Academic literature on the topic 'Streetlight'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Streetlight.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Streetlight"

1

Pei, Yan Ming, and Yun Hong Liu. "Streetlight Monitoring System for Energy Saving Based on GSM Network." Applied Mechanics and Materials 135-136 (October 2011): 924–29. http://dx.doi.org/10.4028/www.scientific.net/amm.135-136.924.

Full text
Abstract:
This streetlight monitoring system is aimed at preventing unnecessary energy wastage by applying the GSM (Global System for Mobile Communications) technology. This system consists of two parts: the monitoring centre and the terminal nodes. The Siemens TC35 GSM module is used to send and receive short messages and it is installed in the monitoring centre and each streetlight. ATmega168 is used to determine whether or not it is necessary for the streetlights to be turned on, and then it executes commands from the control centre. When the sky is bright enough for drivers, the streetlights will automatically turn off. Also, if some streetlights are broken down, the TC35 GSM module will send an alarm short message to the monitoring centre and maintenance personnel will repair the lights as soon as possible. Thus, maintenance personnel will no longer have to make time-consuming visits to check up on the function status of every streetlight. All information is presented in the monitoring computer which is programmed in LabVIEW. The workman can easily turn on or off any streetlight by clicking on the screen.
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Zhi Ling, and Da Peng Zhang. "The Application of Streetlight Wireless Monitoring System in Tianjin Bonded Area." Applied Mechanics and Materials 178-181 (May 2012): 1348–51. http://dx.doi.org/10.4028/www.scientific.net/amm.178-181.1348.

Full text
Abstract:
A wireless monitoring system was carried out to manage the streetlight in Tianjin bonded area. The system adapted a concentric dropping voltage energy-saving mode and the single lamp was monitored without control. The single lamp’s electrical information was trapped by a detecting module and sent to the communication terminal by power carrier technology. Then the collected information of termination was transferred to a remote monitoring center by GPRS communication module. The streetlights in the subsection were on-off by combining timing with illuminance. The practice shows this system is reliable and effective.
APA, Harvard, Vancouver, ISO, and other styles
3

Usman, A. M., Y. A. Adediran, A. O. Otuoze, O. O. Mohammed, and O. S. Zakariyya. "Replacement Model for Street Lighting Systems." Nigerian Journal of Technology 40, no. 1 (March 23, 2021): 49–55. http://dx.doi.org/10.4314/njt.v40i1.8.

Full text
Abstract:
Replacing failed bulbs of streetlights in a location can be very tasking and expensive if the optimal time for replacement is not determined. In this paper, a model has been developed that helps to establish the optimal time for the replacement of streetlight bulbs. Burnt-out bulbs are replaced individually when they fail, and group replacement is carried out on all bulbs after a specified time. The costs for both individual replacement and group replacement are determined. The developed model was applied to locally sourced data from a field survey of a streetlight installation at the University of Ilorin, Ilorin, North-central Nigeria. The model gave the optimum replacement time of burnt-out bulbs as the eighteenth week when applied to the data used in this work. The optimum replacement time will be dependent on the dataset used. This makes the developed model useful in establishing the optimal replacement time of any stochastically failing items that are in large quantities. The model will help to reduce maintenance costs for facility managers.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yuan Yuan, Xiao Fei Lu, Rong Cai, Jie Gong, Shan Liu, and Jian Yu Bao. "Design of an Intelligent Solar-LED Streetlight." Applied Mechanics and Materials 548-549 (April 2014): 873–79. http://dx.doi.org/10.4028/www.scientific.net/amm.548-549.873.

Full text
Abstract:
Solar-led streetlight is a hotspot in photovoltaic lighting at present, it combines solar energy with HB LEDs (High Brightness Light Emitting Diodes) called the fourth generation of light source to improve the conventional streetlight in several aspects. Due to the clean nature of solar energy, and the highly efficient energy conversion of the PV module and very long operating life of the HB LED, the solar-LED streetlight, compared to traditional streetlight, can save electricity remarkably, thus abating greenhouse gas emission. During the photovoltaic lighting system, MPPT technology is generally used with the aim of maximizing the solar panel output power from beginning to the end. Therefore, if the controller combines MPPT technology with the traditionally constant-voltage charging technology, the charge efficiency will be greatly increased. While, for the discharge issue, people hope to modulate the brightness of streetlight so as to decrease the electricity consume.
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Chang, Cheng, Chang, Chung, and Chang. "A Single-Stage LED Streetlight Driver with Soft-Switching and Interleaved PFC Features." Electronics 8, no. 8 (August 18, 2019): 911. http://dx.doi.org/10.3390/electronics8080911.

Full text
Abstract:
This paper presents a single-stage driver with soft-switching and interleaved power-factor correction (PFC) features suitable for light-emitting diode (LED) energy-saving streetlight applications. The proposed LED streetlight driver integrates an interleaved buck-boost PFC converter with coupled inductors and a half-bridge LLC resonant converter into a single-stage power-conversion circuit with reduced voltage stress on the DC-linked capacitor and power switches, and it is suitable for operating at high utility-line voltages. Furthermore, coupled inductors in the interleaved buck-boost PFC converter are operated in discontinuous-conduction mode (DCM) for accomplishing PFC, and the half-bridge LLC resonant converter features zero-voltage switching (ZVS) to reduce switching losses of power switches, and zero-current switching (ZCS) to decrease conduction losses of power diodes. Operational modes and design considerations for the proposed LED streetlight driver are introduced. Finally, a 144 W (36V/4A)-rated LED prototype driver is successfully developed and implemented for supplying a streetlight module and operating with a utility-line input voltage of 220 V. High power factor, low output-voltage ripple factor, low output-current ripple factor, and high efficiency are achieved in the proposed LED streetlight driver.
APA, Harvard, Vancouver, ISO, and other styles
6

Kapgate, Deepak. "Wireless Streetlight Control System." International Journal of Computer Applications 41, no. 2 (March 31, 2012): 1–7. http://dx.doi.org/10.5120/5510-7500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Beckwith, Dana, Xiaoping Zhang, Edward Smalley, Lok Chan, and Mark Yand. "LED Streetlight Application Assessment Project." Transportation Research Record: Journal of the Transportation Research Board 2250, no. 1 (January 2011): 65–75. http://dx.doi.org/10.3141/2250-09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Ye-Won, Ji-Yeong Yu, Soo-Young Shin, and Seog Chae. "Streetlight Management System Using LoRaWAN." Journal of Korean Institute of Communications and Information Sciences 42, no. 3 (March 31, 2017): 677–85. http://dx.doi.org/10.7840/kics.2017.42.3.677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

García-Castellano, González-Romo, Gómez-Galán, García-Martín, Torralba, and Pérez-Mira. "ITERL: A Wireless Adaptive System for Efficient Road Lighting." Sensors 19, no. 23 (November 21, 2019): 5101. http://dx.doi.org/10.3390/s19235101.

Full text
Abstract:
This work presents the development and construction of an adaptive street lighting system that improves safety at intersections, which is the result of applying low-power Internet of Things (IoT) techniques to intelligent transportation systems. A set of wireless sensor nodes using the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard with additional internet protocol (IP) connectivity measures both ambient conditions and vehicle transit. These measurements are sent to a coordinator node that collects and passes them to a local controller, which then makes decisions leading to the streetlight being turned on and its illumination level controlled. Streetlights are autonomous, powered by photovoltaic energy, and wirelessly connected, achieving a high degree of energy efficiency. Relevant data are also sent to the highway conservation center, allowing it to maintain up-to-date information for the system, enabling preventive maintenance.
APA, Harvard, Vancouver, ISO, and other styles
10

G, Ravichandran, and Krishnamurthy M. "A Smart Method for Monitoring and Scheming Of Road Luminosity Using GSM Equipment." Indonesian Journal of Electrical Engineering and Computer Science 9, no. 1 (January 1, 2018): 36. http://dx.doi.org/10.11591/ijeecs.v9.i1.pp36-38.

Full text
Abstract:
In our modern life, energy wastage in Streetlight is a big problem faced in walkways and roads during dawn and dusk. These days, the present road light structures are wired which are hard to make and has poor adaptability. During the daytime, the battery gets charged by sun rays, and the energy can be used to power the road lights at night time. The structure regards sun situated cell foundation. It is like manner delineates the usage of remote sensor frameworks using GSM for streetlight checking and control. This system would give remote access to streetlight upkeep and monitoring. It likewise talks about a perceptive framework that takes programmed choices for sparkling control (ON/OFF/DIMMING) considering encompassing light power and time both at a similar minute. The data collected from the sensor is given to the microcontroller of one unit, and at the same time, the SMS is sent through GSM to the Raspberry PI microcontroller to monitor and control the street light.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Streetlight"

1

Wallin, Fredrik. "Distributed Communication for Streetlight Systems : A decentralized solution." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191133.

Full text
Abstract:
Streetlights are usually lit during all dark hours even though vehicles or other objects are not using the road. Instead of wasting energy on keeping the streetlights lit when no vehicles are using the road, the streetlights should be lit whenever vehicles are in proximity of the streetlights and turned off otherwise. A distributed network can be used to handle the communication between streetlights for sharing information about vehicles in proximity. There are streetlight systems that adapt from the environment and handles communication but are still not optimized for country roads with low frequency of vehicles. Therefore, distributed communication for streetlight systems is implemented, by letting the streetlights be a part of a distributed system. Each streetlight is represented with a Zolertia RE-Mote, a sensor for detecting objects and an LED. The representation of the streetlights are wirelessly connected as a mesh network where they can communicate with each other and forward data packets to nodes more far away in the network. The concept of having the streetlights in a distributed system is believed to work and can be considered to be applied on streetlights at country roads to save energy.
Gatlyktor är oftast tända under alla timmar då det är mörkt ute, även fast det inte är något fordon eller annat objekt som använder vägen. Istället för att slösa energi på att ha gatlyktorna tända när det inte är några fordon som använder vägen, bör gatlyktorna vara tända när fordon är i närheten av dem och släckta annars. Ett distribuerat nätverk kan användas för att hantera kommunikationen mellan gatlyktor till att dela information om fordon i närheten. Det finns gatlyktsystem som anpassar efter miljön och hanterar kommunikationen, men är inte optimerat för landsvägar med låg trafik. Därför är distribuerad kommunikation för gatlyktsystem implementerat genom att låta gatlyktorna vara en del av ett distribuerat system. Varje gatlykta är representerad med en Zolertia RE-Mote, en sensor för detektering av objekt och en LED. Representationen är trådlöst kopplat som ett meshnätverk där de kan kommunicera med varandra och skicka vidare datapaket till noder längre bort i nätverket. Konceptet att ha gatlyktorna i ett distribuerat system tros fungera och kan tänkas att appliceras på gatlyktor på landsvägar för att spara energi.
APA, Harvard, Vancouver, ISO, and other styles
2

Glenn, Johnathan James. "An automated imaging system for road lighting quality assessment." Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Novák, Filip. "Využití jasového analyzátoru pro kvantifikaci umělého světla v nočním prostředí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442543.

Full text
Abstract:
This diploma thesis deals with obtrusive light and its measurement, especially with the help of luminance analyzers. In particular, the necessary theoretical basis for the design of a measuring methodology for obtrusive light or veil brightness of the sky is laid here. This mainly includes the division of obtrusive light and its manifestations, a description of the effects of obtrusive light on the environment, selected organisms and the human body. Also described herein are the biological mechanisms of the human body that are affected by light as such. Attention is also paid to streetlights, its classification and methods of reducing obtrusive light, as well as methods of measuring brightness and brightness analyzers. Last but not least, the night sky is also measured using the LumiDISP luminance analyzer and subsequent data are evaluated using the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
4

McCarthy, Tom. "Automatiserad gatubelysning baserad på omgivningens ljusstyrka : Hur ljussensorteknik kan minska energianvändningen för utomhusbelysning." Thesis, KTH, Hälsoinformatik och logistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302562.

Full text
Abstract:
Målet med arbetet var att undersöka hur enskilda gatlyktor skulle kunna utrustas med ljussensorteknik för att implementera automatisk dimring med syftet att sänka energianvändningen. Rapporter visar att väg- och gatubelysningen i Sverige stod för 626 GWh år 2016 samt att en stor del av ljuspunkterna fortfarande består av energikrävande högtrycksnatrium. Uppgifter visar även att energisnåla LED-armaturer blir alltmer förekommande som alternativ till högtryckslampor. Målet var att utveckla en prototyp för LED där funktionen bygger på att lysdioderna ska vara släckta när omgivningens ljusstyrka är hög och dynamisk dimras upp när omgivningens ljusstyrka minskar. Arbetet resulterade i en prototyp som fungerar tillfredsställande och efter uppsatta mål. Varje ljussensor läser in ett analogt mätvärde som tolkas av en mikrokontroller som sedan skickar en pulsbreddsmodulerad signal för styrning av lysdiodens belysningsnivå. Generellt visade arbetet att omfattande fortsatta studier behöver göras innan prototypen skulle kunna implementeras i verkligheten. Prototypen behöver även testas och kalibreras i utomhusmiljö med dagsljus.
The goal of this thesis was to investigate how individual streetlights could be equipped with light sensor technology to apply an automatic dimmer function with the purpose of reducing energy usage. Studies show that road and streetlights in Sweden accounted for 626 GWh during the year 2016 and that a large portion of the lights still consists of energy demanding high pressure sodium lamps. Reports also show that energy efficient LED is becoming more and more common as an alternative to high pressure lamps. The goal was to develop a prototype for LED lighting with the function to control the LED’s to be off when the surrounding light levels are high and to dynamically increase the output power when the surroundings light level go down. Each light sensor reads an analog value which is interpreted by a micro controller that sends a pulse width modulated signal to control the LED power output. The finished prototype worked satisfactory and according to the set goals of the thesis. Generally, the thesis showed that extensive research is needed before the prototype could be implemented in real life. The prototype also needs to be tested and calibrated in an outdoor environment with day light.
APA, Harvard, Vancouver, ISO, and other styles
5

Weng, Hua-xiu, and 翁花秀. "Optical Lens Design for LED Streetlight." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/19890276965900852143.

Full text
Abstract:
碩士
國立臺南大學
通訊工程研究所碩士班
99
In this paper, we proposed and designed the lens for light emitting diode (LED) street lights by optical designing software Trace Pro which provided a platform for us to comprehend how the rays go forward through lens and roadway simulation software dialux, where dialux software is used to assess the average dialux lighting and uniformity. Many LED street lamps used matrix array, which has many disadvantage like circuit design problems. We used multi-chip on lead frame, that is, single module high power LED (140W) package design, which can reduce size of streetlight, lessen the complexity for lens'' designing and reduce cost. We probe three kinds of lens to compare the light intensity far field angle and illumination. With the basis of optical design and LED lights can achieve high output efficiency until 0.857; high uniformity from 0.587 to 0.753, the average illumination from 19 lx to 21 lx and approach of batwing far field beam angle distribution can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
6

SYU, YI-CHIEH, and 許逸傑. "Realization Study of Photovoltaic LED Streetlight Driver." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/42764806464392723825.

Full text
Abstract:
碩士
中原大學
電機工程研究所
101
This thesis aims to combine photovoltaic (PV) charging system with an LLC resonant converter to achieve PV LED Street-lighting system without electrolytic capacitors. In control, the study using digital controller MCU to replace hardware components successfully attains digital control for maximum power point tracking (MPPT), battery management and lighting control. Based on the concept of energy saving, the system function and efficiency in study are considered from the PV panels through MPPT and battery charging management to the design of LLC converter. Finally, a prototype of 50W PV LED street-light without electrolytic capacitors is conducted to evaluate the LED output luminance and verify the LLC performance compared with the theoretical analysis.
APA, Harvard, Vancouver, ISO, and other styles
7

Tsai, Ming-Jiun, and 蔡名峻. "Energy-saving Control System for LED Streetlight." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/40998610020810829178.

Full text
Abstract:
碩士
國立高雄應用科技大學
電機工程系博碩士班
103
Nowadays, with the environmental problems such as imminent exhaustion of fossil energy and increasingly serious global warming make the concept of environmental protection about energy conservation, and carbon emission reduction has been taken seriously, and many energy-saving systems have been proposed in various fields with the trend of energy conservation and carbon emission reduction. Furthermore, there are a lot of energy-saving technologies and patents of "road lighting", which are closely linked with people's daily life. In order to achieve the goal such as energy conservation and carbon emission reduction, those technologies and patents recommend reducing unnecessary power consumption by adjusting the brightness of streetlight. However, most of energy-saving streetlight systems merely focus on their energy-saving function, but neglect the optimal opportunity of using ofenergy-saving streetlight system, even ignore the problem that the energy-saving streetlight system may cause driver or road user to produce a phenomenon of visual fatigue, which may further lead to a traffic accident. In order to mitigate the foregoing disadvantages, this thesis constructs an LED streetlight control system that not only achieves energy conservation, carbon emission reduction, and environmental protection but also considers the traffic safety of drivers and road users. This system also makes the energy-saving streetlight work at the appropriate time to extend the life of streetlight and control system.
APA, Harvard, Vancouver, ISO, and other styles
8

LAI, YI-LING, and 賴怡伶. "The Study of Smart Streetlight Cybersecurity Capability." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/jrr6x3.

Full text
Abstract:
碩士
銘傳大學
資訊管理學系碩士在職專班
107
In response to the need to develop smart cities, besides general lighting, types of streetlights have other different functions in various application fields, including transportation, environment, and public safety. In other words, based on its distribution and density, streetlights have become important infrastructure of the IoT applications for the smart city. However, along come many potential security risks that might have huge impacts. Thus, it is imperative to formulate Smart Lighting network security requirements for the related industries to follow and prevent forthcoming problems. Recently, there have been quite a few hacker attacks in the smart city of the IoT application in the world. In order to prevent our country's Smart Lighting from cyber-attacks, causing the city to stop operating or become paralyzed, under the definition of the Smart Lighting System, utilizing Smart Lighting gateway, attached equipment and back-end server as the core of network security, this study is aimed to formulate network security requirements for Smart Lighting System from the perspective of IoT device security and to assist related businesses to enhance the network security capabilities of Smart Lighting system. This study adopts the Vulnerability Assessment Method to establish the Threat Model of the Smart Lighting System. By using precautionary measures issued by the International Standards Organization that target security incidents, such as vulnerabilities and cyber-attacks for security incidents, the Threat Mitigation of the Smart Lighting System is summarized and the Smart Lighting System network security requirements are proposed. Using focus group method, experts are interviewed to address the issue whether the Smart Lighting System network security requirements proposed in this study are sufficient enough to enhance the network security capability of the Smart Lighting System. Afterwards, the opinions and insights of the experts are organized and concluded. Through the network security requirements of the Smart Lighting System recommended in the study, businesses are expected to gain security risk control and improve the network security capability of the equipment when developing and deigning Smart Lighting equipment.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Yu-xian, and 吳禹賢. "Secondary Optical Lens Design of LED Streetlight." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/32165970645476806197.

Full text
Abstract:
碩士
國立臺南大學
電機工程研究所
99
In this study, the street lamp with combining the multi-chip on board(MCOB) of LED light source and the freeform lens were proposed and simulated. In order to prevent two adjacent luminaries from generating strong brightness contrast on the road surface, i.e., the Zebra effect (repeated bright and dark regions). We design a freeform lens which can provide that the light intensity is good batwing distribution with light intensity about 3000 cd at the middle and 7000 cd at 60 deg. This indicates that a uniform and wide illumination area on whole road surface can be achieved. The uniformity values are 0.723, 0.866, and 0.875 for three basic placement of single-sided, zigzag, and opposite, respectively. These results suggest that the lamp installation numbers can be eliminated, and can be reduced thermal management.
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Chung-Hsin, and 黃忠信. "Streetlight Monitoring System Based on Wireless Sensor Networks." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/52554745588693853342.

Full text
Abstract:
碩士
國立勤益科技大學
電子工程系
98
Streetlights are necessary for an urban area. However, there is no an effective monitoring system to maintain their functions for normal operating. In Taiwan, power outages occur frequently in the mountain areas whenever a typhoon or earthquake strikes. The lamppost fixed in mountain areas often collapse so that the streetlights are unable to provide emergency lighting. For the purpose of energy saving, emergency lighting and monitoring, we proposes an LED based light monitoring system, which combines an MSP430 microcontroller, solar cells and various sensing elements with a Zigbee radio transmission. We hope to enhance the performance efficiently in the management and maintenance of streetlights. This can be done by changing the luminance intelligently and providing emergency lighting in times of power outages. All of signals taken from sensors are processed in the MSP430 microcontroller. Finally, using the Zigbee wireless transmission of the mesh topology approach, the information relative to lights will be transmitted back to a relay station. Relay station and the terminal control station of the monitoring system that uses VB (Visual Basic) and Ajax (Asynchronous JavaScript and XML) technology by means of Google Map will receive information of each streetlight to XML format, and then send to the terminal control station and display on the Google Map. Users can monitor the streetlight of within the selected region. In addition, user can directly click the light icons on the Map to view their information. In this dissertation, the simulated LED light whose total power consumption is 2.88W. When the LED light is not working, the LED lights will be marked a red icon as a fault; and the icon is green under normal operation in the daytime but yellow at night.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Streetlight"

1

Evans, Hilary. Sliders: The enigma of streetlight interference. San Antonio, TX: Anomalist Books, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Streetlights. Los Angeles [Calif.]: Balcony Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ho, Ren Chun. Shrines & streetlights: Poems. Singapore: Ethos Books, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

McClintock, Michael. Streetlights: Poetry of urban life in modern English tanka. Baltimore, Md: Modern English Tanka Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wilson, Jason. Squirrel gangs, streetlights & bucket trucks: The history of Waterloo North Hydro. [Waterloo, Ont: Waterloo North Hydro, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Streetlights and shadows: Searching for the keys to adaptive decision making. Cambridge, MA: MIT Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilson, Jason. Squirrel gangs, streetlights & bucket trucks: The history of Waterloo North Hydro. [Waterloo, ON]: Waterloo North Hydro, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Men, Boyz II. Under the streetlight. 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Underbakke, Juan. Ghost Dancing by Streetlight. CreateSpace Independent Publishing Platform, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The Streetlight and The Supernova. BAM! Publishing, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Streetlight"

1

Kumar, Aman, Akash Oraon, Siddharth Agarwal, Deepak Prasad, and Vijay Nath. "Intelligent Streetlight System Using GSM." In Nanoelectronics, Circuits and Communication Systems, 277–87. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2854-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Greiner, Florian, and Steffen Jakowski. "Das Musicalprojekt Streetlight 2.0 von STARKamSTART." In Das Heidelberger Kompetenztraining, 111–18. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-24397-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aswatha, A. R., and J. Shwetha. "Streetlight Management and Control System Using IOT." In Algorithms for Intelligent Systems, 835–44. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4604-8_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar Saini, Dinesh, Sameer Meena, Kamlesh Choudhary, Sheetal Bedia, Anshul Agarwal, and Vinay Kumar Jadoun. "Auto Streetlight Control with Detecting Vehicle Movement." In Lecture Notes in Electrical Engineering, 279–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1476-7_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Widerquist, Karl. "Overcoming Spin, Sensationalism, Misunderstanding, and the Streetlight Effect." In A Critical Analysis of Basic Income Experiments for Researchers, Policymakers, and Citizens, 145–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03849-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mohammad, Arshad, Faiz Ali, M. D. Mustafa Kamal, and Imtiaz Ashraf. "Smart Streetlight System for Smart Cities Using IoT." In Lecture Notes in Electrical Engineering, 565–71. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4080-0_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Meihua, Mengwei Sun, Guoqin Wang, and Shuping Huang. "Intelligent Remote Wireless Streetlight Monitoring System Based on GPRS." In AsiaSim 2012, 228–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34390-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elejoste, Pilar, Asier Perallos, Aitor Chertudi, Ignacio Angulo, Asier Moreno, Leire Azpilicueta, José Javier Astráin, Francisco Falcone, and Jesús Villadangos. "Easily Deployable Streetlight Intelligent Control System Based on Wireless Communication." In Ubiquitous Computing and Ambient Intelligence, 334–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35377-2_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Oh, Sun Jin. "Performance Evaluation of a LED-IT-Sensor Integrated Streetlight System in USN." In Convergence and Hybrid Information Technology, 680–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32692-9_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Widerquist, Karl. "The Vulnerability of Experimental Findings to Misunderstanding, Misuse, Spin, and the Streetlight Effect." In A Critical Analysis of Basic Income Experiments for Researchers, Policymakers, and Citizens, 77–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03849-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Streetlight"

1

Prasanthi, M. Sahithi, T. SK Perraju, M. Abhiram, Y. Meher Teia, M. S. Lalitha Ramya, Y. Srinivasa, and M. Subrahmanya Sarma. "IOT Based Streetlight Management." In 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2018. http://dx.doi.org/10.1109/rteict42901.2018.9012380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bienz, Simon, Andrei Ciortea, Simon Mayer, Fabien Gandon, and Olivier Corby. "Escaping the Streetlight Effect." In IoT 2019: 9th International Conference on the Internet of Things. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3365871.3365901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jha, Aman, Manoj Kumar, Jitendra Jain, and Indar Prakash Singhal. "Smart solar hybrid LED streetlight." In 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE). IEEE, 2017. http://dx.doi.org/10.1109/rdcape.2017.8358229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Jian. "Isolated Streetlight LED Driver Design." In 2017 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/fmsmt-17.2017.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chunguo Jing, D. Shu, and Rongfu He. "GIS based streetlight control strategy." In 2006 China International Conference on Electricity Distribution (CICED 2006). IEE, 2006. http://dx.doi.org/10.1049/cp:20061702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borah, Pooja Rani, Dibyajyoti Chatterjee, and Anshuman Baruah. "Smart Streetlight with Power Vending Scheme." In 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC). IEEE, 2019. http://dx.doi.org/10.1109/peeic47157.2019.8976585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jayalakshmi, B., V. Anjali, Nithin Raj R., Nakul Nair, and T. M. Rahul. "IoT Based Energy Efficient Automatic Streetlight." In 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 2019. http://dx.doi.org/10.1109/iccs45141.2019.9065843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, Anand, Priyanka Marathey, and Indrajit Mukhopadhyay. "Energy positive solar LED streetlight system." In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). IEEE, 2017. http://dx.doi.org/10.1109/icecds.2017.8389541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Lan, Youyi Jiang, Yongchong Yang, and Ning Lou. "City positioning method based on streetlight." In Geoinformatics 2008 and Joint conference on GIS and Built Environment: The Built Environment and its Dynamics, edited by Lin Liu, Xia Li, Kai Liu, Xinchang Zhang, and Xinhao Wang. SPIE, 2008. http://dx.doi.org/10.1117/12.812741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Jingyi, Meichen Zhu, Changzhong Hao, Jianqiao Tang, and Qing Yang. "Reliability analysis of high-power LED streetlight." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6234363.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Streetlight"

1

Vittitoe, C. Did high-altitude EMP (electromagnetic pulse) cause the Hawaiian streetlight incident. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6151435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography