To see the other types of publications on this topic, follow the link: String models.

Journal articles on the topic 'String models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'String models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gustafson, Gösta. "String models." Nuclear Physics A 566 (January 1994): 233–44. http://dx.doi.org/10.1016/0375-9474(94)90629-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boulware, David G., and S. Deser. "String-Generated Gravity Models." Physical Review Letters 55, no. 24 (December 9, 1985): 2656–60. http://dx.doi.org/10.1103/physrevlett.55.2656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lawrence, Albion, and John McGreevy. "D-terms and D-strings in open string models." Journal of High Energy Physics 2004, no. 10 (October 23, 2004): 056. http://dx.doi.org/10.1088/1126-6708/2004/10/056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

RANDJBAR-DAEMI, S., ABDUS SALAM, and J. A. STRATHDEE. "σ-MODELS AND STRING THEORIES." International Journal of Modern Physics A 02, no. 03 (June 1987): 667–93. http://dx.doi.org/10.1142/s0217751x87000247.

Full text
Abstract:
The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. We also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix.
APA, Harvard, Vancouver, ISO, and other styles
5

Faraggi, A. E., E. Manno, and C. Timirgaziu. "Minimal standard heterotic string models." European Physical Journal C 50, no. 3 (March 6, 2007): 701–10. http://dx.doi.org/10.1140/epjc/s10052-007-0243-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nepomechie, Rafael I. "String models with twisted currents." Physical Review D 34, no. 4 (August 15, 1986): 1129–35. http://dx.doi.org/10.1103/physrevd.34.1129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bergman, Oren, and Charles B. Thorn. "String bit models for superstring." Physical Review D 52, no. 10 (November 15, 1995): 5980–96. http://dx.doi.org/10.1103/physrevd.52.5980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Danilov, G. S., and L. N. Lipatov. "BFKL pomeron in string models." Nuclear Physics B 754, no. 1-2 (October 2006): 187–232. http://dx.doi.org/10.1016/j.nuclphysb.2006.07.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Moss de Oliveira, S., P. M. C. de Oliveira, and D. Stauffer. "Bit-string models for parasex." Physica A: Statistical Mechanics and its Applications 322 (May 2003): 521–30. http://dx.doi.org/10.1016/s0378-4371(02)01916-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Constantin, Andrei, Yang-Hui He, and Andre Lukas. "Counting string theory standard models." Physics Letters B 792 (May 2019): 258–62. http://dx.doi.org/10.1016/j.physletb.2019.03.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yang, Z. "Compactified D=1 string models." Physics Letters B 243, no. 4 (July 1990): 365–72. http://dx.doi.org/10.1016/0370-2693(90)91398-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lorenz-Petzold, D. "String-driven anisotropic cosmological models." Astrophysics and Space Science 155, no. 2 (1989): 335–39. http://dx.doi.org/10.1007/bf00643871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Curtright, T. L., G. I. Ghandour, and C. B. Thorn. "Spin content of string models." Physics Letters B 182, no. 1 (December 1986): 45–52. http://dx.doi.org/10.1016/0370-2693(86)91076-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lorenz-Petzold, D. "String-generated anisotropic cosmological models." Physics Letters B 197, no. 1-2 (October 1987): 71–75. http://dx.doi.org/10.1016/0370-2693(87)90344-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bailin, David, and Alex Love. "String unification in orbifold models." Physics Letters B 278, no. 1-2 (March 1992): 125–30. http://dx.doi.org/10.1016/0370-2693(92)90722-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bilbao, Stefan, and Michele Ducceschi. "Models of musical string vibration." Acoustical Science and Technology 44, no. 3 (May 1, 2023): 194–209. http://dx.doi.org/10.1250/ast.44.194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xia, Hui, Yi Hua Dou, Xin He Wang, and Jiang Wen Xu. "Sectionalized Mechanical Models of Drilling Tool of Trenchless Directional Drilling." Applied Mechanics and Materials 268-270 (December 2012): 1190–93. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.1190.

Full text
Abstract:
There are three working conditions namely drilling a guide hole, expanding the guide hole and pulling back pipeline in trenchless directional drilling. The position of drill string in the wellbore and loads exerted on the drill string varied in different working conditions. The models of buckling analysis of drill strings under compression, mechanical analysis of drill string under axial compression near drill bit in inclined straight section, mechanical analysis of drill string with multi-centralizers under axial compression near drill bit in inclined straight section, mechanical analysis of drill string near drill bit under axial compression in horizontal section, mechanical analysis of drill string near drill bit under axial tension in horizontal section, mechanical analysis of drill strings near drill bit under axial tension in inclined straight section and mechanical analysis of drill string in failed well are established based on the characteristic of loads and trajectories in each section. The establishment of sectionalized mechanical model of drilling tool is the fundament of further study of force analysis, deformation analysis and stress analysis.
APA, Harvard, Vancouver, ISO, and other styles
18

Aoyama, S., P. Pasti, and M. Tonin. "The GS and NRS heterotic strings from twistor-string models." Physics Letters B 283, no. 3-4 (June 1992): 213–17. http://dx.doi.org/10.1016/0370-2693(92)90010-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kerkhof, Jeroen, and Antoon Pelsser. "Observational Equivalence of Discrete String Models and Market Models." Journal of Derivatives 10, no. 1 (August 31, 2002): 55–61. http://dx.doi.org/10.3905/jod.2002.319190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

FILIPPOV, A. T., and A. P. ISAEV. "GAUGE MODELS OF “DISCRETE STRINGS”." Modern Physics Letters A 04, no. 22 (October 30, 1989): 2167–76. http://dx.doi.org/10.1142/s0217732389002434.

Full text
Abstract:
A new class of constrained hamiltonian systems with a finite number of degrees of freedom is proposed in which excitations can be divided into two groups analogous to the left and right movers of string theories. Some of these models can be regarded as discrete analogs of the bosonic string, and in the continuum limit with the infinite dimensional constraint algebra Vect (S1)⊗ Vect (S1) one can obtain the classical theory of closed bosonic strings. We also discuss the problem of quantizing these models and constructing the propagator by using path integral methods. A possibility of a supersymmetric extension of our models is also pointed out.
APA, Harvard, Vancouver, ISO, and other styles
21

Catenacci, Roberto, and Pietro Grassi. "String Sigma Models on Curved Supermanifolds." Universe 4, no. 4 (April 24, 2018): 60. http://dx.doi.org/10.3390/universe4040060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hernández, Francisco J., Francisco Nettel, and Hernando Quevedo. "Gravitational fields as generalized string models." Gravitation and Cosmology 15, no. 2 (April 2009): 109–20. http://dx.doi.org/10.1134/s0202289309020029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Singh, G. P., and T. Singh. "String Cosmological Models with Magnetic Field." General Relativity and Gravitation 31, no. 3 (March 1999): 371–78. http://dx.doi.org/10.1023/a:1026644828215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shabelski, Y. M., and M. G. Ryskin. "Tetraquarks and pentaquarks in string models." European Physical Journal C 50, no. 1 (February 3, 2007): 81–83. http://dx.doi.org/10.1140/epjc/s10052-006-0207-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Craps, Ben. "Big bang models in string theory." Classical and Quantum Gravity 23, no. 21 (October 4, 2006): S849—S881. http://dx.doi.org/10.1088/0264-9381/23/21/s01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Berera, Arjun, and Thomas W. Kephart. "Ubiquitous Inflaton in String-Inspired Models." Physical Review Letters 83, no. 6 (August 9, 1999): 1084–87. http://dx.doi.org/10.1103/physrevlett.83.1084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kawai, H., D. C. Lewellen, and S. H. H. Tye. "Classification of closed-fermionic-string models." Physical Review D 34, no. 12 (December 15, 1986): 3794–804. http://dx.doi.org/10.1103/physrevd.34.3794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Anagnostopoulos, Konstantinos N., Jun Nishimura, and Poul Olesen. "Noncommutative String Worldsheets from Matrix Models." Journal of High Energy Physics 2001, no. 04 (April 20, 2001): 024. http://dx.doi.org/10.1088/1126-6708/2001/04/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Momen, Arshad, and Carl Rosenzweig. "Deconfinement transition and flux-string models." Physical Review D 56, no. 3 (August 1, 1997): 1437–44. http://dx.doi.org/10.1103/physrevd.56.1437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

CVETIČ, MIRJAM, and PAUL LANGACKER. "NEW GAUGE BOSONS FROM STRING MODELS." Modern Physics Letters A 11, no. 15 (May 20, 1996): 1247–62. http://dx.doi.org/10.1142/s0217732396001260.

Full text
Abstract:
We address the mass ranges of new neutral gauge bosons and constraints on the accompanying exotic particles as predicted by a class of superstring models. Under certain assumptions about the supersymmetry breaking parameters we show that breaking of an additional U(1)′ symmetry is radiative when the appropriate Yukawa couplings of exotic particles are of order one, analogous to the radiative breaking of the electroweak symmetry in the supersymmetric standard model due to the large top-quark Yukawa coupling. Such large Yukawa couplings occur for a large class of string models. The Z′ and exotic masses are either of [Formula: see text], or of a scale intermediate between the string and electroweak scales. In the former case, [Formula: see text] may be achieved without excessive fine-tuning, and is within future experimental reach.
APA, Harvard, Vancouver, ISO, and other styles
31

Carter, Brandon, and Patrick Peter. "Supersonic string models for Witten vortices." Physical Review D 52, no. 4 (August 15, 1995): R1744—R1748. http://dx.doi.org/10.1103/physrevd.52.r1744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sagnotti, Augusto. "Open-string models with broken supersymmetry." Nuclear Physics B - Proceedings Supplements 88, no. 1-3 (June 2000): 160–67. http://dx.doi.org/10.1016/s0920-5632(00)00764-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bueno-Guerrero, Alberto, Manuel Moreno, and Javier F. Navas. "Stochastic string models with continuous semimartingales." Physica A: Statistical Mechanics and its Applications 433 (September 2015): 229–46. http://dx.doi.org/10.1016/j.physa.2015.03.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Adhav, K. S., M. V. Dawande, and V. B. Raut. "Bianchi Type-III String Cosmological Models." International Journal of Theoretical Physics 48, no. 3 (September 16, 2008): 700–705. http://dx.doi.org/10.1007/s10773-008-9846-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Singh, J. K. "String Cosmological Models in Lyra Geometry." International Journal of Theoretical Physics 48, no. 3 (October 9, 2008): 905–12. http://dx.doi.org/10.1007/s10773-008-9863-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ram, Shri, and J. K. Singh. "Some spatially homogeneous string cosmological models." General Relativity and Gravitation 27, no. 11 (November 1995): 1207–13. http://dx.doi.org/10.1007/bf02108233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hořava, Petr. "Background duality of open-string models." Physics Letters B 231, no. 3 (November 1989): 251–57. http://dx.doi.org/10.1016/0370-2693(89)90209-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Nahm, W. "A classification of open string models." Communications in Mathematical Physics 105, no. 1 (March 1986): 1–11. http://dx.doi.org/10.1007/bf01212338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Brustein, Ram, and Merav Hadad. "Particle production in string cosmology models." Physical Review D 57, no. 2 (January 15, 1998): 725–40. http://dx.doi.org/10.1103/physrevd.57.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Quevedo, Fernando. "Local string models and moduli stabilisation." Modern Physics Letters A 30, no. 07 (February 26, 2015): 1530004. http://dx.doi.org/10.1142/s0217732315300049.

Full text
Abstract:
A brief overview is presented of the progress made during the past few years on the general structure of local models of particle physics from string theory including: moduli stabilisation, supersymmetry breaking, global embedding in compact Calabi–Yau compactifications and potential cosmological implications. Type IIB D-brane constructions and the Large Volume Scenario (LVS) are discussed in some detail emphasising the recent achievements and the main open questions.
APA, Harvard, Vancouver, ISO, and other styles
41

VAFA, CUMRUN. "STRING VACUA AND ORBIFOLDIZED LG MODELS." Modern Physics Letters A 04, no. 12 (June 20, 1989): 1169–85. http://dx.doi.org/10.1142/s0217732389001350.

Full text
Abstract:
We investigate how string vacua arise from N=2 superconformal models. In particular, we discuss how Landau-Ginzburg models with appropriate central charge can be orbifol-dized to construct string vacua. We develop techniques to compute the degeneracy and quantum numbers of the ground states of the LG models in the twisted sectors, even for the cases where the underlying LG model is not exactly solvable. This allows us to compute some interesting physical quantities such as the number of generations and anti-generations in the simplest compactification scenarios. The results agree with explicit computations in the cases where LG model is exactly solvable.
APA, Harvard, Vancouver, ISO, and other styles
42

DUNBAR, DAVID C. "FERMIONIC STRING MODELS AND ZN ORBIFOLDS." Modern Physics Letters A 04, no. 24 (November 20, 1989): 2339–47. http://dx.doi.org/10.1142/s021773238900263x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

DEMETERFI, KREŠIMIR, and CHUNG-I. TAN. "STRING EQUATIONS FROM UNITARY MATRIX MODELS." Modern Physics Letters A 05, no. 20 (August 20, 1990): 1563–74. http://dx.doi.org/10.1142/s0217732390001785.

Full text
Abstract:
We investigate unitary matrix models in the scaling limit using the method of orthogonal polynomials on the unit circle. We show that, f or a certain choice of coupling constants, string equations belong to the same univesality class as equations obtained from Hermitian matrix models. In addition, we show how a new class of string equations emerges as a consequence of the compactness of the unitary groups.
APA, Harvard, Vancouver, ISO, and other styles
44

Sénéchal, David. "Search for four-dimensional string models." Physical Review D 39, no. 12 (June 15, 1989): 3717–30. http://dx.doi.org/10.1103/physrevd.39.3717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dine, Michael, and Nathan Seiberg. "Are (0, 2) models string miracles?" Nuclear Physics B 306, no. 1 (August 1988): 137–59. http://dx.doi.org/10.1016/0550-3213(88)90174-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Faraggi, A. E. "MSHSM - Minimal Standard Heterotic String Models." Fortschritte der Physik 58, no. 7-9 (February 19, 2010): 733–37. http://dx.doi.org/10.1002/prop.201000012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bars, Itzhak. "Heterotic string models in curved spacetime." Physics Letters B 293, no. 3-4 (October 1992): 315–20. http://dx.doi.org/10.1016/0370-2693(92)90889-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Andreev, Oleg. "String breaking in a cold wind as seen by string models." Nuclear Physics B 977 (April 2022): 115724. http://dx.doi.org/10.1016/j.nuclphysb.2022.115724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bonelli, Giulio. "Matrix string models for exact (2,2) string theories in RR backgrounds." Nuclear Physics B 649, no. 1-2 (January 2003): 130–42. http://dx.doi.org/10.1016/s0550-3213(02)01036-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hong, Soon-Tae. "Phenomenologies in Hypersphere Soliton and Stringy Photon Models." Universe 9, no. 9 (August 23, 2023): 378. http://dx.doi.org/10.3390/universe9090378.

Full text
Abstract:
We consider the Dirac quantization in the first-class formalism to investigate the hypersphere soliton model (HSM) defined on the S3 hypersphere. To do this, we construct the first-class Hamiltonian possessing the Weyl ordering correction. In the HSM, we evaluate the baryon physical quantities such as the baryon masses, magnetic moments, axial coupling constant and charge radii, most predicted values of which are in good agreement with the corresponding experimental data. Moreover, shuffling the baryon and transition magnetic moments, we find the model independent sum rules. In the HSM we also evaluate the baryon intrinsic frequencies such as ωN=0.87×1023s−1 and ωΔ=1.74×1023s−1 of the nucleon and delta baryon, respectively, to yield the identity ωΔ=2ωN. Next, making use of the Nambu-Goto string action and its extended rotating bosonic string theory, we formulate the stringy photon model to obtain the energy of the string configuration, which consists of the rotational and vibrational energies of the open string. Exploiting this total string energy, we evaluate the photon intrinsic frequency ωγ=9.00×1023s−1, which is comparable to the corresponding baryon intrinsic frequencies. We also predict the photon size ⟨r2⟩1/2(photon)=0.17fm, which is approximately 21% of the proton magnetic charge radius.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography