Academic literature on the topic 'String: topological'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'String: topological.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "String: topological"

1

Tsai, Ya-Wen, Yao-Ting Wang, Pi-Gang Luan, and Ta-Jen Yen. "Topological Phase Transition in a One-Dimensional Elastic String System." Crystals 9, no. 6 (June 18, 2019): 313. http://dx.doi.org/10.3390/cryst9060313.

Full text
Abstract:
We show that topological interface mode can emerge in a one-dimensional elastic string system which consists of two periodic strings with different band topologies. To verify their topological features, Zak-phase of each band is calculated and reveals the condition of topological phase transition accordingly. Apart from that, the transmittance spectrum illustrates that topological interface mode arises when two topologically distinct structures are connected. The vibration profile further exhibits the non-trivial interface mode in the domain wall between two periodic string composites.
APA, Harvard, Vancouver, ISO, and other styles
2

Sato, Matsuo, and Yuji Sugimoto. "Topological string geometry." Nuclear Physics B 956 (July 2020): 115019. http://dx.doi.org/10.1016/j.nuclphysb.2020.115019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sugawara, Yuji. "Topological string on." Nuclear Physics B 576, no. 1-3 (June 2000): 265–84. http://dx.doi.org/10.1016/s0550-3213(00)00075-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Derfoufi, Younes, and My Ismail Mamouni. "STRING TOPOLOGICAL ROBOTICS." JP Journal of Geometry and Topology 19, no. 3 (October 6, 2016): 189–208. http://dx.doi.org/10.17654/gt019030189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Curio, Gottfried. "Topological partition function and string-string duality." Physics Letters B 366, no. 1-4 (January 1996): 131–33. http://dx.doi.org/10.1016/0370-2693(95)01347-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ayoub, Ettaki, My Ismail Mamouni, and Mohamed Abdou Elomary. "STRING TOPOLOGICAL ROBOTICS 2." JP Journal of Algebra, Number Theory and Applications 58 (September 24, 2022): 1–18. http://dx.doi.org/10.17654/0972555522031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Shu. "Introduction to Mirror Symmetry in Aspects of Topological String Theory." Journal of Physics: Conference Series 2386, no. 1 (December 1, 2022): 012079. http://dx.doi.org/10.1088/1742-6596/2386/1/012079.

Full text
Abstract:
Abstract Under the compactification by the Calabi-Yau threefold, the string theory shows there is duality called mirror symmetry, which implies there is an isomorphism between two string theories under the compactifications of two topologically different internal manifolds. By twisting the topological string theory in two methods, the twisted theories named A-model and B-model have an isomorphism to each other under the mirror symmetry.
APA, Harvard, Vancouver, ISO, and other styles
8

Segal, G. "Topological structures in string theory." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, no. 1784 (July 15, 2001): 1389–98. http://dx.doi.org/10.1098/rsta.2001.0841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Okuda, Takuya. "BIons in topological string theory." Journal of High Energy Physics 2008, no. 01 (January 28, 2008): 062. http://dx.doi.org/10.1088/1126-6708/2008/01/062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Antoniadis, I., E. Gava, K. S. Narain, and T. R. Taylor. "Topological amplitudes in string theory." Nuclear Physics B 413, no. 1-2 (January 1994): 162–84. http://dx.doi.org/10.1016/0550-3213(94)90617-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "String: topological"

1

Melo, dos Santos Luis F. "Aspects of topological string theory." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duan, Zhihao. "Topological string theory and applications." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE011/document.

Full text
Abstract:
Cette thèse porte sur diverses applications de la théorie des cordes topologiques basée sur différents types de variétés de Calabi-Yau (CY). Le premier type considéré est la variété torique CY, qui est intimement liée aux problèmes spectraux des différents opérateurs. L'exemple particulier considéré dans la thèse ressemble beaucoup au modèle de Harper-Hofstadter en physique de la matière condensée. Nous étudions d’abord les secteurs non perturbatifs dans ce modèle et proposons une nouvelle façon de les calculer en utilisant la théorie topologique des cordes. Dans la deuxième partie de la thèse, nous considérons les fonctions de partition sur des variétés de CY elliptiquement fibrées. Celles-ci présentent un comportement modulaire intéressant. Nous montrons que pour les géométries qui ne conduisent pas à des symétries de jauge non abéliennes, les fonctions de partition des cordes topologiques peuvent être reconstruites avec seulement les invariants de Gromov-Witten du genre zéro. Finalement, nous discutons des travaux en cours concernant la relation entre les fonctions de partitionnement des cordes topologiques sur les soi-disant arbres de Higgsing dans la théorie de F
This thesis focuses on various applications of topological string theory based on different types of Calabi-Yau (CY) manifolds. The first type considered is the toric CY manifold, which is intimately related to spectral problems of difference operators. The particular example considered in the thesis closely resembles the Harper-Hofstadter model in condensed matter physics. We first study the non-perturbative sectors in this model, and then propose a new way to compute them using topological string theory. In the second part of the thesis, we consider partition functions on elliptically fibered CY manifolds. These exhibit interesting modular behavior. We show that for geometries which don't lead to non-abelian gauge symmetries, the topological string partition functions can be reconstructed based solely on genus zero Gromov-Witten invariants. Finally, we discuss ongoing work regarding the relation of the topological string partition functions on the so-called Higgsing trees in F-theory
APA, Harvard, Vancouver, ISO, and other styles
3

Gregory, Ruth Ann Watson. "Topological defects in cosmology." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cooper, Leith. "The topological membrane approach to string theory." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dando, Owen Robert. "Topological defects in low-energy string gravity." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4496/.

Full text
Abstract:
Cosmologists are interested in topological defects as a possible source for the primordial density perturbations which seeded structure formation through gravitational instability. In this thesis, the gravitational properties of various topological defects are studied in the context of low-energy string theory, a likely modification of Einstein gravity at the high energy scales prevalent in the early universe. We consider in turn global monopole, local monopole, global cosmic string and global texture defects, allowing for an arbitrary coupling of defects to the string theory dilaton. For global defects we find the following behaviour. If the dilaton is massless, this modification to general relativity generically destroys the global good behaviour of the monopole and cosmic string, making their spacetimes singular. For the texture non-singular spacetimes exist, but only for certain values of the matter-dilaton coupling, dependent on the gravitational strength of the defect; in addition, this non-singular behaviour exists only in a certain frame. In the case of a massive dilaton, the metric behaviour of these defects is similar to that found in Einstein gravity, though we find they generically induce a long-range dilaton cloud. For the local monopole, which we study only in the presence of a massless dilaton, a rich variety of behaviour is found. For particular parameter values the local monopole spacetime approximates that of an extremal dilaton black hole.
APA, Harvard, Vancouver, ISO, and other styles
6

Zein, Assi Ahmad. "Topological Amplitudes and the String Effective Action." Palaiseau, Ecole polytechnique, 2013. https://theses.hal.science/docs/00/94/40/86/PDF/TheseZeinAssiFinalv2.pdf.

Full text
Abstract:
Cette thèse est dédiée à l'étude d'une classe de couplages dans l'action effective de la théorie des cordes qui se trouvent au croisement entre la théorie des cordes topologique et les théories de jauge supersymétriques. Ces couplages généralisent un ensemble de couplages gravitationnels qui calculent la fonction de partition de la théorie des cordes topologique. Dans la limite de théorie des champs, ces derniers reproduisent la fonction de partition de la théorie de jauge dans le fond Oméga lorsque l'un des paramètres de ce dernier, epsilon_+ , est égal à zéro. Cela suggère naturellement l'existence d'une généralisation dénommée la corde topologique raffinée. Les couplages étudiés dans ce manuscrit sont caractérisés par un multiplet vectoriel supplémentaire et sont calculés, en théorie des cordes, aux niveaux perturbatif et non-perturbatif. De plus, leur limite de théorie des champs donne la fonction de partition de la théorie des champs dans un fond Oméga général. Ainsi, ces couplages ouvrent de nouvelles perspectives pour la définition, au niveau de la surface d'univers, de la théorie des cordes topologiques raffinée
In this thesis, we study a class of higher derivative couplings in the string effective action arising at the junction of topological string theory and supersymmetric gauge theories in the Omega-background. They generalise a series of gravitational couplings involving gravitons and graviphotons, which reproduces the topological string theory partition function. The latter reduces, in the field theory limit, to the partition function of the gauge theory in the Omega-background when one if its parameters, say epsilon_+, is set to zero. This suggests the existence of a one-parameter extension called the refined topological string. The couplings considered in this work involve an additional vector multiplet and are evaluated, perturbatively and non-perturbatively, at the string level. In the field theory limit, they correctly reproduce the partition function of the gauge theory in a general Omega-background. Hence, these couplings provide new perspectives toward a worldsheet definition of the refined topological string
APA, Harvard, Vancouver, ISO, and other styles
7

Okuda, Takuya Ooguri Hirosi. "Large N dualities in topological string theory /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05232005-184326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Krefl, Daniel. "Real Mirror Symmetry and The Real Topological String." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-102832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kay, Michael. "On deformations and quantization in topological string theory." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-170482.

Full text
Abstract:
Die Untersuchung der Moduli Räumen von N = (2,2) Superkonformen Feldtheorien und der allgemeineren N = (2,2) Supersymmetrischen Quanten Feldtheorien ist ein langjähriges und vielseitiges Forschungsgebiet. Diese Dissertation konzentriert sich auf gewisse allgemeine Aspekte des erwähnten Studiums, und stellt Entwicklungen von allgemeinen Methoden im Rahmen der Topologischen String Theorie dar. Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil befasst sich mit Aspekten der geschlossenen Topologischen String Theorie und kulminiert in den Inhalt von [52], wo die geometrische Struktur der Topologischen anti-Topologischen Moduli Räumen von N = (2, 2) Superkonformen Feldtheorien mit Zentral Ladung c = 9, angesichts eines allgemeinen Quantisieung-Rahmens [31, 32] wiederentdeckt wird. Aus dieser Sichtweise erhält man, als Spezialfall, eine klare Einsicht der “holomorphic anomaly equation” von [6]. Diese Arbeit könnte als eine natürliche Erweiterung von früheren Untersuchungen in ähnlicher Richtung betrachtet werden, insbesondere vom grundlegenden Artikel [104]. Der zweite Teil befasst sich mit Aspekten der Untersuchung der Offenen und Geschlossenen Moduli Räumen von Topologischen Konformen Feldtheorien auf Genus Null. Insbesondere, ist hier eine Exposition von [13] enthalten, wo allgemeine Resultate über die Klassifizierung und Berechnung von “bulk-induced” Deformationen von Offenen Topologischen Konformen Feldtheorien erhalten wurden. Letzteres wurde durch eine kohärente algebraische Methode erreicht was sich auf den definierenden L∞ und A∞ beteiligten Strukturen bezieht. Teilweise ist die letztere Untersuchung auf beliebige Affine B-twisted Landau Ginzburg Modelle beschränkt. Nachfolgend wird weitere originelle Arbeit dargestellt was die Topologische String-Feld-Theoretische Struktur von B-twisted Landau Ginzburg Modellen vollendet. Insbesondere wird eine “off-shell” Erweiterung der Kapustin-Li Formel von [41, 49] gegeben. Diese “off-shell” Formel bezeichnet einen konsolidierenden Baustein der algebraischen Herangehensweise zur Berechnung des Effektiven Superpotentials von B-twisted Affine Landau Ginzburg Modellen, und kann damit als eine natürliche Entwicklung von der grundlegenden Arbeit [12] betrachtet werden.
The study of moduli spaces of N = (2, 2) superconformal field theories and more generally of N = (2, 2) supersymmetric quantum field theories, has been a longstanding, multifaceted area of research. In this thesis we focus on certain selected general aspects of this study and develop general techniques within the framework of topological string theory. This work is naturally divided into two parts. The first is concerned with aspects of closed topological string theory, and culminates with the content of [52], where the geometrical structure of the topological anti-topological moduli spaces of N = (2,2) superconformal field theories with central charge c = 9 is rediscovered in the light of quantization, within a general framework ([31, 32]). From this point of view, one thus obtains, as a special case, a clear understanding of the holomorphic anomaly equation of [6]. This work can be viewed as a natural continuation of earlier studies in the same direction, most notably the seminal paper [104]. The second part is concerned with aspects of the study of the open and closed moduli space of topological conformal field theories at genus zero. In particular, it contains an exposition of [13], where general results on the classification and computation of bulk- induced deformations of open topological conformal field theories were obtained from a coherent algebraic approach, drawing from the defining L∞ and A∞ structures involved. In part, the latter investigation is restricted to arbitrary affine B-twisted Landau Ginzburg models. Subsequently, further original work is presented that completes the topological string field theory structure of B-twisted Landau Ginzburg models, providing in particular an off-shell extension of the Kapustin-Li pairing of [41, 49]. This off-shell pairing constitutes a consolidating building block in the algebraic approach to the computation of the effective superpotential of B-twisted affine Landau Ginzburg models pioneered in [12].
APA, Harvard, Vancouver, ISO, and other styles
10

Ferreira, Pedro Castelo-Caetano. "Heterotic, open and unoriented string theories from topological membrane." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393440.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "String: topological"

1

Hollands, Lotte. Topological strings and quantum curves. Amsterdam: Amsterdam University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

W, Kolb Edward, Liddle Andrew R, United States. National Aeronautics and Space Administration., and Fermi National Accelerator Laboratory, eds. Topological defects in extended inflation. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chern-Simons theory, matrix models, and topological strings. Oxford: Clarendon Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Block, Jonathan, 1960- editor of compilation, ed. String-Math 2011. Providence, Rhode Island: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mathematical foundations of quantum field theory and perturbative string theory. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vilenkin, A. Cosmic strings and other topological defects. Cambridge: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

editor, Bouchard Vincent 1979, ed. String-Math 2014: June 9-13, 2014, University of Alberta, Alberta, Canada. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

editor, Donagi Ron, Douglas, Michael (Michael R.), editor, Kamenova Ljudmila 1978 editor, and Roček M. (Martin) editor, eds. String-Math 2013: Conference, June 17-21, 2013, Simons Center for Geometry and Physics, Stony Brook, NY. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berger, Ayelet. Temperature Driven Topological Switch in 1T’-MoTe2 and Strain Induced Nematicity in NaFeAs. [New York, N.Y.?]: [publisher not identified], 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaku, Michio. Strings, conformal fields, and topology: An introduction. New York: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "String: topological"

1

Hopkins, Michael J. "The string orientation." In Topological Modular Forms, 109–24. Providence, Rhode Island: American Mathematical Society, 2014. http://dx.doi.org/10.1090/surv/201/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bailin, David, and Alexander Love. "Topological defects." In Cosmology in Gauge Field Theory and String Theory, 65–90. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367806637-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katz, Sheldon. "Topological quantum field theory." In Enumerative Geometry and String Theory, 173–84. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/stml/032/13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shellard, E. P. S. "String Network Evolution." In Formation and Interactions of Topological Defects, 233–54. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1883-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fuentes-Sepúlveda, José, Gonzalo Navarro, and Diego Seco. "Implementing the Topological Model Succinctly." In String Processing and Information Retrieval, 499–512. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32686-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rabinovici, E. "Remarks on Topological String Theories." In Quantum Field Theory and String Theory, 285–303. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1819-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Osuga, Kento. "Introduction to Topological String Theories." In Springer Proceedings in Mathematics & Statistics, 209–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91626-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ooguri, Hirosi. "Lectures on Topological String Theory." In Strings and Fundamental Physics, 233–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25947-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Horowitz, Gary T. "Introduction to String Theories." In Topological Properties and Global Structure of Space-Time, 83–107. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-3626-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hořava, Petr. "Topological Strings and QCD in Two Dimensions." In Quantum Field Theory and String Theory, 151–63. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1819-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "String: topological"

1

Jurčo, B., and J. Visoký. "Courant Algebroid Connections and String Effective Actions." In Workshop on Strings, Membranes and Topological Field Theory. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813144613_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GREGORY, Ruth. "TOPOLOGICAL DEFECTS IN STRING COSMOLOGY." In Proceedings of the First International Workshop on Particle Physics and the Early Universe. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447263_0078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Loaiza-Brito, Oscar, Alejandro Ayala, Guillermo Contreras, Ildefonso Leon, and Pedro Podesta. "Topological effects on string vacua." In XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3622724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klemm, Albrecht. "Topological String Theory on Calabi-Yau threefolds." In RTN Winter School on Strings, Supergravity and Gauge Theories. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.019.0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SUGAWARA, YUJI. "TOPOLOGICAL STRING ON $Ads_{3} \times \mathcal{N}$." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810380_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Pan. "Towards the Large N Duality between the Chern-Simons Gauge Theory and the Topological String Theory." In Proceedings of the Nankai International Conference in Memory of Xiao-Song Lin. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812819116_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ding, Huafeng, Weijuan Yang, Peng Huang, Li Ma, and Andrés Kecskeméthy. "Generation of Planar Kinematic Chains With One Multiple Joint." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12915.

Full text
Abstract:
It is very important to synthesize as many feasible kinematic structures of mechanisms as possible in the conceptual design of mechanisms. Besides simple joint mechanisms, multiple joint mechanisms are also widely used in various mechanical systems. This paper proposes an automatic method for the synthesis of planar multiple joint kinematic chains which are seldom addressed in literature. The bicolor topological graph and the bicolor contracted graph are adopted to represent the topological structures of multiple joint kinematic chains. The characteristic number string of bicolor topological graphs is proposed and used to detect efficiently isomorphism in the synthesis progress. A systematic method for the synthesis of kinematic chains with one multiple joint is proposed, and the whole families of multiple joint kinematic chains with up to 16 links and all possible degrees of freedom are obtained for the first time.
APA, Harvard, Vancouver, ISO, and other styles
8

Ritter, P. "Generalized Higher Gauge Theory and M5-brane dynamics." In Workshop on Strings, Membranes and Topological Field Theory. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813144613_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sako, A. "A Recipe To Construct A Gauge Theory On A Noncommutative Kähler Manifold." In Workshop on Strings, Membranes and Topological Field Theory. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813144613_0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yoneya, T. "Lectures on Higher-Gauge Symmetries from Nambu Brackets and Covariantized M(atrix) Theory." In Workshop on Strings, Membranes and Topological Field Theory. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813144613_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "String: topological"

1

Song, Y. S. Topological String Theory and Enumerative Geometry. Office of Scientific and Technical Information (OSTI), May 2003. http://dx.doi.org/10.2172/815291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kashani-Poor, Amir-Kian. SU(N) Geometries and Topological String Amplitudes. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/815287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, L., and C. Tze. (Investigations in guage theories, topological solitons and string theories). Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5580416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chuang, Wu-yen, and /SLAC /Stanford U., Phys. Dept. Geometric Transitions, Topological Strings, and Generalized Complex Geometry. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Investigations in gauge theories, topological solitons and string theories. Final report. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10157040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography