To see the other types of publications on this topic, follow the link: Stress corrosion cracking; Aluminium.

Dissertations / Theses on the topic 'Stress corrosion cracking; Aluminium'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Stress corrosion cracking; Aluminium.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Yuan, Yudie. "Localised corrosion and stress cracking of aluminium-magnesium alloys." Thesis, University of Birmingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Williams, J. R. "Corrosion of aluminium-copper-magnesium metal matrix composites." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hepples, W. "Environment-sensitive cracking of 7000 series aluminium alloys." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Green, P. D. "Sacrificial corrosion behaviour of thermally sprayed aluminium alloys." Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kelly, D. J. "Exfoliation and stress corrosion cracking of the aluminium-lithium alloy 8090." Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cano-Castillo, U. "Environment-assisted cracking of spray-formed Al-alloy and Al-alloy-based composite." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seong, Jinwook. "Inhibition of Corrosion and Stress Corrosion Cracking of Sensitized AA5083." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429701294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Xiaodong. "Effects of stress on intergranular corrosion and intergranular stress corrosion cracking in AA2024-T3." Columbus, Ohio : Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1133313637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xiao, Ming. "Mechanism of stress corrosion cracking of aluminum alloy 7079." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/19174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rechberger, Johann. "The transition from stress corrosion cracking to corrosion fatigue in AA-7075 and AA-8090." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/30779.

Full text
Abstract:
The effect of crack tip strain rate (CTSR) on environmentally assisted cracking was studied for alloys AA-7075 (Al-Zn-Mg-Cu) and AA-8090 (Al-Li-Cu-Mg) in the artificially aged condition. Fatigue pre-cracked double cantilever beam (DCB) specimen were employed with the crack plane parallel to the rolling plane. The cracking behaviour under monotonic and cyclic loading conditions was investigated in aqueous sodium chloride solutions with and without additions of sodium chromate as a corrosion mhibitor. CTSR values were described in terms of K-rate ∆K/∆t (ie. dK/dt) as a measured average over the loading period of a fatigue cycle. This allowed a comparison with CTSR's of monotonically increasing load or constant load tests. At frequencies ≤1 Hz, the load was applied with a triangular wave form. A high frequency of 30 Hz was obtained by sinusoidal loading. Expressed as K-rate, CTSR values were varied over 7 orders of magnitude from 10⁵MPa√m/s to 10² MPa√m/s. Stress intensities investigated were mainly around region II values with respect to SCC K-log(da/dt) behaviour. At low K-rates, real time crack velocities (da/dt) measured under monotonic slow loading or constant load conditions were comparable to crack velocities obtained with cyclic loading experiments. As the K-rate was increased from low values, typical of constant load experiments, the real time crack velocities decreased. This was caused by plasticity induced crack growth retardation effects and a decrease in crack tip film rupture events during the unloading part of a cycle. The crack propagation rate decreased until minimal crack advance increments per cycle were dictated by mechanical parameters acting on a hydrogen embrittled crack tip region. Under monotonic loading conditions region II crack velocities were not influenced by an increase in K-rate which was explained with a mass transport controlled cracking process. Tests with alloy 7075 at intermediate K-rates and a high R-ratio of 0.78 allowed a crack tunnelling mechanism to operate. This overcame the plasticity induced crack growth retardation and, therefore, cracks propagated at the same rates as during low K-rate tests where no retardation phenomena were encountered. Scanning electron microscope investigations revealed a striated intergranular fracture surface of alloy 7075 if tested at K-rates above the transition value to K-rate independent crack propagation rates. Individual striations could be matched on opposing fracture surfaces and the striation spacing corresponded to the average crack propagation increment per cycle. The striations, therefore, were formed as part of the crack advance during every fatigue cycle. At the lower K-rates no striations were present but micro tear ridges could be found on the intergranular fracture facets indicating that dissolution processes alone did not cause the intergranular crack advance. Alloy 8090 did not reveal significant changes in fractography over the entire K-rate range investigated, except at the highest K-rates where small interlocking steps could be detected on some opposing transgranular fracture surfaces. In general, however, the crack path at all K-rates was mainly intergranular with dimpled fracture facets. Alloy 8090 exhibited a high resistance to SCC with fatigue pre-cracked DCB specimen. Therefore, to obtain crack velocity values with low K-rate monotonic loading tests very long test durations would have been necessary. It is concluded that the transition from intergranular SCC to intergranular CF occurs at a critical K-rate. Below the critical K-rate crack velocities are not increased by cyclic loading. Instead crack growth retardation effects can result in lower real time crack velocities than those typical for constant load tests at comparable stress intensities but much lower K-rates.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
11

Yamada, Kazuo. "Stress corrosion cracking behavior of aluminum alloy 7079 in region II." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/19078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Scott, Brian E.-S. "THE ROLE OF STRESS IN THE CORROSION CRACKING OF ALUMINUM ALLOYS." Monterey, California. Naval Postgraduate School, 2013. http://hdl.handle.net/10945/32897.

Full text
Abstract:
This work examines the effect of stress on the rate of sensitization, the rate of pitting corrosion and the rate of crack nucleation of aluminum alloy 5083-H116 aluminum. Stress corrosion cracking in aluminum superstructures of Naval vessels is a multibillion-dollar maintenance problem, which requires more scientific understanding to better predict and mitigate. To investigate the role of applied stress on these corrosion-related processes, rolled plate of AA5083 was placed under tensile stress through bending while being subject to elevated temperature and salt spray. Nitric acid mass loss tests quantified the amount of sensitization as a function of stress level. Optical micrographs were used to determine the rate of pitting corrosion and crack nucleation while under applied tensile stress. The effect of applied, elastic stress on the degree of sensitization was inconclusive. Applied stress did increase the rate of localized corrosion, in terms of both pitting and intergranular corrosion. Moreover, the orientation of the plate with respect to the applied tensile stress, strongly affected the type and amount of localized corrosion observed. When the tensile stress was applied across the rolling direction, more localized corrosion occurred and intergranular corrosion dominant over pitting.
APA, Harvard, Vancouver, ISO, and other styles
13

Mattern, Heather R. "Laser peening for mitigation of stress corrosion cracking at welds in marine aluminum." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5710.

Full text
Abstract:
Approved for public release; distribution is unlimited.
This work examines the use of laser peening (LP) for mitigation of stress corrosion cracking (SCC) in marine grade aluminum alloys (Al-Mg). These alloys can be sensitized during welding and will develop a tensile residual stress in the heat affected zone that may promote SCC in a salt water environment. Metal inert gas welded aluminum alloy 5083 (4.8wt% Mg) plate was laser peened using a variety of laser intensities to create compressive stresses. Mechanical tests were performed to investigate the SCC of the material including slow strain rate testing and potentiostatically driven, salt-water exposure. Microstructural and micromechanical tests were performed to characterize the effects of LP on the microstructure of the material. The slow strain rate testing showed a systematic decrease in ductility with increasing LP intensity. The fracture surfaces on all welded samples were indicative of ductile fracture but with a pre-crack length that scaled inversely with LP intensity. The hardness of the material increased with LP intensity. This work suggests that welded aluminum alloy 5083 does not readily stress corrosion crack. LP does affect the mechanical behavior of the material, but its full effect on stress corrosion behavior requires further study.
APA, Harvard, Vancouver, ISO, and other styles
14

Cormack, Emily C. "The Effect of Sensitization on the Stress Corrosion Cracking of Aluminum Alloy 5456." Thesis, Monterey, California. Naval Postgraduate School, 2012. http://hdl.handle.net/10945/7325.

Full text
Abstract:
This work examines the effect of sensitization on the stress corrosion cracking behavior of marine grade aluminum alloys (Al-Mg). These alloys can be sensitized during operation, promoting their susceptibility to intergranular stress corrosion cracking (IGSCC). Aluminum alloy 5456-H116 (also identified as Al-Mg5.1) samples were sensitized at 175C for varying durations of time and then mechanically tested in salt water. Mass loss tests quantified the degree of sensitization (DOS) as a function of sensitization time. Dual cantilever beam tests were used to measure the SCC growth rate and cyclic fatigue tests were conducted to determine the corrosion fatigue behavior. DOS increased as sensitization time increased with little difference in mass losses above 336 hours. Stress corrosion crack growth rate increased as sensitization time increased. Although the sensitization rates for AA5456-H116 were higher than for AA5083, the stress corrosion crack growth rates were significantly lower. The stress corrosion fracture surfaces showed clear showed a clearly intergranular fracture path with extensive crack branching and delamination in the transverse direction.
APA, Harvard, Vancouver, ISO, and other styles
15

Padgett, Barbara Nicole. "Investigation into the stress corrosion cracking properties of AA2099, an Al-Li-Cu alloy." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1204515486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Borchers, Tyler Edward. "Weldability and Corrosion of 7xxx Series Aluminum Alloys." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471362806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lewis, Jeffrey Keith. "An investigation of stress corrosion cracking in high-strength aluminum alloys, the development of a new test method." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0002/MQ44916.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cevik, Gul. "Investigation Of The Effect Of Orientation And Heat Treatment On The Stress Corrosion Cracking Susceptibility Of 7050 Aluminum Alloy." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605220/index.pdf.

Full text
Abstract:
In the present work, the effect of variation in specimen orientation and heat treatment on the Stress Corrosion Cracking (SCC) susceptibility of 7050 aluminum alloy was investigated in 3,5% NaCl solution and under freely corroding conditions. For this purpose, Constant Extension Rate Tests (CERT) was performed on precracked Compact Tension (CT) specimens and the Direct Current Potential Drop technique was applied to measure the crack lengths. In addition to crack length versus time curves, the relationship between the crack growth rate and the stress intensity factor was determined. Fractographic analysis was utilized extensively to support the findings related with basic mechanisms of cracking. The alloy was found to be in the most susceptible state in the SL orientation, in which the crack propagation direction is parallel to the rolling direction. The resistance to SCC is higher in the TS but at maximum in LT orientation where the loading direction is parallel to the rolling direction. In the peak aging treatment, T651, alloy is susceptible to SCC in SL orientation. When the over aging treatment, T7651, is applied the resistance is increased and the two step over aging treatment, T73651, has resulted in an additional improvement in this orientation. On the other hand, the alloy showed higher resistance to SCC in TS and LT orientations in T651 condition compared to the T7651 and T73651 treatments. In these orientations, the alloy is less susceptible in T73651 condition than in T7651 treatment.
APA, Harvard, Vancouver, ISO, and other styles
19

Aravamudhan, Boopa Nandhini. "Study of the Effect of Laser Shock Peening on Corrosion Behavior of Aluminum Alloy 7075." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535374351540327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lozano-Perez, Sergio. "TEM crack tip investigations of SCC." Thesis, University of Oxford, 2002. http://ora.ox.ac.uk/objects/uuid:7e503ff9-782a-4f74-b184-dddaa96e03e2.

Full text
Abstract:
Over the last few years, TEM has become a powerful technique to study cracks and specially crack tips. However, the number of publications including TEM results has not grown as it was expected. The main reason for this might be difficulties in the sample preparation. In this work we present a novel FIB sample preparation technique which has proved to be an ideal tool for preparing cross sectional samples containing crack tips. The morphology of intergranular stress corrosion cracking (IGSCC) has been investigated in Alloy 600 subjected to constant load and slow strain rate tests in simulated primary circuit pressurized water reactor conditions. Cracks were observed to nucleate at high-angle grain boundaries and propagate to depths of a few tens of micrometer along such boundaries, still in the initiation stage. Electron diffraction, energy dispersive x-ray (EDX) and electron energy loss spectroscopy (EELS) have been used to identify the different corrosion products and precipitates. Elemental mapping was employed to reveal changes in composition in the crack tip area. Major observations at cracks and grain boundaries include: the presence of different oxides in different locations, differences in grain boundary oxides and open crack/free surface oxides. These observations suggest that IGSCC involves oxygen diffusion through a porous oxide region along grain boundaries to the bare metal. This is a novel concept that offers an alternative to previous mechanisms proposed in the literature e.g. H embrittlement, slip-dissolution, etc., for which no supporting evidence has been found.
APA, Harvard, Vancouver, ISO, and other styles
21

Dhamari, Ruby Dharma Adji Aerospace Civil &amp Mechanical Engineering Australian Defence Force Academy UNSW. "The effects of water displacing corrosion preventatives on the fatigue behaviour of mechanically fastened aluminium joints." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Aerospace, Civil and Mechanical Engineering, 2005. http://handle.unsw.edu.au/1959.4/38668.

Full text
Abstract:
Two failure mechanisms in a double lap joint are investigated. Analytical models of net-section and gross-section failure modes are proposed to describe these mechanisms. The effects of lamping force, interference fit, maximum axial load and WDCP on fatigue performance of the joint are included in the models. The effect of WDCP is assumed to give a reduction in friction coefficient. Three types of stress reduction factors are proposed in the net-section failure model to account for these parameters. The stress reduction factors modify stress range that is used in crack growth calculation. If there are no effects of these parameters, the stress reduction factors are equal to one. Two types of fretting stress are introduced in gross-section failure model to describe either sliding contact or incipient sliding contact on faying surface. The fretting stress is combined with body stress to modify stress range. The net-section failure model predicts that fatigue life is increasing as interference fit, clamping force and friction coefficient increase. The gross-section failure model predicts that fatigue life is decreasing as clamping force and friction coefficient increase. Both models predict that fatigue life is decreasing as maximum axial load increases. Transition of the failure mode occurs earlier as friction coefficient and interference fit increase, while it is delayed as maximum axial load increases. A transition parameter is proposed to establish a relationship between the four main parameters. The transition parameter is expressed in a polynomial equation. It gives an optimum combination of the four main parameters in order to achieve relatively higher fatigue life by having gross-section failure mode. Finite element analysis and fatigue testing are performed to validate the models. The finite element and the analytical models show that stress concentration factor at the edge of the hole is decreasing as clamping force increases. The rate of decrease of stress concentration factor is increasing as friction coefficient increases. While stress concentration factor on the faying surface is increasing as clamping force and friction coefficient increase. Fatigue testing reveals that the fatigue life of the joint is in good agreement with the predicted fatigue life of the proposed models.
APA, Harvard, Vancouver, ISO, and other styles
22

Palmer, Benjamin Clive. "Sensitization Effects on Environmentally Enhanced Cracking of 5XXX Series Alloys: Macro and Mesoscale Observations." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1496232162170832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Dhondt, Matthieu. "Corrosion sous contrainte intergranulaire du noyau de soudure par FSW de l'alliage Al-Li 2050." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14738/document.

Full text
Abstract:
Pour réduire le poids des structures aéronautiques, plusieurs voies ont été explorées. Parmi elles, l'utilisation des alliages d'aluminium légers et le remplacement des structures rivetées par des structures soudées par Friction Stir Welding (FSW) sont envisagées. La question de la durée de vie de ces structures préoccupe les industriels. Dans ce cadre, cette étude porte sur la sensibilité à la corrosion sous contrainte intergranulaire (CSC-IG) du noyau de soudure par FSW de l'alliage Al-Cu-Li 2050. Ce matériau est composé de grains équiaxes dont la taille diminue de 17 à 4 µm à mesure que l'on s'éloigne de la surface de soudage. Une variation de texture est révélée grâce à des cartographies EBSD formant la microstructure des « onion rings ». La périodicité de ces « onions rings » est égale à l'avancée du pion FSW sur un tour (500 µm pour notre matériau). Ces hétérogénéités microstructurales entraînent des gradients de champs mécaniques locaux quantifiés par corrélation d'images lors des essais mécaniques. Ces hétérogénéités microstructurales et mécaniques favorisent les phénomènes de corrosion localisée lorsque le matériau est soumis à un environnement agressif. Les effets des contraintes et de la microstructure sur la CSC-IG sont mis en évidence par des essais de corrosion et des essais de corrosion sous contrainte (CSC). Les essais de corrosion montrent une sensibilité du matériau à la piqûration alors que les essais de CSC révèlent l'amorçage de fissures intergranulaires. Les plus grosses fissures s'amorcent préférentiellement à la frontière des « onion rings ». Un modèle par éléments finis a été développé dans le but de simuler la propagation des fissures intergranulaires sur des agrégats réels générés par des cartographies EBSD
To reduce the aircraft components weight, several solutions were explored. Among them, the using of light aluminum alloys and the substitution of riveting by friction stir welding (FSW) are investigated. Industry is concerned by the question of the life of such structures. For this, this study is focused on intergranular stress corrosion cracking (IGSCC) sensitivity of the 2050 Al-Li-Cu alloy friction stir weld nugget. This material consists of equiaxed grains whose size is decreasing with the distance from the weld surface between 17 µm at the top and 4 µm at the bottom. The “onion rings” microstructure is revealed by EBSD cartographies as a texture variation. They appear with a periodicity of 500 µm corresponding to the advance per revolution of the tool. Those microstructural heterogeneities cause local mechanical field gradients quantified by digital image correlation measurements during mechanical tests. Those microstructural and mechanical heterogeneities promote localized corrosion when the material is submitted to an aggressive environnement. Microstructure and stress effects on IGSCC are shown by corrosion tests and stress corrosion tests. The first ones show a sensitivity to pitting corrosion and a stress application reveal initiation of intergranular cracks. The biggest ones preferentially initiate at “onion rings” boundaries. A finite element model was developed in order to simulate intergranular cracks propagation on real aggregates obtained by EBSD cartographies
APA, Harvard, Vancouver, ISO, and other styles
24

Schrock, David J. "The Effects of Loading Frequency, Sensitization Level, and Electrochemical Potential on Corrosion Fatigue Kinetics of Aluminum-Magnesium Alloys." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu158793003383275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Young, Paul S. "Modeling and Analysis for Atmospheric Galvanic Corrosion of Fasteners in Aluminum." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1430416832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gamboa, Erwin. "Stress corrosion cracking of rock bolts /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18302.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Oger, Loïc. "Corrosion sous contrainte et fragilisation par l'hydrogène d'alliages d'aluminium de la série 7xxx (Al-Zn-Mg) : identification des paramètres microstructuraux critiques pilotant l'endommagement à l'échelle locale." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19559/19/OGER_Loic_1_sur_2.pdf.

Full text
Abstract:
Dans un contexte normatif toujours plus sévère concernant les rejets automobiles polluants, la substitution des aciers par des alliages d’aluminium dans les structures des véhicules est en plein essor. Ce projet de thèse, qui s’inscrit dans un programme de développement de la société Constellium, cible plus précisément les alliages d’aluminium de la série 7xxx (Al-Zn-Mg) qui, malgré leurs propriétés mécaniques élevées, peuvent présenter une sensibilité à la corrosion sous contrainte (CSC) liée au phénomène de fragilisation par l’hydrogène (FPH). La compréhension des mécanismes mis en jeu dans ce type d’endommagement constitue donc une première étape vers une optimisation métallurgique en vue d’une industrialisation future de ces alliages dans le secteur automobile. La première partie de ces travaux est consacrée à l’étude de l’influence de l’état métallurgique de l’alliage 7046 sur son comportement en CSC et à l’identification des mécanismes de dégradation. Un lien direct a pu être mis en évidence entre l’abattement des propriétés mécaniques et les modes de rupture actifs et la quantité d’hydrogène dans l’alliage. Les deux modes d’endommagement observés, intergranulaire-fragile et transgranulaire-fragile, ont respectivement été attribués à un enrichissement en hydrogène aux joints de grains et au piégeage de l’hydrogène au niveau des précipités intragranulaires. Les interactions entre l’hydrogène et les précipités fins d’une part et les dislocations d’autre part, identifiés comme deux hétérogénéités microstructurales critiques vis-à-vis de la FPH, ont été étudiées à une échelle plus locale dans la seconde partie du travail de thèse. Les essais ont été réalisés sur des échantillons modèles, chargés en hydrogène en milieu H2SO4 sous polarisation cathodique et la profondeur de pénétration de l’hydrogène a été évaluée par SKPFM (Scanning Kelvin Probe Force Microscopy). L’ensemble des résultats obtenus met en évidence : 1/ un effet « barrière » des précipités fins et des dislocations sur la diffusion de l’hydrogène en relation avec un abattement des propriétés mécaniques moins important, 2/ un transport possible de l’hydrogène par les dislocations et 3/ l’efficacité du SKPFM pour déterminer précisément des coefficients de diffusion apparents de l’hydrogène. Ces résultats ouvrent ainsi de nouvelles pistes vers la compréhension des mécanismes de CSC dans les alliages Al-Zn-Mg.
APA, Harvard, Vancouver, ISO, and other styles
28

Wells, David Brett. "Early stages of intergranular stress corrosion cracking." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.256769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mohammed, Farej Ahmed. "Stress corrosion cracking in duplex stainless steels." Thesis, University of Manchester, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kruska, Karen. "Understanding the mechanisms of stress corrosion cracking." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:94574eaf-4ae0-4093-bf20-3f4f4c559e7c.

Full text
Abstract:
Austenitic stainless steels are frequently used in the cooling circuits of nuclear reactors. It has been found that cold-worked 304 stainless steels can be particularly susceptible to stress corrosion cracking at the operating conditions of such reactors. Despite more than 130 years of research underlying mechanisms are still not properly understood. For this reason, the effects of cold-work and applied stress on the oxidation behaviour of 304SS have been studied in this thesis. A set of samples with/without prior cold-work, and with/without stress applied during oxidation, were oxidized in autoclaves under simulated pressurised water reactor primary circuit conditions. Atom-probe tomography and analytical transmission electron microscopy were used to investigate the local chemistry and microstructure in the different samples tested. Regions containing grain boundaries, deformation bands, and matrix material in contact with the environment, were extracted from the coupon specimens with a focused ion beam machine. Cross-sections of crack tips were studied with secondary ion mass spectrometry and electron backscatter diffraction. The compositions of oxides grown along the surface and the different microstructural features were analysed. Fe-rich spinels were found at the surface and Cr-rich spinels were observed along fast diffusion paths. Ni-enrichment was found at the metal/oxide interfaces and a Ni-rich phase was detected in precipitates ahead of grain boundary oxides. Li was observed in all oxidised regions and B segregation, originating from impurities in the alloy, was observed in grain boundaries and crack tip oxides. Cavities and hydrogen associated with Ni-rich regions were found ahead of the bulk Cr-rich oxide in some of the samples. The implications of these findings for the understanding of SCC mechanisms are discussed. It is suggested that Ni precipitation as well as the presence of deformation bands may play an important role in controlling SCC susceptibility in 304 stainless steel. A modification of the film-rupture model including internal oxidation and fast diffusion along H-stabilised vacancies in strain fields at the crack front is proposed.
APA, Harvard, Vancouver, ISO, and other styles
31

Deshais, Gerald. "Stress corrosion cracking in Al based alloys." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Meisnar, Martina. "High-resolution characterisation of stress corrosion cracking." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:6915e56d-d63b-43dc-af29-5257a21d1e4b.

Full text
Abstract:
The degradation of reactor grade stainless steels and their susceptibility to stress corrosion cracking (SCC) when exposed to the pressurised water reactor (PWR) primary water environment has been a topic of intense research for many decades. Nevertheless, our understanding of the underlying mechanisms of SCC remains incomplete to date. It has been generally accepted that only high-resolution (electron) microscopy techniques are capable of revealing the yet unidentified processes involved in SCC crack propagation. For this reason, one of the main objectives of this project was to make new techniques with improved spatial resolution accessible to SCC research. While low-keV energy dispersive X-ray spectroscopy (EDX) was used for the preliminary analysis of SCC cracks, transmission Kikuchi diffraction (TKD) and atom probe tomography (APT) were used for high-resolution studies of the microstructure and chemistry near the crack tip. In particular, TKD proved very beneficial for revealing the extent of the strain concentration around the crack tip. For the application of APT to SCC research, a novel method for preparing APT needles containing entire SCC crack tips was developed. The method was then used for acquiring very localised compositional measurements of the crack tip and GB oxide chemistry with extraordinary accuracy. The second objective of this thesis was to understand the impact of the SCC test temperature on the crack growth rate (CGR) in SUS316 stainless steel. It was found that after steady growth with increasing temperature, a peak in the CGR occurred at ~ 320°C, followed by a substantial drop towards higher temperatures. The inhibition of the CGR with increasing temperature between 320° and 360°C and its impact on the microstructure were studied via analytical transmission electron microscopy (TEM) and TKD. Furthermore, the potential impact of thermally activated diffusion and mechanical response-based mechanisms was investigated. It appears that higher dislocation density and strain concentrations around the crack tips at lower temperature (i.e. 320°C) lead to possibly enhanced brittle-like fracture at the crack tip. An enhanced model for the ongoing processes involved in SCC crack propagation based on the experimental results is presented at the end of this work.
APA, Harvard, Vancouver, ISO, and other styles
33

Gammon, M. A. "Stress corrosion cracking of nuclear grade steels." Master's thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/21956.

Full text
Abstract:
A nuclear grade 316L stainless steel and a 508-111 quenched and tempered pressure vessel steel were studied for their stress corrosion cracking susceptibility. Cylindrical tensile specimens were subjected to slow strain rate testing at 75°C in aerated, aqueous solutions (distiled water with 1000ppm Cl⁻ or SO₄ = ions in solution) in a range of corrosion potentials. The 316L has been examined for sensitization and stress corrosion resistance. This study has shown that the peak degree of sensitization attainable in this material is well within the limits considered as safe by the nuclear power industry. This material is not susceptible to environmentally assisted cracking as long as the potential is kept below the pitting potential for the material. A single instance of intergranular stress corrosion cracking was noted when this material was tested in 1000ppm Cl⁻ solution at 440mV (SHE). Two casts of 508-111 have been examined: 508-A has been tested in the as quenched condition as well as after two tempering heat treatments, while 508-B has been tested in the fully tempered condition only. The mechanical properties of the 508 type materials are strongly influenced by the heat treated condition and mildly influenced by the service environment. In the quenched condition anodic intergranular stress corrosion cracking is severe in the chloride solution and it is argued that the absence of intergranular cracking in the sulphate solution is due to the over aggressiveness of this environment. In all three heat treated conditions loss of ductility is more pronounced in sulphate solutions than in chlorides. Transgranular cleavage is evident in strongly cathodic conditions and this is ascribed to the ingress of hydrogen. The transgranular hydrogen embrittlement seems to be independant of heat treated condition. Rising load tests on fatigue precracked specimens have indicated that environmentally enhanced crack growth of existing defects does not occur for the conditions tested.
APA, Harvard, Vancouver, ISO, and other styles
34

Warrington, David. "Studies on the hot cracking behaviour of aluminium alloys." Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Harrigan, Paul A. "Stress corrosion cracking of Zirconium in nitric acid." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wong, T. M. "Stress corrosion cracking in a high strength steel." Thesis, University of Canterbury. Engineering, 1986. http://hdl.handle.net/10092/6429.

Full text
Abstract:
This thesis falls into four fields of study. The first is a survey of relevant literature concerning the many theories of stress corrosion cracking and hydrogen embritt1ement. This includes descriptions of the mechanisms of stress corrosion cracking (SCC) and outlines electromechanical processes and stress - sorption theory. Four widely accepted mechanisms for environment assisted cracking are also outlined. They are, 1) Embritt1ement resulting from accumulated hydrogen at embritt1ement sites, 2) Lowering of surface energy by adsorption of hydrogen, 3) Hydrogen interaction with dislocations, and 4) Lowering of the binding energy by interaction of hydrogen. The literature survey is a significant part of this thesis. The overall objective of the survey is to review a series of current SCC tests on high strength steels. The principal findings from these previous studies are summarized, they provide concrete evidence for the conclusion that SCC of high strength steels is due to hydrogen embrittlement. The second part of the project deals with the development of a stress corrosion loading clevis suitable for testing compact tension specimens. Three existing constant load rigs were developed, and equipment was designed for the successful operation of the rigs. Corrosive environment was applied to the standard compact tension specimen using a novel circulation system based on a magnetic plate stirrer. Corrosive solution (3.5% NaCl) was stirred by the magnetic plate, and the vortex created by the magnetic stirrer was used to create a pumping head. The third area of work dealt with the testing of compact tension specimens of ULTIMO 200 steel using the developed apparatus. The experimental procedures used are based on the application of linear elastic fracture mechanics to stress corrosion cracking. The fourth area of work carried out was to perform slot length calibration experiments on CT specimens by using strain gauges. The results indicated that the specimens pre-cracked in air with a higher dynamic load gave higher threshold stress intensities (KIscc ) than those pre-cracked in air with a lower dynamic load. An electron microscope study indicated evidence of a largely inter granular fatigue crack having occurred in the specimens pre-cracked with a high dynamic load.
APA, Harvard, Vancouver, ISO, and other styles
37

Rimoli, Julian Jose Ortiz Michael Ortiz Michael. "A computational model for intergranular stress corrosion cracking /." Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-05142009-135909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Saithala, Janardhan R. "Pitting and stress corrosion cracking of stainless steel." Thesis, Sheffield Hallam University, 2007. http://shura.shu.ac.uk/20311/.

Full text
Abstract:
An investigation has been performed to determine the pitting resistance of stainless steels and stress corrosion cracking of super duplex stainless steels in water containing chloride ions from 25 - 170°C. The steels studied are 12% Cr, FV520B, FV566, 304L, Uranus65, 2205, Ferallium Alloy 255, and Zeron 100. All these commercial materials used in very significant industrial applications and suffer from pitting and stress corrosion failures. The design of a new experimental setup using an autoclave enabled potentiodynamic polarisation experiments and slow strain rate tests in dilute environments to be conducted at elevated temperatures. The corrosion potentials were controlled using a three electrode cell with computer controlled potentiostat. The experimental programme to determine pitting potentials was designed to simulate the service conditions experienced in most industrial plants and develop mathematical model equations to help a design engineer in material selection decision. Stress corrosion resistance of recently developed Zeron100 was evaluated in dilute environments to propose a mechanism in chloride solutions at high' temperatures useful for the nuclear and power generation industry. Results have shown the significance of the composition of alloying elements across a wide range of stainless steels and its influence on pitting. Nitrogen and molybdenum added to modern duplex stainless steels was found to be unstable at higher temperatures. The fractographic results obtained using the scanning electron microscope (SEM) has given insight in the initiation of pitting in modem duplex and super duplex stainless steels. A mathematical model has been proposed to predict pitting in stainless steels based on the effect of environmental factors (temperature, chloride concentration, and chemical composition). An attempt has been made to identify the mechanism of SCC in Zeron100 super duplex stainless steel. The proposed empirical models have shown good correlation between predicted pitting potential values with experimental results. It has been shown that the SCC mechanism in Zeron100 supports the slip assisted anodic dissolution model of SCC. The relationship between pitting and stress corrosion in dilute environments is established and empirical equations have been proposed to determine the damage region for wide range of stainless steels.
APA, Harvard, Vancouver, ISO, and other styles
39

Attou, Abdelkader. "Cracking and stress corrosion cracking in glass fibre materials using acoustic emission." Thesis, Robert Gordon University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jani, Shilesh Chandrakant. "A mechanistic study of transgranular stress corrosion cracking of austenitic stainless steels." Thesis, Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/11236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ghasemi, Rohollah. "Hydrogen-assisted stress corrosion cracking of high strength steel." Thesis, KTH, Skolan för kemivetenskap (CHE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-50416.

Full text
Abstract:
In this work, Slow Strain Rate Test (SSRT) testing, Light Optical Microscopy (LOM) and Scanning Electron Microscopy (SEM) were used to study the effect of micro-structure, corrosive environments and cathodic polarisation on stress corrosion cracking (SCC) of two grades of high strength steels, Type A and Type B. Type A is manufactured by quench and tempered (Q&T) method. Type B, a normalize steel was used as reference. This study also supports electrochemical polarisation resistance method as an effective testing technique for measuring the uniform corrosion rate. SSRT samples were chosen from base metal, weld metal and Heat Affected Zone (HAZ). SSRT tests were performed at room temperature under free corrosion potential and cathodic polarisation using 4 mA/cm2 in 1 wt% and 3.5 wt% NaCl solutions. From the obtained corrosion rate measurements performed in 1 wt% and 3.5 wt% NaCl solutions it was observed that increased chloride concentration and dissolved oxygen content enhanced the uniform corrosion for all tested materials. Moreover, the obtained results from SSRT tests demonstrate that both Q&T and normalized steels were not susceptible to SCC in certain strain rate(1×10-6s-1) in 1 wt% and 3.5 wt% NaCl solutions under free corrosion potential. It was con-firmed by a ductile fracture mode and high reduction in area. The weld metal of Type A with acicular ferrite (AF), pro-eutectoid (PF) and bainite microstructure showed higher susceptibility to hydrogen assisted stress corrosion cracking compared to base metal and HAZ. In addition, typical brittle intergranular cracking with small reduction in area was observed on the fracture surface of the Type A due to hydrogen charging.
APA, Harvard, Vancouver, ISO, and other styles
42

Salinas-Bravo, Victor Manuel. "Pitting and stress corrosion cracking of duplex stainless steels." Thesis, University of Manchester, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Singh, Preet Mohinder. "Stress corrosion cracking of carbon steel and inconel 600." Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Phan, Dan. "Atmospheric-Induced stress corrosion cracking of Austenitic Stainless Steels." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lou, Xiaoyuan. "Stress corrosion cracking and corrosion of carbon steel in simulated fuel-grade ethanol." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37279.

Full text
Abstract:
Today, ethanol, as well as other biofuels, has been increasingly gaining popularity as a major alternative liquid fuel to replace conventional gasoline for road transportation. One of the key challenges for the future use of bioethanol is to increase its availability in the market via an efficient and economic way. However, one major concern in using the existing gas-pipelines to transport fuel-grade ethanol or blended fuel is the potential corrosion and stress corrosion cracking (SCC) susceptibility of carbon steel pipelines in these environments. Both phenomenological and mechanistic investigations have been carried out in order to address the possible degradation phenomena of X-65 pipeline carbon steel in simulated fuel-grade ethanol (SFGE). Firstly, the susceptibilities of stress corrosion cracking of this steel in SFGE were studied. Ethanol chemistry of SFGE was shown to have great impact on the stress corrosion crack initiation/propagation and the corrosion mode transition. Inclusions in the steel can increase local plastic strain and act as crack initiation sites. Secondly, the anodic behavior of carbon steel electrode was investigated in detail under different ethanol chemistry conditions. General corrosion and pitting susceptibility under unstressed condition were found to be sensitive to the ethanol chemistry. Low tendency to passivate and the sensitivity to ethanol chemistry are the major reasons which drive corrosion process in this system. Oxygen plays a critical role in controlling the passivity of carbon steel in ethanol. Thirdly, the detailed study was carried out to understand the SCC mechanism of carbon steel in SFGE. A film related anodic dissolution process was identified to be a major driving force during the crack propagation. Fourthly, more detailed electrochemical impedance spectroscopy (EIS) studies using phase angle analysis and transmission line simulation reveal a clearer physical picture of the stress corrosion cracking process in this environment. Fifthly, the cathodic reactions of carbon steel in SFGE were also investigated to understand the oxygen and hydrogen reactions. Hydrogen uptake into the pipeline steel and the conditions of the fractures related to hydrogen embrittlement were identified and studied.
APA, Harvard, Vancouver, ISO, and other styles
46

Cao, Liu. "Corrosion and Stress Corrosion Cracking of Carbon Steel in Simulated Fuel Grade Ethanol." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345141634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Albores-Silva, Octavio E. "Atmospheric stress corrosion cracking and pitting of austenitic stainless steel." Thesis, University of Newcastle Upon Tyne, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579513.

Full text
Abstract:
The atmospherically-induced stress corrosion cracking (AISCC) of austenitic stainless steel type AISI 316L was investigated using a U-bend technique, under conditions relevant for storage of intermediate level radioactive waste drums. The specimens were obtained from an actual '500 litre' drum with a wet-bead blasted surface finish. Using MgCI2 as contaminant salt, it was found that at the characteristic equilibrium relative humidity a threshold deposition for AISCC occurrence is found above chloride-ion contamination levels of 10 and 25 µg cm-2 at 50 and 30 °C, respectively. Higher contamination levels were required to produce cracking at room temperature or with the increase of relative humidity to 60 %. The AISCC severity was related to the spatial characteristics of the electrolyte film. Above 100 µg cm-2, crack depth seems to be controlled by the electrolyte thickness as it determines the diffusion path of oxygen to the cathodic surface. Below 100 µg cm-2, crack depth is affected predominantly by the formation of a discontinuous electrolyte film which results in smaller anodic/cathodic domains. Transition from cracking to pitting corrosion with tunnel appearance was observed as test temperature was decreased from 30 °C to room temperature, except at high chloride deposition levels. The results indicate that AISCC occurrence can be limited by restriction of chloride deposition, control of RH away from the deliquescence point of relevant salts and control of temperature. Using an X-ray diffraction technique, it was found that the drum's surface residual stresses are compressive and would provide a degree of protection against AISCC. However, tensile residual stresses can be found in non-blasted areas and in sections of the drum welds. Exposure of corrosion coupons and U-bend specimens III an underground environment that potentially resembles a geological disposal facility did not cause any significant pitting or AISCC after 1.75 years of exposure. This was correlated to a low chloride deposition and a high average RH that would have maintained the hygroscopic deposits in a dilute condition.
APA, Harvard, Vancouver, ISO, and other styles
48

Alkathafi, Maftah Hussien Abdulgader. "Modelling of carbonate-bicarbonate stress corrosion cracking of pipeline steels." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498675.

Full text
Abstract:
This research work has been concerned with the physical and numerical modelling of the conditions developed under disbonded coatings on steel, with a view to understanding the processes responsible for the conditions that lead to carbonate-bicarbonate stress corrosion cracking. The physical model has used a polyethylene coating covering a crevice of controlled thickness, with a controlled gas connposition (air with 1% CO₂) on the exterior of the coating. An optical fibre chemical sensor was developed to monitor the pH at locations along the crevice, and the potential has been monitored at the same locations using salt-bridge to conventional reference electrodes. A mathematical model of the same system has been developed using a commercial finite element package. The model was based on a one-dimensional crevice and results have been obtained for a high and a low permeability of coating. The results showed that the permeability of the coating plays an important role in controlling the conditions at the end of the crevice. At a high h permeability of coating the gas transport through the coating creates more alkaline solution inside the crevice, the generation of hydroxyl ions due to the oxygen reduction reaction increasing the pH. With a low permeability coating, no gas diffusion through the coating occurs, and the solution inside the crevice becomes less alkaline where the iron dissolution reaction takes place. So the pH and potential inside the crevice with a high permeability coating were greater than with the low permeability coating. In addition, the carbonate and bicarbonate ion concentrations were also higher with the high permeability coating. The results of this model were in good agreement with the physical model and with mathematical models reported in the literature.
APA, Harvard, Vancouver, ISO, and other styles
49

Mackay, F. G. "The application of the J-integral to stress corrosion cracking." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shushan, S. M. "The susceptibility of diffusion bonded joints to stress corrosion cracking." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography