Academic literature on the topic 'Strong-matter coupling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Strong-matter coupling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Strong-matter coupling"
Castellanos, Gabriel W., Shunsuke Murai, T. V. Raziman, Shaojun Wang, Mohammad Ramezani, Alberto G. Curto, and Jaime Gómez Rivas. "Strong light-matter coupling in dielectric metasurfaces." EPJ Web of Conferences 238 (2020): 05004. http://dx.doi.org/10.1051/epjconf/202023805004.
Full textLange, Christoph, Emiliano Cancellieri, Dmitry Panna, David M. Whittaker, Mark Steger, David W. Snoke, Loren N. Pfeiffer, Kenneth W. West, and Alex Hayat. "Ultrafast control of strong light–matter coupling." New Journal of Physics 20, no. 1 (January 22, 2018): 013032. http://dx.doi.org/10.1088/1367-2630/aa9fd0.
Full textZhang, Lijian, Fuchun Xi, Jie Xu, Qinbai Qian, Peng Gou, and Zhenghua An. "Strong light-matter coupling in plasmonic microcavities." Optics Communications 331 (November 2014): 128–32. http://dx.doi.org/10.1016/j.optcom.2014.05.066.
Full textGarcia-Vidal, Francisco J., Cristiano Ciuti, and Thomas W. Ebbesen. "Manipulating matter by strong coupling to vacuum fields." Science 373, no. 6551 (July 8, 2021): eabd0336. http://dx.doi.org/10.1126/science.abd0336.
Full textMiura, K., T. Z. Nakano, and A. Ohnishi. "Quarkyonic Matter in Lattice QCD at Strong Coupling." Progress of Theoretical Physics 122, no. 4 (October 1, 2009): 1045–54. http://dx.doi.org/10.1143/ptp.122.1045.
Full textGómez-Santos, G., and T. Stauber. "Graphene plasmons and retardation: Strong light-matter coupling." EPL (Europhysics Letters) 99, no. 2 (July 1, 2012): 27006. http://dx.doi.org/10.1209/0295-5075/99/27006.
Full textBerghuis, Anton Matthijs, Alexei Halpin, Quynh Le‐Van, Mohammad Ramezani, Shaojun Wang, Shunsuke Murai, and Jaime Gómez Rivas. "Strong Light‐Matter Coupling: Enhanced Delayed Fluorescence in Tetracene Crystals by Strong Light‐Matter Coupling (Adv. Funct. Mater. 36/2019)." Advanced Functional Materials 29, no. 36 (September 2019): 1970249. http://dx.doi.org/10.1002/adfm.201970249.
Full textTakele, Wassie Mersha, Lukasz Piatkowski, Frank Wackenhut, Sylwester Gawinkowski, Alfred J. Meixner, and Jacek Waluk. "Scouting for strong light–matter coupling signatures in Raman spectra." Physical Chemistry Chemical Physics 23, no. 31 (2021): 16837–46. http://dx.doi.org/10.1039/d1cp01863a.
Full textFarias, Ricardo L. S., Varese S. Timóteo, Sidney S. Avancini, Marcus B. Pinto, and Gastão I. Krein. "Exploring Hot Quark Matter in Strong Magnetic Fields." International Journal of Modern Physics: Conference Series 45 (January 2017): 1760043. http://dx.doi.org/10.1142/s2010194517600436.
Full textAskenazi, B., A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori. "Ultra-strong light–matter coupling for designer Reststrahlen band." New Journal of Physics 16, no. 4 (April 30, 2014): 043029. http://dx.doi.org/10.1088/1367-2630/16/4/043029.
Full textDissertations / Theses on the topic "Strong-matter coupling"
Johne, Robert. "Strong light matter coupling in semiconductor nanostructures. Nonlinear effects and applications." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00725283.
Full textSapienza, Luca. "Electrically driven semiconductor devices operating in the light-matter strong coupling regime." Paris 7, 2007. http://www.theses.fr/2007PA077088.
Full textThis thesis is focused on the study of the light-matter strong coupling regime for intersubband transitions. A System composed of doped multi-quantum wells inserted in a semiconductor planar microcavity allows the study of the interaction between intersubband excitations and photon cavity modes. If the vacuum Rabi frequency, quantifying the coupling between a cavity photon and an intersubband excitation, exceeds their frequency broadenings, what is referred to as strong coupling regime is achieved. In this regime, the eigenstates of the System are linear superpositions of light and matter excitations and are called cavity polaritons. In this thesis the implementation of the light-matter strong coupling regime in an electrically driven semiconductor device is presented. The structure we have designed is composed of a AI0,45Ga0, 55As/GaAs quantum cascade structure containing a bi-dimensional electron gas in the ground state, inserted in a planar microcavity, based on a plasmon mode, suitable for electrical injection. The System has been first characterized in reflectivity, showing its suitability for the achievement of the light-matter strong coupling regime. Then, photovoltaic and electro-luminescence measurements have been performed. The results obtained have put into evidence the importance of the electrical transport and injection in the properties of the System in strong coupling regime. The possibility of an electrical probe of cavity dynamics has been demonstrated, as well as the realization of the first electrically injected semiconductor device, working in the light-matter strong coupling regime in emission
Sivalertporn, Kanchana. "Strong light-matter coupling in microcavity-embedded semiconductor quantum wells and quantum dots." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/49358/.
Full textTischler, Jonathan Randall 1977. "Solid state cavity QED : practical applications of strong coupling of light and matter." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40549.
Full textIncludes bibliographical references (p. 126-133).
J-aggregates of cyanine dyes are the excitonic materials of choice for realizing polariton devices that operate in strong coupling at room temperature. Since the earliest days of cavity QED, there has been a major desire to construct solid state optical devices that operate in the limit where strong light-matter interactions dominate the dynamics. Such devices have been successfully constructed, but their operation is usually limited to cryogenic temperatures, because of the small binding energies for the ,excitonic materials typically used. It has been demonstrated that when J-aggregates are used as the excitonic material, it is possible to achieve strong coupling in solid state even at room temperature. J-aggregates are a unique choice of materials because their central feature, a very large optical transitional dipole, is itself the result of strong coupling amongst monomeric dye elements. The strong coupling amongst dye molecules produces a well-defined cooperative optical transition possessing oscillator strength derived from all of the aggregated monomers that is capable of interacting strongly with the cavity confined electromagnetic field even at room temperature. There are different materials and methods for assembling J-aggregates which are capable of producing strong coupling. This thesis argues in favor of a particular dye and method of assembly which are then thoroughly characterized. With this dye and assembly technique, the first demonstration of electrically pumped polariton emission is reported as is the largest optical absorption coefficient for a solid thin film at room temperature not contained in a full microcavity.
(cont.) This combination is then used to demonstrate strong coupling at room temperature, as characterized by a light-matter coupling strength, Rabi-splitting, that significantly exceeds the dephasing processes competing against the coherence of the interaction. Finally, prospects of this approach for realizing a polariton laser at room temperature are considered, and improved microcavity architectures are demonstrated as a path towards its realization.
by Jonathan Randall Tischler.
Ph.D.
Halbhuber, Maike [Verfasser], and Dominique [Akademischer Betreuer] Bougeard. "Subcycle dynamics of deep-strong light-matter coupling / Maike Halbhuber ; Betreuer: Dominique Bougeard." Regensburg : Universitätsbibliothek Regensburg, 2021. http://d-nb.info/1233008870/34.
Full textVigneron, Pierre-Baptiste. "Mid-Infrared Detectors and THz Devices Operating in the Strong Light-Matter Coupling Regime." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS082/document.
Full textAfter fifteen years of intersubband polaritons development some of the peculiar properties of these quasi-particles are still unexplored. A deeper comprehension of the polaritons is needed to access their fundamental properties and assess their applicative potential as efficient emitters or detectors in the mid-infrared and THz.In this manuscript we used Metal-Insulator-Metal (MI-M) cavities with a top metal periodic grating as a platform to deepen the understanding of ISB polaritons.The advantages of M-I-M are twofold : first they confine the TM00 mode, second the dispersion of the cavity -over a large set of in-plane wave-vectors- offers various experimental configurations to observe the polaritons in both reflection and photo-current. We reexamined the properties of ISB polaritons in the mid-infrared and in the THz using these resonators. In the first part, we explore the implementation of dispersive M-I-M cavities with THz intersubband transitions. In the THz domain, the scattering mechanisms of the THz ISB polaritons need to be understood. The dispersive cavity is a major asset to study these mechanisms because it provides more degrees of freedom to the system. For this purpose, we fabricated a new experimental set-up to measure the polariton dispersion at liquid Helium temperature. After the characterization of the polaritons in reflectivity, a pump-probe experiment was performed on the polaritonic devices. The second part of this manuscript presents the implementation of M-I-M dispersive cavities with abound-to-quasi-bound quantum well infrared photo detector designed to detect in strong coupling. Beyond electrical probing of the polaritons, the strong coupling can disentangle the frequency of detection from the thermal activation energy and reduce the dark current at a given frequency. In parallel to the exploration of THz polaritons, we developed two techniques (Gires-Tournois Interferometer and Anti-reflection coating) in order to shorten the pulses of THz quantum cascade lasers with metal-metal waveguides
Lundt, Nils [Verfasser], Christian [Gutachter] Schneider, Bert [Gutachter] Hecht, and Tobias [Gutachter] Brixner. "Strong light-matter coupling with 2D materials / Nils Lundt ; Gutachter: Christian Schneider, Bert Hecht, Tobias Brixner." Würzburg : Universität Würzburg, 2019. http://d-nb.info/1195444974/34.
Full textChervy, Thibault. "Strong coupling regime of cavity quantum electrodynamics and its consequences on molecules and materials." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF033/document.
Full textThis thesis presents an exploratory study of several aspects of strong light-matter coupling in molecular materials. Different properties inherited from such a coupling are demonstrated, opening the way to numerous applications, ranging from energy transfer to the generation of non-linear optical signals and to the development of chiral polaritonic networks. Through the topics covered, the idea of a light-matter coupling strength competing with the different frequencies of relaxation of the molecules proves to be crucial. Thus, the predominance of the coherent coupling to the electromagnetic field appears as a new mean of modifying the quantum properties of molecular systems, opening the way to a new chemistry of materials in optical cavities
Castanie, Aurore. "Surface plasmon hybridization in the strong coupling regime in gain structures." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2013. http://tel.archives-ouvertes.fr/tel-00913379.
Full textAkhileswaran, Aji Anappara. "Light-matter interaction in intersubband microcavities." Doctoral thesis, Scuola Normale Superiore, 2008. http://hdl.handle.net/11384/85841.
Full textBooks on the topic "Strong-matter coupling"
Auffèves, Alexia, Dario Gerace, Maxime Richard, Stefano Portolan, Marcelo França Santos, Leong Chuan Kwek, and Christian Miniatura. Strong Light-Matter Coupling. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/8758.
Full textPascual, Javier Galego. Polaritonic Chemistry: Manipulating Molecular Structure Through Strong Light–Matter Coupling. Springer, 2020.
Find full textPascual, Javier Galego. Polaritonic Chemistry: Manipulating Molecular Structure Through Strong Light-Matter Coupling. Springer International Publishing AG, 2021.
Find full textKavokin, Alexey V., Jeremy J. Baumberg, Guillaume Malpuech, and Fabrice P. Laussy. Microcavities. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198782995.001.0001.
Full textBook chapters on the topic "Strong-matter coupling"
Kalt, Heinz, and Claus F. Klingshirn. "Oscillator Model of Strong Light-Matter Coupling." In Graduate Texts in Physics, 81–100. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24152-0_7.
Full textAlpeggiani, Filippo, S. D’Agostino, and L. C. Andreani. "Surface Plasmons and Strong Light-Matter Coupling in Metallic Nanoshells." In NATO Science for Peace and Security Series B: Physics and Biophysics, 479. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_35.
Full textJackson Kimball, Derek F., Leanne D. Duffy, and David J. E. Marsh. "Ultralight Bosonic Dark Matter Theory." In The Search for Ultralight Bosonic Dark Matter, 31–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_2.
Full textBaldo, M., J. Dukelsky, F. Gulminelli, U. Lombardo, and P. Schuck. "Deuteron Formation in Expanding Nuclear Matter from a Strong Coupling BCS Approach." In Advances in Nuclear Dynamics 2, 159–66. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9086-3_22.
Full textSpector, Aaron D. "Light-Shining-Through-Walls Experiments." In The Search for Ultralight Bosonic Dark Matter, 255–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95852-7_9.
Full textGeraci, Andrew A., and Yun Chang Shin. "Laboratory Searches for Exotic Spin-Dependent Interactions." In The Search for Ultralight Bosonic Dark Matter, 219–53. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-030-95852-7_8.
Full textGao, Jian-Hua, Zuo-Tang Liang, Qun Wang, and Xin-Nian Wang. "Global Polarization Effect and Spin-Orbit Coupling in Strong Interaction." In Strongly Interacting Matter under Rotation, 195–246. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71427-7_7.
Full textLieb, Elliott H., and Lawrence E. Thomas. "Exact Ground State Energy of the Strong-Coupling Polaron." In Condensed Matter Physics and Exactly Soluble Models, 311–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-06390-3_21.
Full textHaroche, Serge, and Jean-Michel Raimond. "Cavity QED in Atomic Physics." In Strong Light-Matter Coupling, 1–35. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814460354_0001.
Full textAndreani, Lucio Claudio. "Exciton-Polaritons in Bulk Semiconductors and in Confined Electron and Photon Systems." In Strong Light-Matter Coupling, 37–82. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814460354_0002.
Full textConference papers on the topic "Strong-matter coupling"
Kéna-Cohen, Stéphane. "Manipulating Light and Matter using Strong Light-Matter Coupling." In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.ftu5f.1.
Full textShegai, Timur. "TMDC nanophotonics for strong light-matter coupling." In Metamaterials, Metadevices, and Metasystems 2020, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2020. http://dx.doi.org/10.1117/12.2571188.
Full textRuggenthaler, Michael. "Novel effects in strong light-matter coupling." In Metamaterials, Metadevices, and Metasystems 2021, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2021. http://dx.doi.org/10.1117/12.2593707.
Full textShegai, Timur. "TMDC nanophotonics for strong light matter coupling." In Metamaterials, Metadevices, and Metasystems 2021, edited by Nader Engheta, Mikhail A. Noginov, and Nikolay I. Zheludev. SPIE, 2021. http://dx.doi.org/10.1117/12.2595440.
Full textLiu, Xiaoze, Tal Galfsky, Fengnian Xia, Erh-chen Lin, Yi-Hsien Lee, Ashwin Ramasubramaniam, Stéphane Kéna-Cohen, and Vinod M. Menon. "Strong light-matter coupling in atomic monolayers." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fth5a.5.
Full textLange, Christoph, Emiliano Cancellieri, Lee A. Rozema, Rockson Chang, Shreyas Potnis, Aephraim M. Steinberg, Mark Steger, et al. "Ultrafast Modulation of Strong Light-Matter Coupling." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_qels.2015.fm1b.4.
Full textFelbacq, Didier, and Emmanuel Rousseau. "Strong light-matter coupling in a quantum metasurface." In Active Photonic Platforms X, edited by Ganapathi S. Subramania and Stavroula Foteinopoulou. SPIE, 2018. http://dx.doi.org/10.1117/12.2320277.
Full textSchneebeli, Lukas, Mackillo Kira, and Stephan W. Koch. "Photon Correlations in Systems with Strong Light-Matter Coupling." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.ima2.
Full textDietze, Daniel, Alexander Benz, Gottfried Strasser, Karl Unterrainer, and Juraj Darmo. "Strong Terahertz Light-Matter Coupling Between Metamaterials and Intersubband Transitions." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qtu3f.4.
Full textMornhinweg, Joshua, Maike Halbhuber, Viola Zeller, Cristiano Ciuti, Dominique Bougeard, Rupert Huber, and Christoph Lange. "Extremely Non-Adiabatic Switching of Deep-Strong Light-Matter Coupling." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/up.2020.w3b.2.
Full text