Abstract:
We investigate the manifestation of strong electronic correlations in the quasiparticle interference (QPI), arising from the scattering of conduction electrons from defects and impurities in an otherwise translationally-invariant host. The QPI may be measured experimentally as the Fourier transform of the spatial modulations in the host surface density of states that result, which are mapped using a scanning tunnelling microscope. We calculate the QPI for a range of physically relevant models, demonstrating the effect of strong local electronic correlations arising in systems of magnetic impurities adsorbed on the surface of non-interacting host systems. In the first instance the effect of these magnetic impurities is modelled via the single Anderson impurity model, treated via numerical renormalization group (NRG) calculations. The scattering of conduction electrons, and hence the QPI, demonstrate an array of characteristic signatures of the many-body state formed by the impurity, for example due to the Kondo effect. The effect of multiple impurities on the QPI is also investigated, with a numerically-exact treatment of the system of two Anderson impurities via state-of-the-art NRG calculations. Inter-impurity interactions are found to result in additional scattering channels and additional features in the QPI. The QPI is then investigated for the layered transition metal oxide Sr2RuO4, for which strong interactions in the host conduction electrons give rise to an unconventional triplet superconducting state at Tc ∼ 1.5K. The detailed mechanism for this superconductivity is still unknown, but electron-electron or electron-phonon interactions are believed to play a central role. We simulate the QPI in Sr2RuO4, employing an effective parametrized model consisting of three conduction bands derived from the Ru 4d t2g orbitals that takes into account spin orbit coupling and the anisotropy of the Ru t2g orbitals. Signatures of such interactions in the normal state are investigated by comparing these model calculations to experimental results. We also calculate the QPI in the superconducting state, and propose how experimental measurements may provide direct evidence of the anisotropy and symmetry of the superconducting gap, and thus offer insight into the pairing mechanism and the superconducting state.
APA, Harvard, Vancouver, ISO, and other styles
3

Chamon, Cláudio de Carvalho. "Electronic conduction and noise in strongly correlated systems." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Majidi, Muhammad Aziz. "Computational Studies of Ferromagnetism in Strongly Correlated Electronic Systems." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1148320220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oakley, Gareth S. "Structural and magnetic studies of strongly correlated electronic systems." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/15548.

Full text
Abstract:
Understanding of strongly correlated systems is of great importance in our understanding of fundamental solid-state science, and in the design and improvement of many technologically useful magnetic systems. In this thesis studies of two such systems are presented. The first system is the jarosite mineral family AM3(SO4)2(OH)6 (where A = H3O, K; M = Fe, Cr) which is an experimental manifestation of a kagome lattice antiferromagnet. Such a lattice displays unusual magnetic behaviour which may be of direct relevance to high temperature superconducting materials. A variety of neutron experiments have been performed to investigate the nature of the spin dynamics in the case of the hydronium iron salt, which is unique to the iron series in not exhibiting long range magnetic order. Single crystal studies have been used to probe the nature of the ground state of the potassium salt, and the first unambiguous determination of the magnetic structure is presented. Neutron diffraction studies and muon measurements have been performed on the hydronium chromium salt, the behaviour of which appears to contrast with that of the iron analogue. The second system of study is the series of compounds Lal-xMxMnO3 (where M = Ca,Pb) which are of interest due to their potential application in read-write head devices. A combination of both dc susceptibility measurements and neutron diffraction studies have been used to investigate the magnetic behaviour of both these systems in key areas of the temperature-composition phase diagrams. The electronic fluctuations in the calcium system have been studied using muon spin relaxation techniques.
APA, Harvard, Vancouver, ISO, and other styles
6

Ueda, Suguru. "Theoretical study on electronic properties at interfaces of strongly correlated electron systems." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sanchez, Lotero Adriana Mercedes. "Thermal transport in strongly correlated electron systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1121946609637-03206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SILVA, GUILLERMO ANTONIO MAXIMILIANO GOMEZ. "ELECTRONIC TRANSPORT AND THERMOELECTRIC PROPERTIES OF STRONGLY CORRELATED NANOSCOPIC SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36047@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
BOLSA NOTA 10
Nesta tese foram estudados três sistemas nanoscópicos compostos de pontos quânticos (PQs). No primeiro deles foi analisada a denominada nuvem Kondo, ou a extensão da blindagem que os spins da banda de condução fazem do spin de uma impureza magnética embebida em uma matriz metálica e representada, no nosso caso, por um PQ. As propriedades da nuvem Kondo foram obtidas através da manifestação da ressonância Kondo na densidade de estados local nos sítios da matriz metálica e também através das correlações de spin entre o spin do elétron no PQ e os spins da banda de condução. Foi possível encontrar uma concordância entre as extensões da nuvem Kondo obtidas com ambos métodos. O segundo sistema estudado consiste em uma estrutura de três PQs alinhados e com o PQ central acoplado a dois contatos metálicos. Foi analisada a operação deste sistema como uma porta lógica quântica cujo funcionamento depende do estado de carga do PQ central. Foi feito um estudo dependente do tempo das propriedades do sistema e, em particular, da correlação dos spins dos PQs laterais. Mostramos que o efeito Kondo, refletido na condutância do sistema, pode ser uma ferramenta fundamental para conhecer o estado da porta quântica. Os primeiros dois sistemas foram tratados usando o método dos Bósons Escravos na aproximação de campo médio. Finalmente, foi estudado o transporte termoelétrico em um sistema de dois PQs quando um deles está acoplado a contatos metálicos unidimensionais. O sistema foi analisado no regime de resposta linear e não linear a um potencial externo no regime de bloqueio de Coulomb. Mostramos que a presença de ressonâncias Fano e de uma singularidade de Van-Hove na densidade de estados dos contatos unidimensionais perto do nível de Fermi são ingredientes fundamentais para o aumento da eficiência termoelétrica do dispositivo. O problema de muitos corpos foi resolvido na aproximação de Hubbard III que permite um estudo correto das propriedades de transporte deste sistema para T maior que TK, onde TK é a temperatura Kondo.
In this thesis, were studied three nanoscopic quantum dot (QD) systems. First, the so-called Kondo cloud was analyzed, the extension of the conduction band spin screening of a magnetic impurity embedded in a metallic matrix and represented, in our case, by a QD. The Kondo cloud properties were obtained studying the way in which the local density of states of the metallic matrix sites reflects the Kondo resonance and also through the spin-spin correlations between the QD and the conduction band spins. It was possible to find a good agreement between the Kondo cloud extensions obtained using both methods. The second system consists of three aligned QDs with the central QD connected to two metallic leads. The operation of this system as a quantum gate was studied, which depends on the central QD charge. A time dependent study of the system properties and, in particular, of the lateral QDs spin correlation was developed. We showed that the Kondo effect, reflected in the conductance, could be a fundamental tool to measure the information contained in the quantum gate state. The first two systems were treated using the Slave Bosons Mean Field Approximation method. Finally, we studied the thermoelectric transport of a two QD system when one of them is connected to two onedimensional leads. The system was analyzed in the linear and nonlinear response to an external applied potential, always in the Coulomb blockade regime. It was found that the presence of Fano resonances and a Van-Hove singularity in the one-dimensional lead density of states near the Fermi level are fundamental ingredients to enhance thermoelectric efficiency. The many-body problem was treated in the Hubbard III approximation, which is a correct approach to study the transport properties for T greater than TK, where TK is the Kondo temperature.
APA, Harvard, Vancouver, ISO, and other styles
9

Erten, Onur. "Electronic and Magnetic Properties of Double Perovskites and Oxide Interfaces." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376496346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tchaplyguine, Igor. "Electronic structure of strongly correlated low-dimensional spin ½ systems: cuprates and vanadates." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2003. http://nbn-resolving.de/urn:nbn:de:swb:14-1052218731218-09287.

Full text
Abstract:
In the first two chapters we presented the basics of density functional theory and semiempirical LSD+U approximation, which was implemented in the full-potential local-orbital (FPLO) minimal-basis calculation scheme. In the third chapter we tested the implemented version of LSDA+U on 3d transitional metal monoxides. Essential improvement of the spectroscopic properties was obtained. A simple model describing the value and direction of the magnetic moment of a transition metal ion was presented. The model visualizes the interplay of the spin-orbit coupling and crystal field splitting. In the fourth chapter we calculated the electronic spectrum of the single Zn impurity in CuO2 plane considered as a vacancy in Cu 3d states. The analytic solution for the states of different symmetry was obtained. Depending on the strength of perturbation induced by the impurity on the neighboring Cu ions, the states are either resonant or localized. The critical values of the perturbation were computed. In the fifth chapter we presented the calculations for three novel vanadates: MgVO3, Sb2O2VO3 and VOMoO4. The tight-binding parameters and the exchange integrals were computed. The magnesium and antimony vanadates appeared to be spin-½ one-dimensional systems, the latter having much stronger one-dimensional character and being probably the best realization of inorganic spin-Peierls system. The molybdenum vanadate was found to be two-dimensional spin-½ system. The Mo 4d orbitals play an important role in the electronic transfer.
APA, Harvard, Vancouver, ISO, and other styles
11

Tchaplyguine, Igor. "Electronic structure of strongly correlated low-dimensional spin ½ systems: cuprates and vanadates." Doctoral thesis, Technische Universität Dresden, 2002. https://tud.qucosa.de/id/qucosa%3A24217.

Full text
Abstract:
In the first two chapters we presented the basics of density functional theory and semiempirical LSD+U approximation, which was implemented in the full-potential local-orbital (FPLO) minimal-basis calculation scheme. In the third chapter we tested the implemented version of LSDA+U on 3d transitional metal monoxides. Essential improvement of the spectroscopic properties was obtained. A simple model describing the value and direction of the magnetic moment of a transition metal ion was presented. The model visualizes the interplay of the spin-orbit coupling and crystal field splitting. In the fourth chapter we calculated the electronic spectrum of the single Zn impurity in CuO2 plane considered as a vacancy in Cu 3d states. The analytic solution for the states of different symmetry was obtained. Depending on the strength of perturbation induced by the impurity on the neighboring Cu ions, the states are either resonant or localized. The critical values of the perturbation were computed. In the fifth chapter we presented the calculations for three novel vanadates: MgVO3, Sb2O2VO3 and VOMoO4. The tight-binding parameters and the exchange integrals were computed. The magnesium and antimony vanadates appeared to be spin-½ one-dimensional systems, the latter having much stronger one-dimensional character and being probably the best realization of inorganic spin-Peierls system. The molybdenum vanadate was found to be two-dimensional spin-½ system. The Mo 4d orbitals play an important role in the electronic transfer.
APA, Harvard, Vancouver, ISO, and other styles
12

Locht, Inka L. M. "Theoretical methods for the electronic structure and magnetism of strongly correlated materials." Doctoral thesis, Uppsala universitet, Materialteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-308699.

Full text
Abstract:
In this work we study the interesting physics of the rare earths, and the microscopic state after ultrafast magnetization dynamics in iron. Moreover, this work covers the development, examination and application of several methods used in solid state physics. The first and the last part are related to strongly correlated electrons. The second part is related to the field of ultrafast magnetization dynamics. In the first part we apply density functional theory plus dynamical mean field theory within the Hubbard I approximation to describe the interesting physics of the rare-earth metals. These elements are characterized by the localized nature of the 4f electrons and the itinerant character of the other valence electrons. We calculate a wide range of properties of the rare-earth metals and find a good correspondence with experimental data. We argue that this theory can be the basis of future investigations addressing rare-earth based materials in general. In the second part of this thesis we develop a model, based on statistical arguments, to predict the microscopic state after ultrafast magnetization dynamics in iron. We predict that the microscopic state after ultrafast demagnetization is qualitatively different from the state after ultrafast increase of magnetization. This prediction is supported by previously published spectra obtained in magneto-optical experiments. Our model makes it possible to compare the measured data to results that are calculated from microscopic properties. We also investigate the relation between the magnetic asymmetry and the magnetization. In the last part of this work we examine several methods of analytic continuation that are used in many-body physics to obtain physical quantities on real energies from either imaginary time or Matsubara frequency data. In particular, we improve the Padé approximant method of analytic continuation. We compare the reliability and performance of this and other methods for both one and two-particle Green's functions. We also investigate the advantages of implementing a method of analytic continuation based on stochastic sampling on a graphics processing unit (GPU).
APA, Harvard, Vancouver, ISO, and other styles
13

Khatami, Ehsan. "Criticality and Superconductivity in the Two-dimensional Hubbard Model of Strongly Correlated Electronic Systems." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250711006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gajewski, Donald A. "Strongly correlated electronic properties in the cerium-filled skutterudite antimonides and the M1̲₋̲x̲Ux̲Pd₃(M=Sc, Y) system /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9906481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hsieh, Chang-Yu. "Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots." Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20738.

Full text
Abstract:
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field. With these theoretical tools and fully characterized TQDMs, we propose the following applications: 1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits. 2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase. 3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge. In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.
APA, Harvard, Vancouver, ISO, and other styles
16

Reja, Sahinur. "Strong electron-phonon interactions in some strongly correlated systems." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

BHANDARI, CHURNA B. "FIRST-PRINCIPLES STUDY OF ELECTRONIC AND VIBRATIONAL PROPERTIES OF BULK AND MONOLAYER V2O5." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459296089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hart, Ian. "Magnetostriction in strongly correlated electron systems." Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Loh, Yen Lee. "Studies of strongly correlated electron systems." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Dordevic, Sasa V. "Electrodynamics of strongly correlated electron systems /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3044790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shevchenko, Pavel Physics Faculty of Science UNSW. "Quantum Phenomena in Strongly Correlated Electrons Systems." Awarded by:University of New South Wales. Physics, 1999. http://handle.unsw.edu.au/1959.4/32669.

Full text
Abstract:
Quantum phenomena in high-Tc superconductors and dimerized quantum Heisenberg antiferromagnets are studied analytically in this thesis. The implications of the Fermi surface consisting of the disjoint pieces, observed in cuprate superconductors, are considered. It is demonstrated that in this case the g-wave superconducting pairing is closely related to d-wave pairing. The superconductivity in this system can be described in terms of two almost degenerate superconducting condensates. As a result a new spatial scale lg, much larger than the superconducting correlation length x, arises and a new collective excitation corresponding to the relative phase oscillation between condensates, the phason, should exist. The Josephson tunneling for such a two-component system has very special properties. It is shown that the presence of g-wave pairing does not contradict the existing SQUID experimental data on tunneling in the ab-plane. Possible ways to experimentally reveal the g-wave component and the phason in a single tunnel junction, as well as in SQUID experiments, are discussed. The dimerized quantum spin models studied in this thesis include double-layer and alternating chain Heisenberg antiferromagnets. To account for strong correlations between the S=1 elementary excitations (triplets) in the dimerized phase; the analytic Brueckner diagram approach based on a description of the excitations as triplets above a strong-coupling singlet ground state; has been applied. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. Analytical calculations of physical observables are in excellent agreement with numerical data.Results obtained for double layer antiferromagnet near the (zero temperature) quantum critical point coincide with those previously obtained within the nonlinear s model approach Additional singlet (S=0) and triplet (S=1) modes are found as two-particle bound states of the elementary triplets in the Heisenberg chain with frustration.
APA, Harvard, Vancouver, ISO, and other styles
22

Gray, Ian R. "Fermion quasiparticles in strongly correlated electron systems." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Carter, Edwin Christopher. "Anisotropic phenomena in strongly correlated electron systems." Thesis, University of Birmingham, 2005. http://etheses.bham.ac.uk//id/eprint/83/.

Full text
Abstract:
This thesis is concerned with momentum anisotropy in strongly correlated electron systems, and explores its origin and its consequences through two contrasting projects. The first is a study of the temperature dependences of magnetotransport quantities in the normal state of the cuprate high-temperature superconductors. A phenomenological anisotropic small-angle scattering model is investigated; Hall effect measurements can be reproduced for parameters sufficiently close to particle-hole symmetry, but the experimentally observed magnetoresistance cannot be explained. The second project studies the phase diagram and quasiparticle properties of the square lattice Hubbard model within two-site cluster dynamical mean field theory (DMFT), at zero temperature. The "two-site" approach provides a drastically simplified but physically motivated self-consistency scheme for DMFT. This is combined for the first time with cluster DMFT, within which different magnetic orders and momentum anisotropy may be represented consistently. The extent of antiferromagnetism is determined; phases are discovered where the Fermi surface consists of small hole pockets, and the Mott transition happens as these pockets shrink to points. Anisotropic phenomena observed in the cuprates are reproduced by the theory; a pseudogap destroys the Fermi surface in some places, leaving behind Fermi arcs that closed into hole pockets by lines with very small quasiparticle residue.
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Chunhua. "Gutzwiller Approximation in Strongly Correlated Electron Systems." Thesis, Boston College, 2009. http://hdl.handle.net/2345/917.

Full text
Abstract:
Thesis advisor: Ziqiang Wang
Gutzwiller wave function is an important theoretical technique for treating local electron-electron correlations nonperturbatively in condensed matter and materials physics. It is concerned with calculating variationally the ground state wave function by projecting out multi-occupation configurations that are energetically costly. The projection can be carried out analytically in the Gutzwiller approximation that offers an approximate way of calculating expectation values in the Gutzwiller projected wave function. This approach has proven to be very successful in strongly correlated systems such as the high temperature cuprate superconductors, the sodium cobaltates, and the heavy fermion compounds. In recent years, it has become increasingly evident that strongly correlated systems have a strong propensity towards forming inhomogeneous electronic states with spatially periodic superstrutural modulations. A good example is the commonly observed stripes and checkerboard states in high-$T_\mathrm c$ superconductors under a variety of conditions where superconductivity is weakened. There exists currently a real challenge and demand for new theoretical ideas and approaches that treats strongly correlated inhomogeneous electronic states, which is the subject matter of this thesis. This thesis contains four parts. In the first part of the thesis, the Gutzwiller approach is formulated in the grand canonical ensemble where, for the first time, a spatially (and spin) unrestricted Gutzwiller approximation (SUGA) is developed for studying inhomogeneous (both ordered and disordered) quantum electronic states in strongly correlated electron systems. The second part of the thesis applies the SUGA to the $t$-$J$ model for doped Mott insulators which led to the discovery of checkerboard-like inhomogeneous electronic states competing with $d$-wave superconductivity, consistent with experimental observations made on several families of high-$T_{\mathrm c}$ superconductors. In the third part of the thesis, new concepts and techniques are developed to study the Mott transition in inhomogeneous electronic superstructures. The latter is termed ``SuperMottness'' which is shown to be a general framework that unifies the two paradigms in the physics of strong electronic correlation: Mott transition and Wigner crystallization. A cluster Gutzwiller approximation (CGA) approach is developed that treats the local ($U$) and extended Coulomb interactions ($V$) on equal footing. It is shown with explicit calculations that the Mott-Wigner metal-insulator transition can take place far away from half-filling. The mechanism by which a superlattice potential enhances the correlation effects and the tendency towards local moment formation is investigated and the results reveal a deeper connection among the strongly correlated inhomogeneous electronic states, the Wigner-Mott physics, and the multiorbital Mott physics that can all be united under the notion of SuperMottness. It is proposed that doping into a superMott insulator can lead to coexistence of local moment and itinerant carriers. The last part of the thesis studies the possible Kondo effect that couples the local moment and the itinerant carriers. In connection to the sodium rich phases of the cobaltates, a new Kondo lattice model is proposed where the itinerant carriers form a Stoner ferromagnet. The competition between the Kondo screening and the Stoner ferromagnetism is investigated when the conduction band is both at and away from half-filling
Thesis (PhD) — Boston College, 2009
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
APA, Harvard, Vancouver, ISO, and other styles
25

ARYANPOUR, KARAN. "APPROXIMATION TECHNIQUES IN STRONGLY CORRELATED ELECTRON SYSTEMS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069788785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

SANGIOVANNI, GIORGIO. "The electron-phonon interaction in strongly correlated electron systems." Doctoral thesis, La Sapienza, 2004. http://hdl.handle.net/11573/917137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sica, G. "Electron-electron and electron-phonon interactions in strongly correlated systems." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12194.

Full text
Abstract:
In this work we investigate some aspects of the physics of strongly correlated systems by taking into account both electron-electron and electron-phonon interactions as basic mechanisms for reproducing electronic correlations in real materials. The relevance of the electron-electron interactions is discussed in the first part of this thesis in the framework of a self-consistent theoretical approach, named Composite Operator Method (COM), which accounts for the relevant quasi-particle excitations in terms of a set of composite operators that appear as a result of the modification imposed by the interactions on the canonical electronic fields. We show that the COM allows the calculation of all the relevant Green s and correlation functions in terms of a number of unknown internal parameters to be determined self-consistently. Therefore, depending on the balance between unknown parameters and self-consistent equations, exact and approximate solutions can be obtained. By way of example, we discuss the application of the COM to the extended t-U-J-h model in the atomic limit, and to the two-dimensional single-band Hubbard model. In the former case, we show that the COM provides the exact solution of the model in one dimension. We study the effects of electronic correlations as responsible for the formation of a plethora of different charge and/or spin orderings. We report the phase diagram of the model, as well as a detailed analysis of both zero and finite temperature single-particle and thermodynamic properties. As far as the single-band Hubbard model is concerned, we illustrate an approximated self-consistent scheme based on the choice of a two-field basis. We report a detailed analysis of many unconventional features that arise in single-particle properties, thermodynamics and system's response functions. We emphasize that the accuracy of the COM in describing the effects of electronic correlations strongly relies on the choice of the basis, paving the way for possible multi-pole extensions to the two-field theory. To this purpose, we also study a three-field approach to the single-band Hubbard model, showing a significant step forward in the agreements with numerical data with respect to the two-pole results. The role of the electron-phonon interaction in the physics of strongly correlated systems is discussed in the second part of this thesis. We show that in highly polarizable lattices the competition between unscreened Coulomb and Fröhlich interactions results in a short-range polaronic exchange term Jp that favours the formation of local and light pairs of bosonic nature, named bipolarons, which condense with a critical temperature well in excess of hundred kelvins. These findings, discussed in the framework of the so-called polaronic t-Jp model, are further investigated in the presence of a finite on-site potential U, coming from the competition between on-site Coulomb and Fröhlich interactions. We discuss the role of U as the driving parameter for a small-to-large bipolaron transition, providing a possible explanation of the BEC-BCS crossover in terms of the properties of the bipolaronic ground state. Finally, we show that a hard-core bipolarons gas, studied as a charged Bose-Fermi mixture, allows for the description of many non Fermi liquid behaviours, allowing also for a microscopic explanation of pseudogap features in terms of a thermal-induced recombination of polarons and bipolarons, without any assumption on preexisting order or broken symmetries.
APA, Harvard, Vancouver, ISO, and other styles
28

Sica, Gerardo. "Electron-electron and electron-phonon interactions in strongly correlated systems." Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/1418.

Full text
Abstract:
2011 - 2012
In this work we investigate some aspects of the physics of strongly correlated systems by taking into account both electron-electron and electron-phonon interactions as basic mechanisms for reproducing electronic correlations in real materials. The relevance of the electron-electron interactions is discussed in the first part of this thesis in the framework of a self-consistent theoretical approach, named Composite Operator Method (COM), which accounts for the relevant quasi-particle excitations in terms of a set of composite operators that appear as a result of the modification imposed by the interactions on the canonical electronic fields. We show that the COM allows the calculation of all the relevant Green’s and correlation functions in terms of a number of unknown internal parameters to be determined self-consistently. Therefore, depending on the balance between unknown parameters and self-consistent equations, exact and approximate solutions can be obtained. By way of example, we discuss the application of the COM to the extended t-U- J-h model in the atomic limit, and to the two-dimensional single-band Hubbard model. In the former case, we show that the COM provides the exact solution of the model in one dimension. We study the effects of electronic correlations as responsible for the formation of a plethora of different charge and/or spin orderings. We report the phase diagram of the model, as well as a detailed analysis of both zero and finite temperature single-particle and thermodynamic properties. As far as the single-band Hubbard model is concerned, we illustrate an approximated selfconsistent scheme based on the choice of a two-field basis. We report a detailed analysis of many unconventional features that arise in single-particle properties, thermodynamics and system’s response functions. We emphasize that the accuracy of the COM in describing the effects of electronic correlations strongly relies on the choice of the basis, paving the way for possible multi-pole extensions to the twofield theory. To this purpose, we also study a three-field approach to the single-band Hubbard model, showing a significant step forward in the agreements with numerical data with respect to the two-pole results. The role of the electron-phonon interaction in the physics of strongly correlated systems is discussed in the second part of this thesis. We show that in highly polarizable lattices the competition between unscreened Coulomb and Fröhlich interactions results in a short-range polaronic exchange term Jp that favours the formation of local and light pairs of bosonic nature, named bipolarons, which condense with a critical temperature well in excess of hundred kelvins. These findings, discussed in the framework of the so-called polaronic t-Jp model, are further investigated in the presence of a finite on-site potential ~U , coming from the competition between on-site Coulomb and Fröhlich interactions. We discuss the role of ~U as the driving parameter for a small-to-large bipolaron transition, providing a possible explanation of the BEC-BCS crossover in terms of the properties of the bipolaronic ground state. Finally, we show that a hard-core bipolarons gas, studied as a charged Bose-Fermi mixture, allows for the description of many non Fermi liquid behaviours, allowing also for a microscopic explanation of pseudogap features in terms of a thermal-induced recombination of polarons and bipolarons, without any assumption on preexisting order or broken symmetries. [edited by author]
XI n.s.
APA, Harvard, Vancouver, ISO, and other styles
29

Controzzi, Davide. "Non perturbative aspects of strongly correlated electron systems." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Varadarajan, Vijayalakshmi. "SPECIFIC HEAT MEASUREMENTS ON STRONGLY CORRELATED ELECTRON SYSTEMS." UKnowledge, 2009. http://uknowledge.uky.edu/gradschool_diss/805.

Full text
Abstract:
Studies on strongly correlated electron systems over decades have allowed physicists to discover unusual properties such as spin density waves, ferromagnetic and antiferromagnetic states with unusual ordering of spins and orbitals, and Mott insulating states, to name a few. In this thesis, the focus will be on the specific heat property of these materials exhibiting novel electronic ground states in the presence and absence of a field. The purpose of these measurements is to characterize the phase transitions into these states and the low energy excitations in these states. From measurements at the phase transitions, one can learn about the amount of order involved [i.e. entropy: ΔS = ∫Δc p/T dT], while measurements at low temperatures illuminate the excitation spectrum. In order to study the thermodynamic properties of the materials at their phase transitions, a high sensitive technique, ac-calorimetry was used. The ac-calorimeter, workhorse of our low dimensional materials lab, is based on modulating the power that heats the sample and measuring the temperature oscillations of the sample around its mean value. The in-house ac-calorimetry set up in our lab has the capability to produce a quasi-continuous readout of heat capacity as a function of temperature. A variety of single crystals were investigated using this technique and a few among them are discussed in my thesis. Since many of the crystals that are studied by our group are magnetically active, it becomes useful for us to also study them in the presence of a moderate to high magnetic field. This motivated me to design, develop, and build a heat capacity probe that would enable us to study the crystals in the presence of non-zero magnetic fields and at low temperatures. The probe helped us not only to revisit some of the studied materials and to draw firm conclusions on the previous results but also is vital in exploring the untouched territory of novel materials at high magnetic fields (~ 14 T).
APA, Harvard, Vancouver, ISO, and other styles
31

Sordi, Giovanni. "Mott-Hubbard transition in strongly correlated electron systems." Paris 11, 2008. http://www.theses.fr/2008PA112160.

Full text
Abstract:
J’ai étudié la transition méta-isolant avec la théorie du champ moyen dynamique appliquée à deux Hamiltoniens largement employés pour décrire les systèmes d’électrons fortement corrélés : le modèle de Hubbard et le modèle d’Anderson périodique. Le scénario pour la transition dans le modèle de Hubbard a été passé en revue et l’analyse du spectre de photoémission près de la transition a été présentée en détail. La transition de Mott induite par le dopage dans le modèle d’Anderson périodique a été discutée par rapport à celle réalisée dans le modèle de Hubbard. Le résultat principal nous conduit à établir un scénario qualitativement différent pour les transitions induites par dopage avec des électrons ou avec des trous. Dans le premier cas, la transition est, comme attendue, similaire à la transition du premier ordre du modèle de Hubbard. Toutefois, dans le dernier cas, une transition du deuxième ordre a été trouvée. J’ai donc démontré que le scénario pour la transition de Mott du modèle de Hubbard n’est pas générique pour le modèle d’Anderson périodique
I study the Mott metal-insulator transition within the dynamical mean-field theory in two schematic Hamiltonians widely used to describe the strongly correlated electron systems : the Hubbard model and the periodic Anderson model. The scenario for the transition in the Hubbard model is reviewed and the analysis of the photoemission spectra near the transition is presented in detail. The doping driven Mott transition in the periodic Anderson model is discussed with respect to the one realized in the Hubbard model. The main finding is a qualitatively different scenario for electron or hole driven transitions. In the former case the transition is expectedly similar to the first order transition of the Hubbard model. However, in the latter case, a second order transition is found. Thus I demonstrate that the transition scenario of the Hubbard model is not generic for the periodic Anderson model
APA, Harvard, Vancouver, ISO, and other styles
32

Hakimi, Shirin. "Exact Diagonalization of Few-electron Quantum Dots." Thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-2550.

Full text
Abstract:

We consider a system of few electrons trapped in a two-dimensional circularquantum dot with harmonic confinement and in the presence of ahomogeneous magnetic field, with focus on the role of e-e interaction. Byperforming the exact diagonalization of the Hamiltonian in second quantization,the low-lying energy levels for spin polarized system are obtained. The singlet-triplet oscillation in the ground state of the two-electron system showing up inthe result is explained due to the role of Coulomb interaction. The splitting ofthe lowest Landau level is another effect of the e-e interaction, which is alsoobserved in the results.

APA, Harvard, Vancouver, ISO, and other styles
33

Andrade, Eric de Castro e. "Cálculos numéricos de sistemas eletrônicos desordenados correlacionados." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277676.

Full text
Abstract:
Orientador: Eduardo Miranda
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-16T08:19:56Z (GMT). No. of bitstreams: 1 Andrade_EricdeCastroe_D.pdf: 5537554 bytes, checksum: 1391d5fcc710b5e471f0814a4a6d484f (MD5) Previous issue date: 2010
Resumo: Sistemas eletrônicos fortemente correlacionados desordenados possuem dois mecanismos básicos para a localização eletrônica e a subsequente destruição do estado metálico: o de Mott (causado pela interação elétron-elétron) e o de Anderson (causado pela desordem). Nesta tese, estudamos como estes mecanismos competem dentro da fase metálica e também como afetam o comportamento crítico do sistema, empregando uma generalização para o caso desordenado do cenário de Brinkman-Rice para a transição de Mott. Investigamos os efeitos de desordem fraca e moderada sobre a transição metal-isolante de Mott a T = 0 em duas dimensões. Para desordem sucientemente baixa, a transição mantém sua característica do tipo Mott, na qual temos os pesos de quasipartícula Zi indo a zero na transição e uma forte blindagem da desordem na região crítica. Em contraste com o comportamento encontrado para d = 8 , no nosso caso as flutuações espaciais dos pesos de quasipartícula são fortemente amplificadas próximo à transição de Mott de tal forma que eles adquirem uma distribuição do tipo lei de potência P (Z) ~ Z a-1 ,com a --> 0 na transição. Tal comportamento altera completamente as características desta transição com relação ao caso limpo, e é um indício robusto da emergência de uma fase de Griffiths eletrônica precedendo a transição metal-isolante de Mott, com uma fenomenologia surpreendentemente similar àquela do "ponto fixo de desordem infinita" encontrada em magnetos quânticos. Uma consequência imediata dessas novas características introduzidas pela desordem é que estados eletrônicos próximos à superfície de Fermi tornam-se mais homogêneos na região crítica, ao passo que estados com maiores energias têm o comportamento oposto: eles apresentam uma grande inomogeneidade precisamente nas vizinhanças da transição de Mott. Sugerimos que uma desordem efetiva dependente da interação é uma característica comum a todos os sistemas de Mott desordenados. Estudamos também como os efeitos bem conhecidos das oscilações de longo alcance de Friedel são afetados por fortes correlações eletrônicas. Primeiramente, mostramos que sua amplitude e alcance são consideravelmente suprimidos em líquidos de Fermi fortemente renormalizados. Posteriormente, investigamos o papel dos espalhamentos elásticos e inelásticos na presença dessas oscilações. Em geral, nossos resultados analíticos mostram que um papel proeminente das oscilações de Friedel é relegado a sistemas fracamente interagentes. Abordamos, por m, os efeitos das interações sobre o isolante de Anderson em uma dimensão. Construímos a função de escala ß (g) e mostramos que a escala de "crossover" g *, que marca a transição entre o regime ôhmico e o localizado da condutância, é renormalizada pelas interações. Como consequência, embora não haja a emergência de estados verdadeiramente estendidos, o regime ôhmico de g estende-se agora por uma região consideravelmente maior do espaço de parâmetros.
Abstract: Disordered strongly correlated electronic systems have two basic routes towards localization underlying the destruction of the metallic state: the Mott route (driven by electron-electron interaction) and the Anderson route (driven by disorder). In this thesis, we study how these two mechanisms compete in the metallic phase, and also how they change the critical behavior of the system, within a generalization to the disordered case of the Brinkman-Rice scenario for the Mott transition. We investigate the effects of weak to moderate disorder on the Mott metal-insulator transition at T = 0 in two dimensions. For sufficiently weak disorder, the transition retains the Mott character, as signaled by the vanishing of the local quasiparticle weights Zi and strong disorder screening at criticality. In contrast to the behavior in d = 8, here the local spatial fluctuations of quasiparticle parameters are strongly enhanced in the critical regime, with a distribution function P(Z) ~ Z a-1 and a --> 0 at the transition. This behavior indicates the robust emergence of an electronic Griffiths phase preceding the MIT, in a fashion surprisingly reminiscent of the " Infinite Randomness Fixed Point" scenario for disordered quantum magnets. As an immediate consequence of these new features introduced by disorder, we have that the electronic states close to the Fermi energy become more spatially homogeneous in the critical region, whereas the higher energy states show the opposite behavior: they display enhanced spatial inhomogeneity precisely in the close vicinity to the Mott transition. We suggest that such energy-resolved disorder screening is a generic property of disordered Mott systems. We also study how well-known effects of the long-ranged Friedel oscillations are affected by strong electronic correlations. We first show that their range and amplitude are signifficantly suppressed in strongly renormalized Fermi liquids. We then investigate the interplay of elastic and inelastic scattering in the presence of these oscillations. In the singular case of two-dimensional systems, we show how the anomalous ballistic scattering rate is conned to a very restricted temperature range even for moderate correlations. In general, our analytical results indicate that a prominent role of Friedel oscillations is relegated to weakly interacting systems. Finally, we discuss the effects of correlations on the Anderson insulator in one dimension. We construct the scaling function ß(g) and we show that the crossover scaling g*, which marks the transition between the ohmic and the localized regimes of the conductance, is renormalized by the interactions. As a consequence, we show that, although truly extend states do not emerge, the ohmic regime covers now a considerably larger region in the parameter space.
Doutorado
Física da Matéria Condensada
Doutor em Ciências
APA, Harvard, Vancouver, ISO, and other styles
34

Ghaemi, Mohammadi Pouyan. "Phases and phase transitions of strongly correlated electron systems." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45456.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.
Includes bibliographical references (leaves 169-174).
Different experiments on strongly correlated materials have shown phenomena which are not consistent with our conventional understandings. We still do not have a general framework to explain these properties. Developing such a general framework is much beyond the scope of this thesis, but here we try to address some of challenges in simpler models that are more tractable. In correlated metals it appears as strong correlations have different effect on different parts of fermi surface. Perhaps most striking example of this is normal state of optimally doped cuprates; the quasiparticle peaks on the nominal fermi surface do not appear uniformly. We try to track such phenomena in heavy fermion systems, which are correlated fermi liquids. In these systems, a lattice of localized electrons in f or d orbitals is coupled to the conduction electrons through an antiferromagnetic coupling. Singlets are formed between localized and conduction electrons. This singlet naturally have non-zero internal angular momentum. This nontrivial structure leads to anisotropic effect of strong correlations. Internal structure of Kondo singlet can also lead to quantum Hall effect in Kondo insulator, and formation of isolated points on the fermi surface with fractionalized quasiparticles. In the second part we study a phase transition in Heisenberg model between two insulating phases, Neel ordered and certain spin liquid state, popular in theories of the cuprates. The existence of such a transition has a number of interesting implications for spin liquid based approaches to the underdoped cuprates and clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin liquid based approach. This transition might also be enlightening, despite fundamental differences, for the heavy fermion critical points where a second order transition between the heavy fermion phase and a metallic phase with magnetic antiferromagnetic order is observed.
by Pouyan Ghaemi Mohammadi.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
35

Sahebsara, Peyman. "Competing phases in strongly correlated electron systems with frustration." Thèse, Université de Sherbrooke, 2008. http://savoirs.usherbrooke.ca/handle/11143/5104.

Full text
Abstract:
In this thesis we use the Variational Cluster Approximation (VCA) in the investigation of broken symmetry states of strongly correlated systems with frustration. Layered organic compounds, in which dimers of organic molecules form an anisotropic triangular lattice, are among materials that show this frustration. We discuss the two-dimensional one-band Hubbard model used for studying these compounds. Then we introduce VCA, which allows to study ordered phases by a variational principle based on the electron self-energy. We explain the computational methods that we used in conjunction with VCA. A comparison of the normal state and Néel antiferromagnetic ordered phase energies enables us to conclude that this order is dominant at large values of U, below some critical value of frustration (t'/t ). By observing the saturation of the order parameter, we argue that U [greater or approximately equal to] 8 is already in the strong coupling limit. d -wave superconductivity is discussed in relation with cluster and lattice point group symmetries. The two different pairings, d[subscript x[superscript 2]]-[subscript y[superscript 2]] and d[subscript xy] , are studied separately. A comparison of the energies of the antiferromagnetic and superconducting phases shows that while d -wave superconductivity dominates the antiferromagnetic phase, the d[subscript x[superscript 2]]-[subscript y[superscript 2]] order exists at intermediate U and d[subscript xy] is dominant at low values of U. We found no evidence of homogeneous coexistence of antiferromagnetic and d -wave superconducting phases. In addition, we investigate a spiral magnetic order on the isotropic triangular lattice, where no Néel antiferromagnetic order is found. By looking at the density of states, we see that the system is metallic at weak coupling. For U [greater or approximately equal to] 6 until a value in the range [8,12), we find an insulating phase, without long-range order, which we conjecture to be a spin liquid phase. This spiral order is found at stronger coupling.
APA, Harvard, Vancouver, ISO, and other styles
36

Mikelsons, Karlis. "Extensions of Numerical Methods for Strongly Correlated Electron Systems." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1256909270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tanaka, Kazunori. "Theoretical study on superconductivity in strongly-correlated electron systems." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144161.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第12077号
理博第2971号
新制||理||1444(附属図書館)
23913
UT51-2006-J72
京都大学大学院理学研究科物理学・宇宙物理学専攻
(主査)教授 山田 耕作, 教授 松田 祐司, 教授 前野 悦輝
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
38

Silva, Fernanda Deus da. "Contributions aux propriétés de transport d'un système à N Corps." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY007/document.

Full text
Abstract:
Nous étudions plusieurs problémes reliés aux propriétés de transport dans les systèmes corrélés. La thèse contient 3 parties distinctes, chacune d'entre elles décrivant un aspect particulier. Nous avons obtenu dans chacun des cas des résultats qui permettent une meilleure compréhension du transport. Nous étudions l'effet de la dissipation et d'une perturbation extérieure dépendant du temps sur le diagramme de phases d'un systèmes à N corps à température nulle et à température finie. En présence de perturbation dépendant du temps, la dissipation joue un rôle important dans l'évolution vers un état stable indépendant du temps. Nous utilisons le formalisme de Keldysh dans l'approximation adiabatique qui permet d'étudier le diagramme de phases du système en fonction de parameter et de la température. Dans la 2ième partie, nous étudions un concept important pour la physique des systèmes métalliques à plusieurs bandes, le concept d'hybridation, et la façon dont l'hybridation affecte la supraconductivité du métal. De façon générale, une hybridation dépendante ou non du vecteur d'onde k a tendance à détruire la supraconductivité. Nous montrons dans ce chapitre qu'une hybridation antisymétrique a l'effet inverse et renforce la supraconductivité. Nous montrons que si l'hybridation est antisymétrique, la supraconductivité a des propriétés non-triviales. Nous proposons que dans un tel système, il puisse exister des fermions de Majorana, même en l'absence de couplage spin-orbite. Le dernier chapitre de la thèse porte sur les effets du couplage spin-orbite sur le transport dans les nanostructures magnétiques. Dans les nanostructures, le couplage spin-orbite joue un rôle important en raison de la brisure de symmétrie à la surface ou aux interfaces. En particulier, nous étudions l'effet de l'interaction Dzyaloshinskii-Moriya (DM) sur le transport de spin dans un système tri-couche. Nous montrons qu'il existe une interaction DM entre les moments des couches et les électrons de conduction, et l'influence de cette interaction sur le transport est étudiée dans un modèle simplifié ou chaque couche est représentée par un point
We study some important problems related to the transport properties of many body systems. It is divided in three parts, each one focusing in a specific topic. We obtain relevant results that improve our understanding of these systems. We investigate the effect of dissipation and time-dependent external sources, in the phase diagram of a many body system at zero and finite temperature. In the presence of time-dependent perturbations, dissipation is essential for the system to attain a steady, time independent state. In order to treat this time dependent problem, we use a Keldysh approach within an adiabatic approximation that allows us to study the phase diagram of this system as a function of the parameters of the system and temperature. We also discuss the nature of the quantum phase transitions of the system. Next, we study an important concept in the physics of metallic multi-band systems, that of hybridization, and how it affects the superconducting properties of a material. A constant or symmetric $k$-dependent hybridization in general act in detriment of superconductivity. We show here that when hybridization between orbitals in different sites assumes an anti-symmetric character having odd-parity it {it{enhances}} superconductivity. The antisymmetric hybridization in a problem study in this thesis (present in Chapter 3) allow us to propose a new system where it is possible to investigate Majorana fermions, even in absence of spin-orbit interactions. In the last part of this thesis we study the effect of spin-orbit coupling (SOC) on transport properties in magnetic nanostructures. In this system SOC plays an important role, because surfaces (or interfaces) introduce symmetry breaking which is a source of spin-orbit interaction. We study the role of Dzyaloshinshkii-Moriya (DM) interaction on spin-transport in a 3 layer system. We show that there is a DM interaction between magnetics ions in the layers and spin of conduction electrons. We study the influence of this DM interaction on transport within a simple model where each layer is represented by a point
APA, Harvard, Vancouver, ISO, and other styles
39

Flesch, Andreas Robert [Verfasser]. "Electronic structure of strongly correlated materials / Andreas Robert Flesch." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1049350235/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ouellette, Daniel Gerald. "Dynamical conductivity of strongly correlated electron systems at oxide interfaces." Thesis, University of California, Santa Barbara, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3602181.

Full text
Abstract:

The Mott metal-insulator transition (MIT) in transition-metal complex oxides results from strong electron-electron interactions and is accompanied by a rich spectrum of phenomena, including magnetic, charge, and orbital ordering, superconductivity, structural distortions, polarons, and very high-density 2-dimensional interface electron liquids. Recent advances in oxide heteroepitaxy allow interface control as a promising new approach to tuning the exotic properties of materials near the quantum critical point, with potential application to technologies including phase-change electronics, high power transistors, and sensors. The dynamical conductivity of oxide heterostructures is measured using a combination of terahertz time-domain spectroscopy, Fourier transform infrared spectroscopy, and dc magnetotransport. The rare-earth nickelates RNiO3 (R = La, Nd...) exhibit a temperature and bandwidth controlled MIT in bulk. Measurements of the Drude response in epitaxial thin films provide quantification of the strain-dependent mass enhancement in the metallic phase due to strong correlations. Reduction of LaNiO 3 film thickness leads to additional mass renormalization attributed to structural distortions at the heteroepitaxial interface, and an MIT is observed depending on the interfacing materials in coherent perovskite heterostructures. The rare-earth titanates RTiO3 exhibit a bandwidth and band filling controlled Mott MIT. Furthermore, the heterointerface between Mott insulating GdTiO3 and band insulating SrTiO3 exhibits a 2-dimensional itinerant electron liquid, with extremely high sheet densities of 3 × 1014 cm-2. The dynamical conductivity of the interface electrons is analyzed in terms of subband-dependent electron mobility and the established large polaron dynamics in bulk SrTiO3. Additional confinement of the electron liquids is achieved by decreasing the SrTiO3 layer thickness, with attendant increase in the dynamical mass. Taking the confinement to its extreme limit, a single (GdO) + plane in Mott insulating GdTiO3 is replaced with a (SrO) 0 plane. This is equivalent to "delta-doping" the Mott insulator with an extremely high density sheet of holes. The transport and absorption in the resulting two-dimensional insulator are consistent with a simple model of small polaron hopping. A comparison is made to similar features in the conductivity of randomly doped Sr1-xGdxTiO3 films.

APA, Harvard, Vancouver, ISO, and other styles
41

Exeter, Jason Wesley. "A study of rigorous techniques in strongly correlated electron systems." Thesis, King's College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sandeman, Karl George. "Anisotropy in strongly correlated electron systems : transport, magnetism and superconductivity." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ewings, Russell A. "Neutron and X-ray scattering studies of strongly correlated electron systems." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489436.

Full text
Abstract:
In this thesis results of x-ray scattering and neutron scattering experiments on several strongly correlated transition metal oxides are presented. The prototypical charge ordered cuprate La1.48Nd0.4Sr0.12CuO4 was investigated using polarised neutron scattering. The results show that several proposed schemes for the magnetic order in this class of materials may be ruled out, however the data are consistent with one-dimensional stripe-like magnetic order. X-ray diffraction was used to show that the charge order is insensitive to an applied magnetic field, but might be affected by the existence of superconductivity. The magnetic excitations were also studied, and at low energies a gap in the magnetic fluctuations was observed and there is tentative evidence that this is related to magnetic anisotropy. The spin state transition in LaCoO3 was investigated using neutron inelastic scattering, and excitations reminiscent of those observed in ferromagnets above their critical temperatures were observed. The debate surrounding the nature of the excited spin state, S=1 or S=2, could not be resolved, however. The nature of the spin excitations in La0.82Sr0.18CoO3 was investigated using polarised neutrons and it was found that at low energies the excitations take the form of spin-waves. At higher energies this mode becomes heavily damped, and several possible damping mechanisms for this are discussed. Finally, the multiferroic material DyMn2O5 was studied using x-ray resonant scattering. A complex, temperature dependent, magnetic structure was found using a Dy resonance, which reflects an underlying order of the Mn ions. The measurements were in agreement with a theory of multiferroics based on acentric spin-density waves.
APA, Harvard, Vancouver, ISO, and other styles
44

Stemmle, Christian [Verfasser]. "Analysis of Electron Correlation Effects in Strongly Correlated Systems / Christian Stemmle." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/119886270X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Castellan, John-Paul Adrian Gaulin B. D. "X-ray and neutron diffraction studies of strongly correlated electron systems." *McMaster only, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Waidacher, Christoph. "Charge properties of cuprates: ground state and excitations." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2000. http://nbn-resolving.de/urn:nbn:de:swb:14-998985918593-73513.

Full text
Abstract:
This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (Projector Quantum Monte Carlo, exact diagonalization). Several results are compared to experimental data. The following materials have been chosen as candidates to represent different Cu-O sub-structures: Bi2CuO4 (isolated CuO4 plaquettes), Li2CuO2 (chains of edge-sharing plaquettes), Sr2CuO3 (chains of corner-sharing plaquettes), and Sr2CuO2Cl2 (planes of plaquettes). Several results presented in this thesis are valid for other cuprates as well. Two different aspects of charge properties are analyzed: 1) Charge properties of the ground state 2) Charge excitations. (gekürzte Fassung)
APA, Harvard, Vancouver, ISO, and other styles
47

Parsons, Mark James. "An investigation of the thermal properties of some strongly correlated electron systems." Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/27183.

Full text
Abstract:
The correlated electron systems which are the subject of this thesis are the strong electron–phonon coupling superconductor HfV2, and the localised moment magnetic systems of the alloy series Pd2REIn (RE = Gd, Tb, Ho, Er and Yb).
APA, Harvard, Vancouver, ISO, and other styles
48

Chughtai, Rizwan Ahmed. "Magneto-optics of Strongly Correlated Electron Systems in the Quantum Hall Effect." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bauer, Johannes. "Renormalisation group study of broken symmetry states in strongly correlated electron systems." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Diver, Andrew James. "The strongly correlated electron systems CeNi←2Ge←2 and Sr←2RuO←4." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography