Journal articles on the topic 'Strong metal-support interaction'

To see the other types of publications on this topic, follow the link: Strong metal-support interaction.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Strong metal-support interaction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Du, Xiaorui, Hailian Tang, and Botao Qiao. "Oxidative Strong Metal–Support Interactions." Catalysts 11, no. 8 (July 25, 2021): 896. http://dx.doi.org/10.3390/catal11080896.

Full text
Abstract:
The discoveries and development of the oxidative strong metal–support interaction (OMSI) phenomena in recent years not only promote new and deeper understanding of strong metal–support interaction (SMSI) but also open an alternative way to develop supported heterogeneous catalysts with better performance. In this review, the brief history as well as the definition of OMSI and its difference from classical SMSI are described. The identification of OMSI and the corresponding characterization methods are expounded. Furthermore, the application of OMSI in enhancing catalyst performance, and the influence of OMSI in inspiring discoveries of new types of SMSI are discussed. Finally, a brief summary is presented and some prospects are proposed.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Hao, Zhenzhen Yang, Xiang Wang, Felipe Polo-Garzon, Phillip W. Halstenberg, Tao Wang, Xian Suo, et al. "Photoinduced Strong Metal–Support Interaction for Enhanced Catalysis." Journal of the American Chemical Society 143, no. 23 (June 3, 2021): 8521–26. http://dx.doi.org/10.1021/jacs.0c12817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Zongfang, Yangyang Li, and Weixin Huang. "Size-Dependent Pt-TiO2 Strong Metal–Support Interaction." Journal of Physical Chemistry Letters 11, no. 12 (May 23, 2020): 4603–7. http://dx.doi.org/10.1021/acs.jpclett.0c01560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

SANCHEZ, M. "Oxygen vacancy model in strong metal-support interaction." Journal of Catalysis 104, no. 1 (March 1987): 120–35. http://dx.doi.org/10.1016/0021-9517(87)90342-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lackner, Peter, Joong Il Jake Choi, Ulrike Diebold, and Michael Schmid. "Substoichiometric ultrathin zirconia films cause strong metal–support interaction." Journal of Materials Chemistry A 7, no. 43 (2019): 24837–46. http://dx.doi.org/10.1039/c9ta08438j.

Full text
Abstract:
ZrO2/metal inverse model catalysts exhibit the strong metal–support interaction (SMSI) effect. Upon annealing under reducing conditions, an oxygen-deficient, ultrathin ZrO≈1.5 film covers the metal. Nevertheless, Zr retains its 4+ charge state.
APA, Harvard, Vancouver, ISO, and other styles
6

Mendes, F. M. T., A. Uhl, D. E. Starr, S. Guimond, M. Schmal, H. Kuhlenbeck, S. K. Shaikhutdinov, and H. J. Freund. "Strong metal support interaction on Co/niobia model catalysts." Catalysis Letters 111, no. 1-2 (October 2006): 35–41. http://dx.doi.org/10.1007/s10562-006-0127-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kunimori, Kimio, Yuji Doi, Katsunori Ito, and Toshio Uchijima. "Strong metal–support interaction in niobia-modified rhodium catalysts." J. Chem. Soc., Chem. Commun., no. 12 (1986): 965–66. http://dx.doi.org/10.1039/c39860000965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

VISWANATHAN, B. "ChemInform Abstract: 15 Years of Strong Metal-Support Interaction." ChemInform 27, no. 11 (August 12, 2010): no. http://dx.doi.org/10.1002/chin.199611321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MA, Ding. "Strong Metal-Support Interaction (SMSI) Effect between Metal Catalysts and Carbide Supports." Acta Physico-Chimica Sinica 35, no. 8 (2019): 794–95. http://dx.doi.org/10.3866/pku.whxb201810033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Zemin, Xiang Zeng, Xinyu Li, Zhenxing Lv, Jiong Li, and Ying Zhang. "Strong Metal Phosphide–Phosphate Support Interaction for Enhanced Non‐Noble Metal Catalysis." Advanced Materials 34, no. 5 (December 21, 2021): 2106724. http://dx.doi.org/10.1002/adma.202106724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pan, Chun-Jern, Meng-Che Tsai, Wei-Nien Su, John Rick, Nibret Gebeyehu Akalework, Abiye Kebede Agegnehu, Shou-Yi Cheng, and Bing-Joe Hwang. "Tuning/exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis." Journal of the Taiwan Institute of Chemical Engineers 74 (May 2017): 154–86. http://dx.doi.org/10.1016/j.jtice.2017.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Shaikhutdinov, Shamil. "Strong Metal–Support Interaction and Reactivity of Ultrathin Oxide Films." Catalysis Letters 148, no. 9 (July 27, 2018): 2627–35. http://dx.doi.org/10.1007/s10562-018-2499-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mogorosi, Ramoshibidu P., Nico Fischer, Michael Claeys, and Eric van Steen. "Strong-metal–support interaction by molecular design: Fe–silicate interactions in Fischer–Tropsch catalysts." Journal of Catalysis 289 (May 2012): 140–50. http://dx.doi.org/10.1016/j.jcat.2012.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Polo-Garzon, Felipe, Thomas F. Blum, Zhenghong Bao, Kristen Wang, Victor Fung, Zhennan Huang, Elizabeth E. Bickel, De-en Jiang, Miaofang Chi, and Zili Wu. "In Situ Strong Metal–Support Interaction (SMSI) Affects Catalytic Alcohol Conversion." ACS Catalysis 11, no. 4 (January 28, 2021): 1938–45. http://dx.doi.org/10.1021/acscatal.0c05324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Anderson, J. B. F., R. Burch, and J. A. Cairns. "The reversibility of the strong metal-support interaction under reaction conditions." Applied Catalysis 21, no. 1 (February 1986): 179–85. http://dx.doi.org/10.1016/s0166-9834(00)81338-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Vishwanathan, V., and S. Narayanan. "Evidence for strong metal-support interaction (SMSI) in Rh/TiO2 system." Catalysis Letters 21, no. 1-2 (1993): 183–89. http://dx.doi.org/10.1007/bf00767384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yao, Ming-Hui. "HREM study of strong-metal interaction in Pt/TiO2." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 734–35. http://dx.doi.org/10.1017/s0424820100149507.

Full text
Abstract:
The chemisorption ability and catalytic properties of metal particles supported on reducible oxides are often altered by high temperature reduction(HTR) in a process known as strong metal-support interaction(SMSI). Different models have been proposed to explain the SMSI mechanism. In recent years, experimental evidences have favored the "decoration model", which suggests that SMSI is due to the encapsulation of the metal particles by oxide overlayer species dial have migrated from the support. HREM profile imaging was the most useful tool to directly relate these surface decorations to the SMSI effects. The profile imaging can provide atomic-scale information about supported particles and Uieir surfaces without image being obscured by overlapping contrast from the support.In the present work, the SMSI effect in Pt/TiO2 and Pt/CeO2 model catalysts have been studied using HREM profile imaging and multislice simulations. HREM observations were made with a JEM-4000EX microscope, operated at 400 kV. Fig. 1(a) shows a typical profile image of TiO2 after HTR in H2 at 923K.
APA, Harvard, Vancouver, ISO, and other styles
18

Benhmid, A., K. El Ttaib, K. Edbey, V. N. Kalevaru, and B. Lücke. "A New Type of Strong Metal-Support Interaction Caused by Antimony Species." Open Journal of Metal 10, no. 02 (2020): 17–33. http://dx.doi.org/10.4236/ojmetal.2020.102002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, Xiuyun, Yi Liu, Xuanbei Peng, Bingyu Lin, Yanning Cao, and Lilong Jiang. "Sacrificial Adsorbate Strategy Achieved Strong Metal–Support Interaction of Stable Cu Nanocatalysts." ACS Applied Energy Materials 1, no. 4 (March 15, 2018): 1408–14. http://dx.doi.org/10.1021/acsaem.8b00049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sankar, G., S. Vasudevan, and C. N. R. Rao. "Strong metal-support interaction in nickel/niobium pentoxide and nickel/titania catalysts." Journal of Physical Chemistry 92, no. 7 (April 1988): 1878–82. http://dx.doi.org/10.1021/j100318a036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Shuyi, Philipp N. Plessow, Joshua J. Willis, Sheng Dai, Mingjie Xu, George W. Graham, Matteo Cargnello, Frank Abild-Pedersen, and Xiaoqing Pan. "Dynamical Observation and Detailed Description of Catalysts under Strong Metal–Support Interaction." Nano Letters 16, no. 7 (June 13, 2016): 4528–34. http://dx.doi.org/10.1021/acs.nanolett.6b01769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

SPENCER, M. "Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts." Journal of Catalysis 93, no. 2 (June 1985): 216–23. http://dx.doi.org/10.1016/0021-9517(85)90169-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Jechan, Samuel P. Burt, Carlos A. Carrero, Ana C. Alba-Rubio, Insoo Ro, Brandon J. O’Neill, Hyung Ju Kim, et al. "Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction." Journal of Catalysis 330 (October 2015): 19–27. http://dx.doi.org/10.1016/j.jcat.2015.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Qiao, Botao, Jin-Xia Liang, Aiqin Wang, Cong-Qiao Xu, Jun Li, Tao Zhang, and Jingyue Jimmy Liu. "Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)." Nano Research 8, no. 9 (July 16, 2015): 2913–24. http://dx.doi.org/10.1007/s12274-015-0796-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jiménez-Morales, Ignacio, Sara Cavaliere, Deborah Jones, and Jacques Rozière. "Strong metal–support interaction improves activity and stability of Pt electrocatalysts on doped metal oxides." Physical Chemistry Chemical Physics 20, no. 13 (2018): 8765–72. http://dx.doi.org/10.1039/c8cp00176f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sun, Qiaozhi, Biao Zhang, Kai Song, Yue Guo, Yanan Wang, Enzuo Liu, and Fang He. "Electronic Reconfiguration of Metal Rhenium Induced by Strong Metal–Support Interaction Enhancing the Hydrogen Evolution Reaction." Advanced Materials Interfaces 8, no. 17 (August 7, 2021): 2100545. http://dx.doi.org/10.1002/admi.202100545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Viswanathan, B., Katsumi Tanaka, and Isamu Toyoshima. "Cluster model and charge transfer in a strong metal-support interaction (SMSI) state." Langmuir 2, no. 1 (January 1986): 113–16. http://dx.doi.org/10.1021/la00067a021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kast, Patrick, Matthias Friedrich, Frank Girgsdies, Jutta Kröhnert, Detre Teschner, Thomas Lunkenbein, Malte Behrens, and Robert Schlögl. "Strong metal-support interaction and alloying in Pd/ZnO catalysts for CO oxidation." Catalysis Today 260 (February 2016): 21–31. http://dx.doi.org/10.1016/j.cattod.2015.05.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Dauscher, A., W. M�ller, and G. Maire. "Catalytic behaviour of polycrystalline Pt3Ti in relation to strong metal-support interaction phenomenon." Catalysis Letters 2, no. 3 (1989): 139–44. http://dx.doi.org/10.1007/bf00775062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Jiacheng, Miao Li, Xu Yang, Sai Wang, Yu Zhang, Fang Liu, and Xiang Liu. "Sub-nanocatalysis for Efficient Aqueous Nitrate Reduction: Effect of Strong Metal–Support Interaction." ACS Applied Materials & Interfaces 11, no. 37 (September 5, 2019): 33859–67. http://dx.doi.org/10.1021/acsami.9b09544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yang, Xueqin, Xiuyun Ma, Xiaolin Yu, and Maofa Ge. "Exploration of strong metal-support interaction in zirconia supported catalysts for toluene oxidation." Applied Catalysis B: Environmental 263 (April 2020): 118355. http://dx.doi.org/10.1016/j.apcatb.2019.118355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

HERRMANN, J. "Termodynamic considerations of strong metal-support interaction in a real Pt/TiO2 catalyst." Journal of Catalysis 118, no. 1 (July 1989): 43–52. http://dx.doi.org/10.1016/0021-9517(89)90299-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Madhusudhan Rao, P., B. Viswanathan, and R. P. Viswanath. "Strong metal support interaction state in the Fe/TiO2 system — an XPS study." Journal of Materials Science 30, no. 19 (October 1995): 4980–85. http://dx.doi.org/10.1007/bf01154512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Frey, H., A. Beck, X. Huang, J. A. van Bokhoven, and M. G. Willinger. "Dynamic interplay between metal nanoparticles and oxide support under redox conditions." Science 376, no. 6596 (May 27, 2022): 982–87. http://dx.doi.org/10.1126/science.abm3371.

Full text
Abstract:
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)–induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal–oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
APA, Harvard, Vancouver, ISO, and other styles
35

Haberlandt, Helmut, and Friedrich Ritschl. "Quantum chemical investigation of support-metal interactions and their influence on chemisorption. 2. Strong metal-support interaction in H...Ni-MOx (M = titanium, silicon)." Journal of Physical Chemistry 90, no. 18 (August 1986): 4322–30. http://dx.doi.org/10.1021/j100409a020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Fei, Jianzhun Jiang, and Bin Wang. "Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports." Catalysts 9, no. 5 (May 23, 2019): 477. http://dx.doi.org/10.3390/catal9050477.

Full text
Abstract:
For heterogeneous catalysis, the metal catalysts supported on reducible metal oxides, especially CeO2 and TiO2, have long been a research focus because of their excellent catalytic performance in a variety of catalytic reactions. Detailed understanding of the promotion effect of reducible metal oxides on catalytic reactions is beneficial to the rational design of new catalysts. The important catalytic roles of reducible metal oxides are attributed to their intimate interactions with the supported metals (e.g., strong metal-support interaction, electronic metal-support interaction) and unique support structures (e.g., oxygen vacancy, reversible valence change, surface hydroxyl). However, the structures of the catalysts and reaction mechanisms are strongly affected by environmental conditions. For this reason, in situ/operando spectroscopy studies under working conditions are necessary to obtain accurate information about the structure-activity relationship. In this review, the recent applications of the in situ/operando spectroscopy methodology on metal catalysts with reducible metal oxides as supports are summarized.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Wei, and Luise Theil Kuhn. "Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam." ChemCatChem 5, no. 9 (July 12, 2013): 2591–94. http://dx.doi.org/10.1002/cctc.201300452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hong, Feng, Shengyang Wang, Junying Zhang, Junhong Fu, Qike Jiang, Keju Sun, and Jiahui Huang. "Strong metal-support interaction boosting the catalytic activity of Au/TiO2 in chemoselective hydrogenation." Chinese Journal of Catalysis 42, no. 9 (September 2021): 1530–37. http://dx.doi.org/10.1016/s1872-2067(20)63763-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chakrabarty, D. K., and A. Ramachandran. "Strong-metal-support-interaction in titania-supported rhodium, ruthenium, and rhodium-ruthenium bimetallic catalysts." Proceedings / Indian Academy of Sciences 101, no. 4 (August 1989): 291–99. http://dx.doi.org/10.1007/bf02840660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Naldoni, Alberto, Francesca Riboni, Marcello Marelli, Filippo Bossola, Giacomo Ulisse, Aldo Di Carlo, Igor Píš, et al. "Influence of TiO2electronic structure and strong metal–support interaction on plasmonic Au photocatalytic oxidations." Catalysis Science & Technology 6, no. 9 (2016): 3220–29. http://dx.doi.org/10.1039/c5cy01736j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Cattania, Maria Grazia, Antonella Gervasini, Franca Morazzoni, Roberto Scotti, and Donatella Strumolo. "Electron spin resonance investigation of ZrO2-supported ruthenium. Evidence of strong metal–support interaction." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 85, no. 4 (1989): 801. http://dx.doi.org/10.1039/f19898500801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

HIRAMOTO, Yoshiaki, Kimio KUNIMORI, and Toshio UCHIJIMA. "Effect of Strong Metal-Support Interaction(SMSI) on Ammonia Synthesis over Supported Ru Catalysts." NIPPON KAGAKU KAISHI, no. 2 (1993): 151–55. http://dx.doi.org/10.1246/nikkashi.1993.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yuan, Lu-Pan, Wen-Jie Jiang, Xiao-Long Liu, Ye-Heng He, Chao He, Tang Tang, Jianan Zhang, and Jin-Song Hu. "Molecularly Engineered Strong Metal Oxide–Support Interaction Enables Highly Efficient and Stable CO2 Electroreduction." ACS Catalysis 10, no. 22 (November 1, 2020): 13227–35. http://dx.doi.org/10.1021/acscatal.0c03831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Di, Nobuyuki Ichikuni, Shogo Shimazu, and Takayoshi Uematsu. "Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal–support interaction." Applied Catalysis A: General 180, no. 1-2 (April 1999): 227–35. http://dx.doi.org/10.1016/s0926-860x(98)00335-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Imran, M., Ammar B. Yousaf, Xiao Zhou, Yi-Fan Jiang, Cheng-Zong Yuan, Akif Zeb, Nan Jiang, and An-Wu Xu. "Pd/TiO Nanocatalyst with Strong Metal–Support Interaction for Highly Efficient Durable Heterogeneous Hydrogenation." Journal of Physical Chemistry C 121, no. 2 (January 5, 2017): 1162–70. http://dx.doi.org/10.1021/acs.jpcc.6b10274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

GONZALEZDELACRUZ, V., J. HOLGADO, R. PERENIGUEZ, and A. CABALLERO. "Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system." Journal of Catalysis 257, no. 2 (July 25, 2008): 307–14. http://dx.doi.org/10.1016/j.jcat.2008.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhao, Xiangyu, Xiaoxia Wu, Hua Wang, Jinyu Han, Qingfeng Ge, and Xinli Zhu. "Effect of Strong Metal-Support Interaction of Pt/TiO2 on Hydrodeoxygenation of m-Cresol." ChemistrySelect 3, no. 37 (October 2, 2018): 10364–70. http://dx.doi.org/10.1002/slct.201801147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Klyushin, Alexander Yu, Travis E. Jones, Thomas Lunkenbein, Pierre Kube, Xuan Li, Michael Hävecker, Axel Knop-Gericke, and Robert Schlögl. "Strong Metal Support Interaction as a Key Factor of Au Activation in CO Oxidation." ChemCatChem 10, no. 18 (August 2, 2018): 3985–89. http://dx.doi.org/10.1002/cctc.201800972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Arunarkavalli, T., G. U. Kulkarni, G. Sankar, and C. N. R. Rao. "Strong metal-support interaction in Ni/TiO2 catalysts: in situ EXAFS and related studies." Catalysis Letters 17, no. 1-2 (1993): 29–37. http://dx.doi.org/10.1007/bf00763924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Abasov, S. I., V. Yu Borovkov, and V. B. Kazansky. "Infrared and adsorption study of strong metal-support interaction in diluted platinum-alumina catalysts." Catalysis Letters 15, no. 3 (1992): 269–74. http://dx.doi.org/10.1007/bf00765270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography