Journal articles on the topic 'Stream ecology Victoria Acheron River'

To see the other types of publications on this topic, follow the link: Stream ecology Victoria Acheron River.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 journal articles for your research on the topic 'Stream ecology Victoria Acheron River.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

DOEG, T. J., P. S. LAKE, and R. MARCHANT. "Colonization of experimentally disturbed patches by stream macroinvertebrates in the Acheron River, Victoria." Austral Ecology 14, no. 2 (June 1989): 207–20. http://dx.doi.org/10.1111/j.1442-9993.1989.tb01428.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O'Leary, P., PS Lake, R. Marchant, and TJ Doeg. "Macroinvertebrate activity in the water column of backwaters in an upland stream in Victoria." Marine and Freshwater Research 43, no. 6 (1992): 1403. http://dx.doi.org/10.1071/mf9921403.

Full text
Abstract:
The activity of benthic invertebrates was monitored in the water column of slowly flowing backwaters of the Acheron River during summer. Samples were taken throughout 24 h on two occasions, and densities of fauna were compared with densities in drift samples taken concurrently in the main channel. Drift densities were generally higher than those in backwaters, but not by orders of magnitude. Also, drift densities displayed significant die1 variation, whereas densities in backwaters did not consistently show such a pattern. Species composition generally differed between the two habitats. This brief study demonstrates that benthic invertebrates do swim in the water column of stream backwaters and that they may use this opportunity for colonization.
APA, Harvard, Vancouver, ISO, and other styles
3

LAKE, P. S., T. J. DOEG, and R. MARCHANT. "Effects of multiple disturbance on macroinvertebrate communities in the Acheron River, Victoria." Austral Ecology 14, no. 4 (December 1989): 507–14. http://dx.doi.org/10.1111/j.1442-9993.1989.tb01458.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

St.Clair, RM. "Life histories of six species of Leptoceridae (Insecta: Trichoptera) in Victoria." Marine and Freshwater Research 44, no. 2 (1993): 363. http://dx.doi.org/10.1071/mf9930363.

Full text
Abstract:
Life history studies were carried out for populations of six species of Leptoceridae. Study sites were a permanent river (Acheron), a temporary river (Lerderderg) and a permanent lake (Monash University). Life histories varied in degree of synchrony of larval development, in length of adult emergence period, and from bi- to semivoltine. Oviposition requirements of adults were found to be the major factor influencing synchrony of the life history of one species. Life history features did not ameliorate the effects of the severe drought of 1982-83, nor did drought result in large changes in life histories.
APA, Harvard, Vancouver, ISO, and other styles
5

Marchant, R., and G. Hehir. "A method for quantifying hand-net samples of stream invertebrates." Marine and Freshwater Research 50, no. 2 (1999): 179. http://dx.doi.org/10.1071/mf98113.

Full text
Abstract:
Quantitative sampling using a hand-net can be accomplished by taking three successive catches of invertebrates from the same point on the streambed. This is a form of removal sampling. By plotting the decline in number of individuals in each catch against the total previously caught, the total population at the sampling point can be estimated. From this, the probability of capture in a single catch (p) can be calculated. For Agapetus, other trichopteran, leptophlebiid, caenid and gripopterygid larvae from a site on a tributary of the Acheron River in southern Australia, p varied from 0.66 to 0.81. Additional data for a species of Gammarus from the Credit River in Ontario gave a p value of 0.67. In three successive catches the overall probability of capture exceeded 95% for all taxa, indicating that with this degree of effort most individuals present were caught.
APA, Harvard, Vancouver, ISO, and other styles
6

Downes, Barbara J., Alecia Bellgrove, and Jodie L. Street. "Drifting or walking? Colonisation routes used by different instars and species of lotic, macroinvertebrate filter feeders." Marine and Freshwater Research 56, no. 6 (2005): 815. http://dx.doi.org/10.1071/mf04281.

Full text
Abstract:
Many views of stream invertebrate populations centre on drift as the major route of larval dispersal, but few studies have presented unambiguous information about the role of drift. We present the results from an experiment designed to determine whether the major route of colonisation of substrata by hydropsychid larvae (commonly found in the drift) is by drifting directly onto substrata or by walking along the stream bottom. The experimental design contained four treatments: substrata open to drifters and walkers; fenced substrata open to drifters only; and two treatments open to drifters and walkers that provided forms of fence controls. Fifteen replicates of each treatment were set out at random locations within a riffle at each of three sites, with each site on a different river (the Little River, the Steavenson River and the Acheron River) in the Acheron River catchment. The experiment was run twice, once during autumn (April 1999) and once during early summer (January 2000). Both experiments were colonised by three species of hydropsychids, Asmicridea sp. AV1, and Smicrophylax sp. AV1 and AV2. We found that 2nd/3rd instars of Asmicridea sp. AV1 walked as well as drifted, whereas all others primarily drifted. No relation between numbers of recruits and water speed was found when substrata were open only to drifters, whereas substrata open also to walkers gained more recruits in faster flows. Additionally, larvae more frequently abandoned nets in slow than fast flows, indicating that drifting into unfavourable flow environments may result in mortality or redispersal of larvae. These findings demonstrate that, although drift is important, it is not necessarily the only method used by hydropsychids to colonise substrata. Larvae may have more capacity to choose substrata in fast flows when they colonise substrata by walking. Spot measures of hydropsychid distribution cannot distinguish between these explanations. The finding that walkers can sometimes comprise significant numbers of recruits raises the prospect that hydropsychids can be sourced locally and have not inevitably drifted in from upstream locations.
APA, Harvard, Vancouver, ISO, and other styles
7

Rehman, Saqib, Kamran Khan, and Absar Ahmed. "Association between the Dynamics of Indian Ocean Subtropical High and Winter Time Precipitation and Stream Flow: A Case Study Over Acheron River Catchment, Victoria." British Journal of Applied Science & Technology 12, no. 3 (January 10, 2016): 1–9. http://dx.doi.org/10.9734/bjast/2016/20100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Atazadeh, Ehsan, Andrew Barton, and Jafar Razeghi. "Importance of environmental flows in the Wimmera catchment, Southeast Australia." Limnological Review 20, no. 4 (December 1, 2020): 185–98. http://dx.doi.org/10.2478/limre-2020-0018.

Full text
Abstract:
Abstract In this paper the environment, climate, vegetation, indigenous and European settlement history, stream flow patterns, water quality and water resources development in western Victoria, Australia are studied. The last part of the paper focuses on the MacKenzie River, a tributary of the Wimmera River located on the northern slopes of the Grampians Ranges in western Victoria, Australia. Water release along the MacKenzie River was regulated to improve water quality, stream condition and river health especially in the downstream reaches. The upstream section tends to receive water most days of the year due to releases to secure the requirements of water supply for the city of Horsham and its recreational and conservation values, which is diverted into Mt Zero Channel. Below this the middle and downstream sections receive a more intermittent supply. Annually, a total of 10,000 dam3 of water is released from Wartook Reservoir into the MacKenzie River. Of this volume, only about 4,000 dam3 was released explicitly for environmental purposes. The remaining 6,000 dam3 was released to meet consumptive demands and to transfer water to downstream reservoirs. The empirical data and models showed the lower reaches of the river to be in poor condition under low flows, but this condition improved under flows of 35 dam3 per day, as indicated. The results are presented to tailor discharge and duration of the river flows by amalgamation of consumptive and environmental flows to improve the condition of the stream, thereby supplementing the flows dedicated to environmental outcomes. Ultimately the findings can be used by management to configure consumptive flows that would enhance the ecological condition of the MacKenzie River.
APA, Harvard, Vancouver, ISO, and other styles
9

Chessman, BC. "Impact of the 1983 wildfires on river water quality in East Gippsland, Victoria." Marine and Freshwater Research 37, no. 3 (1986): 399. http://dx.doi.org/10.1071/mf9860399.

Full text
Abstract:
Eleven stream stations within the basins of the Bemm, Cann, Thurra, Wingan and Genoa Rivers were sampled during a 3-month interval following a prolonged drought and intense and extensive forest fires. Emphasis was placed on flows resulting from three major storms that occurred during this period. Water-quality impacts of the fires were intermingled with those of the preceding drought, and flow- related comparisons with pre-drought data showed appreciable increases in colour, turbidity, suspended solids, potassium and nitrogen levels in the Bemm River, which was only marginally affected by the fires. In the Cann and Genoa Rivers, with much larger proportions of catchment burnt, electrical conductivity and phosphorus concentrations also rose substantially. Marked depletion of dissolved oxygen (to <6 mg I-1) was unique to streams with burnt catchments, but resulted from stagnant conditions at the end of the drought as well as from changes occurring at the time of the first post-fire storm. The fires had little obvious effect on temperature and pH regimes. Peak turbidities and concentrations of suspended solids and phosphorus were much greater in the Cann and Genoa river systems than elsewhere. Maximum values for these indicators were 130 NTU, 2300 mg I-1 and over 0.8 mg I-1, respectively. In the Thurra and Wingan basins, which were also burnt, stream suspended-solids levels were lower (<200 mg I-1), but solutes sometimes reached very high maxima (indicated by peak electrical conductivities of up to 110 mS m-1). Variations in catchment topography and soils and the relative importance of surface and subsurface flow probably account for these differences. The first post-fire storm produced the highest measured levels of many indicators in most streams, although the greatest flows were associated with the third storm. Nitrite and ammonia were notable exceptions to this generalization. Estimates of catchment exports indicated high sediment yields and moderate to high phosphorus yields from the Cann and Genoa catchments, by comparison with other Australian data.
APA, Harvard, Vancouver, ISO, and other styles
10

Doeg, TJ, and GA Milledge. "Effect of experimentally increasing concentration of suspended sediment on macroinvertebrate drift." Marine and Freshwater Research 42, no. 5 (1991): 519. http://dx.doi.org/10.1071/mf9910519.

Full text
Abstract:
The effect of artificially elevating concentrations of suspended sediment on macroinvertebrate drift was studied in the Acheron River, 100 km north-east of Melbourne. Two experimental channels were established in the stream, and suspended sediment was introduced into one channel over a period of 1.5 h. The second channel was left undisturbed as a control. The concentration of suspended sediment was altered every 15 min, rising and falling to imitate concentrations reported during natural flood events. Drift was collected from two nets at the downstream end of each channel during each 15-min period. Collections were made for three 15-min periods before the introduction of the sediment and for three periods after the release. The addition of suspended sediment at a mean concentration of 133.4 mg L-1 over a 15-min period (compared with around 20 mg L-1 in the control channel) resulted in a sevenfold increase in the total number of drifting invertebrates. At lower concentrations (both before and after this peak concentration), drift densities were more similar to prerelease conditions. The number of drifting taxa also showed an increase during the period of high release. Although the experiment did not conform strictly to a full experimental design, the results indicated that there may be a threshold level of suspended sediment that initiates macroinvertebrate drift, and this experiment represents an appropriate starting point for future investigations.
APA, Harvard, Vancouver, ISO, and other styles
11

Lawrence, Susan, James Grove, Peter Davies, Jodi Turnbull, Ian Rutherfurd, and Mark Macklin. "Historical dredge mining as a significant anthropomorphic agent in river systems: A case study from south-eastern Australia." Holocene 31, no. 7 (March 25, 2021): 1158–74. http://dx.doi.org/10.1177/09596836211003272.

Full text
Abstract:
Bucket dredging to mine and extract gold and tin from rivers is a global industry that has had a range of negative effects on physical environments. These include the destruction of riparian soil profiles and structures, artificial channel straightening and loss of in-stream biodiversity. In this paper we evaluate the immediate effects and long-term consequences of bucket dredging on rivers in Victoria and New South Wales during the period 1900–1950. High quality historical sources on dredge mining are integrated with geospatial datasets, aerial imagery and geomorphological data to analyse the scale of the dredging industry, evidence for disturbance to river channels and floodplains and current land use in dredged areas. The study demonstrates that the environmental impact of dredging was altered but not reduced by anti-pollution regulations intended to control dredging. An assessment of river condition 70–100 years after dredge mining ceased indicates that floodplains and river channels continue to show the effects of dredging, including bank erosion, sediment slugs, compromised habitat and reduced agricultural productivity. These findings have significant implications for river and floodplain management.
APA, Harvard, Vancouver, ISO, and other styles
12

Koehn, JD, NA O'Connor, and PD Jackson. "Seasonal and size-related variation in microhabitat use by a southern Victorian stream fish assemblage." Marine and Freshwater Research 45, no. 7 (1994): 1353. http://dx.doi.org/10.1071/mf9941353.

Full text
Abstract:
Microhabitat use by a stream fish assemblage was examined bimonthly at 51 sites along Armstrong Creek, Victoria, Australia, for 12 months. Five species-river blackfish (Gadopsis marmoratus), short-finned eel (Anguilla australis), short-headed lamprey (Mordacia mordax), and the exotic species brown trout (Salmo trutta) and roach (Rutilus rutilus)-were collected. Because blackfish were abundant, length-frequency data could be used to distinguish three size groups, corresponding approximately to cohorts of Years 0, 1 and 2+. Twenty-seven habitat variables were measured at each site, and these were reduced by principalcomponents analysis to eight major components. Densities of each blackfish size group and of eels, trout and lamprey showed significant correlations with one or more components. The mean preferred water depth of blackfish increased with fish size. Small blackfish could be found in water ranging from 10 to 50 cm deep, but large blackfish were restricted to depths greater than 20 cm and could be found at depths greater than 50 cm. All species showed preferences for water velocities less than 20 cm s-1. There was also a relationship between fish size and the size of shelter available among substratum interstices.
APA, Harvard, Vancouver, ISO, and other styles
13

Serena, M., J. L. Thomas, G. A. Williams, and R. C. E. Officer. "Use of stream and river habitats by the platypus, Ornithorhynchus anatinus, in an urban fringe environment." Australian Journal of Zoology 46, no. 3 (1998): 267. http://dx.doi.org/10.1071/zo98034.

Full text
Abstract:
Radio-telemetry was used to monitor movements and burrow usage by O. anatinus living in the Yarra River catchment, about 20 km east-north-east of the central business district of Melbourne, Victoria. The home ranges of six adult or subadult animals were 2.9–7.3 km (mean ± s.d. = 4.6 ± 1.6 km) long, with individuals travelling up to 10.4 km (males) and 4.0 km (females) in a single overnight period. The mean home-range length of adult/subadult animals was significantly greater than that of juveniles (1.4–1.7 km, mean ± s.d. = 1.55 ± 0.2 km, n = 2). The animals utilised two drainage channels as well as 11.8 km of natural waterways, including the Yarra River (5 km), Mullum Mullum Creek (4 km) and Diamond Creek (2.8 km). Several animals travelled repeatedly below one-lane and two-lane bridges, confirming that these structures are not inherent barriers to platypus movement. In total, 57 platypus burrows were described, including 26 along the river, 29 along the creeks and 2 along drains. The horizontal distance from the water’s edge to burrow chambers was 0.4–3.7 m (mean ± s.d. = 1.5 ± 0.9 m, n = 41), with burrows found only in banks extending ≥ 0.5 m above the water. Platypus burrows occurred significantly more often than expected along undercut banks and in association with moderate-to-dense vegetation overhanging the water, and significantly less often at sites where banks had a convex profile at water level. As well, the amount of cover provided along the bank by shrubs/small trees and the ground layer of vegetation was significantly greater than expected at platypus burrows along the river. These attributes are believed to help conceal burrow entrances from predators as well as reduce burrow damage through erosion.
APA, Harvard, Vancouver, ISO, and other styles
14

PERKINS, PHILIP D. "A revision of the Australian humicolous and hygropetric water beetle genus Tympanogaster Perkins, and comparative morphology of the Meropathina (Coleoptera: Hydraenidae)." Zootaxa 1346, no. 1 (October 30, 2006): 1. http://dx.doi.org/10.11646/zootaxa.1346.1.1.

Full text
Abstract:
The Australian endemic humicolous and hygropetric water beetle genus Tympanogaster Perkins, 1979, is revised, based on the study of 7,280 specimens. The genus is redescribed, and redescriptions are provided for T. cornuta (Janssens), T. costata (Deane), T. deanei Perkins, T. macrognatha (Lea), T. novicia (Blackburn), T. obcordata (Deane), T. schizolabra (Deane), and T. subcostata (Deane). Lectotypes are designated for Ochthebius labratus Deane, 1933, and Ochthebius macrognathus Lea, 1926. Ochthebius labratus Deane, 1933, is synonymized with Ochthebius novicius Blackburn, 1896. Three new subgenera are described: Hygrotympanogaster new subgenus (type species Tympanogaster (Hygrotympanogaster) maureenae new species; Topotympanogaster new subgenus (type species Tympanogaster (Topotympanogaster) crista new species; and Plesiotympanogaster new genus (type species Tympanogaster (Plesiotympanogaster) thayerae new species. Seventy-six new species are described, and keys to the subgenera, species groups, and species are given. High resolution digital images of all primary types are presented (online version in color), and geographic distributions are mapped. Male genitalia, representative spermathecae and representative mouthparts are illustrated. Scanning electron micrographs of external morphological characters of adults and larvae are presented. Selected morphological features of the other members of the subtribe Meropathina, Meropathus Enderlein and Tympallopatrum Perkins, are illustrated and compared with those of Tympanogaster. Species of Tympanogaster are typically found in the relict rainforest patches in eastern Australia. Most species have very limited distributions, and relict rainforest patches often have more than one endemic species. The only species currently known from the arid center of Australia, T. novicia, has the widest distribution pattern, ranging into eastern rainforest patches. There is a fairly close correspondence between subgenera and microhabitat preferences. Members of Tympanogaster (s. str.) live in the splash zone, usually on stream boulders, or on bedrock stream margins. The majority of T. (Hygrotympanogaster) species live in the hygropetric zone at the margins of waterfalls, or on steep rockfaces where water is continually trickling; a few rare species have been collected from moss in Nothofagus rainforests. Species of T. (Plesiotympanogaster) have been found in both hygropetric microhabitats and in streamside moss. The exact microhabitats of T. (Topotympanogaster) are unknown, but the morphology of most species suggests non-aquatic habits; most specimens have been collected in humicolous microhabitats, by sifting rainforest debris, or were taken in flight intercept traps. Larvae of hygropetric species are often collected with adults. These larvae have tube-like, dorsally positioned, mesothoracic spiracles that allow the larvae to breathe while under a thin film of water. The key morphological differences between larvae of Tympanogaster (s. str.) and those of Tympanogaster (Hygrotympanogaster) are illustrated. New species of Tympanogaster are: T. (s. str.) aldinga (New South Wales, Dorrigo National Park, Rosewood Creek), T. (s. str.) amaroo (New South Wales, Back Creek, downstream of Moffatt Falls), T. (s. str.) ambigua (Queensland, Cairns), T. (Hygrotympanogaster) arcuata (New South Wales, Kara Creek, 13 km NEbyE of Jindabyne), T. (Hygrotympanogaster) atroargenta (Victoria, Possum Hollow falls, West branch Tarwin River, 5.6 km SSW Allambee), T. (Hygrotympanogaster) barronensis (Queensland, Barron Falls, Kuranda), T. (s. str.) bluensis (New South Wales, Blue Mountains), T. (Hygrotympanogaster) bondi (New South Wales, Bondi Heights), T. (Hygrotympanogaster) bryosa (New South Wales, New England National Park), T. (Hygrotympanogaster) buffalo (Victoria, Mount Buffalo National Park), T. (Hygrotympanogaster) canobolas (New South Wales, Mount Canobolas Park), T. (s. str.) cardwellensis (Queensland, Cardwell Range, Goddard Creek), T. (Hygrotympanogaster) cascadensis (New South Wales, Cascades Campsite, on Tuross River), T. (Hygrotympanogaster) clandestina (Victoria, Grampians National Park, Golton Gorge, 7.0 km W Dadswells Bridge), T. (Hygrotympanogaster) clypeata (Victoria, Grampians National Park, Golton Gorge, 7.0 km W Dadswells Bridge), T. (s. str.) cooloogatta (New South Wales, New England National Park, Five Day Creek), T. (Hygrotympanogaster) coopacambra (Victoria, Beehive Falls, ~2 km E of Cann Valley Highway on 'WB Line'), T. (Topotympanogaster) crista (Queensland, Mount Cleveland summit), T. (Hygrotympanogaster) cudgee (New South Wales, New England National Park, 0.8 km S of Pk. Gate), T. (s. str.) cunninghamensis (Queensland, Main Range National Park, Cunningham's Gap, Gap Creek), T. (s. str.) darlingtoni (New South Wales, Barrington Tops), T. (Hygrotympanogaster) decepta (Victoria, Mount Buffalo National Park), T. (s. str.) dingabledinga (New South Wales, Dorrigo National Park, Rosewood Creek, upstream from Coachwood Falls), T. (s. str.) dorrigoensis (New South Wales, Dorrigo National Park, Rosewood Creek, upstream from Coachwood Falls), T. (Topotympanogaster) dorsa (Queensland, Windin Falls, NW Mount Bartle-Frere), T. (Hygrotympanogaster) duobifida (Victoria, 0.25 km E Binns, Hill Junction, adjacent to Jeeralang West Road, 4.0 km S Jeerelang), T. (s. str.) eungella (Queensland, Finch Hatton Gorge), T. (Topotympanogaster) finniganensis (Queensland, Mount Finnigan summit), T. (s. str.) foveova (New South Wales, Border Ranges National Park, Brindle Creek), T. (Hygrotympanogaster) grampians (Victoria, Grampians National Park, Epacris Falls, 2.5 km WNW Halls Gap), T. (Hygrotympanogaster) gushi (New South Wales, Mount Canobolas Park), T. (s. str.) hypipamee (Queensland, Mount Hypipamee National Park, Barron River headwaters below Dinner Falls), T. (s. str.) illawarra (New South Wales, Macquarie Rivulet Falls, near Wollongong), T. (Topotympanogaster) intricata (Queensland, Mossman Bluff Track, 5–10 km W Mossman), T. (s. str.) jaechi (Queensland, Running Creek, along road between Mount Chinghee National Park and Border Ranges National Park), T. (Topotympanogaster) juga (Queensland, Mount Lewis summit), T. kuranda (Queensland, Barron Falls, Kuranda), T. (s. str.) lamingtonensis (Queensland, Lamington National Park, Lightening Creek), T. (s. str.) magarra (New South Wales, Border Ranges National Park, Brindle Creek), T. (Hygrotympanogaster) maureenae (New South Wales, Back Creek, Moffatt Falls, ca. 5 km W New England National Park boundary), T. (Hygrotympanogaster) megamorpha (Victoria, Possum Hollow falls, W br. Tarwin River, 5.6 km SSW Allambee), T. (Hygrotympanogaster) merrijig (Victoria, Merrijig), T. (s. str.) millaamillaa (Queensland, Millaa Millaa), T. modulatrix (Victoria, Talbot Creek at Thomson Valley Road, 4.25 km WSW Beardmore), T. (Topotympanogaster) monteithi (Queensland, Mount Bartle Frere), T. moondarra (New South Wales, Border Ranges National Park, Brindle Creek), T. (s. str.) mysteriosa (Queensland), T. (Hygrotympanogaster) nargun (Victoria, Deadcock Den, on Den of Nargun Creek, Mitchell River National Park), T. (Hygrotympanogaster) newtoni (Victoria, Mount Buffalo National Park), T. (s. str.) ovipennis (New South Wales, Dorrigo National Park, Rosewood Creek, upstream from Coachwood Falls), T. (s. str.) pagetae (New South Wales, Back Creek, downstream of Moffatt Falls), T. (Topotympanogaster) parallela (Queensland, Mossman Bluff Track, 5–10 km W Mossman), T. (s. str.) perpendicula (Queensland, Mossman Bluff Track, 5–10 km W Mossman), T. plana (Queensland, Cape Tribulation), T. (Hygrotympanogaster) porchi (Victoria, Tarra-Bulga National Park, Tarra Valley Road, 1.5 km SE Tarra Falls), T. (s. str.) precariosa (New South Wales, Leycester Creek, 4 km. S of Border Ranges National Park), T. (s. str.) protecta (New South Wales, Leycester Creek, 4 km. S of Border Ranges National Park), T. (Hygrotympanogaster) punctata (Victoria, Mount Buffalo National Park, Eurobin Creek), T. (s. str.) ravenshoensis (Queensland, Ravenshoe State Forest, Charmillan Creek, 12 km SE Ravenshoe), T. (s. str.) robinae (New South Wales, Back Creek, downstream of Moffatt Falls), T. (s. str.) serrata (Queensland, Natural Bridge National Park, Cave Creek), T. (Hygrotympanogaster) spicerensis (Queensland, Spicer’s Peak summit), T. (Hygrotympanogaster) storeyi (Queensland, Windsor Tableland), T. (Topotympanogaster) summa (Queensland, Mount Elliott summit), T. (Hygrotympanogaster) tabula (New South Wales, Mount Canobolas Park), T. (Hygrotympanogaster) tallawarra (New South Wales, Dorrigo National Park, Rosewood Creek, Cedar Falls), T. (s. str.) tenax (New South Wales, Salisbury), T. (Plesiotympanogaster) thayerae (Tasmania, Liffey Forest Reserve at Liffey River), T. (s. str.) tora (Queensland, Palmerston National Park), T. trilineata (New South Wales, Sydney), T. (Hygrotympanogaster) truncata (Queensland, Tambourine Mountain), T. (s. str.) volata (Queensland, Palmerston National Park, Learmouth Creek, ca. 14 km SE Millaa Millaa), T. (Hygrotympanogaster) wahroonga (New South Wales, Wahroonga), T. (s. str.) wattsi (New South Wales, Blicks River near Dundurrabin), T. (s. str.) weiri (New South Wales, Allyn River, Chichester State Forest), T. (s. str.) wooloomgabba (New South Wales, New England National Park, Five Day Creek).
APA, Harvard, Vancouver, ISO, and other styles
15

Walsh, Christopher J. "Biological indicators of stream health using macroinvertebrate assemblage composition: a comparison of sensitivity to an urban gradient." Marine and Freshwater Research 57, no. 1 (2006): 37. http://dx.doi.org/10.1071/mf05041.

Full text
Abstract:
Biological indicators are increasingly being used as integrative measures of ecosystem health in streams, particularly indicators using macroinvertebrate assemblage composition. Several indicators of this type have been advocated, including biotic indices based on taxa sensitivities, richness indices and ratios of observed to expected taxa from models predicting assemblage composition in streams with little human impact (O/E scores). The present study aimed to compare the sensitivity of indicators of each of these types (all used for legislated objectives for stream protection in Victoria, Australia) to a gradient of urban disturbance in 16 streams in a small area in eastern Melbourne. The biotic index SIGNAL and number of Ephemeroptera, Plecoptera or Trichoptera families were the most sensitive indicators, whereas total number of families and O/E scores from Australian river assessment system (AUSRIVAS) models were least sensitive. Differences in sensitivity were not the result of sampling or taxonomic inadequacies. AUSRIVAS and similar models might be improved by using only predictor variables that are not affected by human impacts and by sounder approaches to model selection. Insensitivities of indicators and misclassification of sites by the Victorian objectives show that assessment of indicators against disturbance gradients is critical for setting management objectives based on biological indicators.
APA, Harvard, Vancouver, ISO, and other styles
16

PERKINS, PHILIP D. "A revision of the Australian species of the water beetle genus Hydraena Kugelann (Coleoptera: Hydraenidae)." Zootaxa 1489, no. 1 (May 31, 2007): 1–207. http://dx.doi.org/10.11646/zootaxa.1489.1.1.

Full text
Abstract:
The Australian species of the water beetle genus Hydraena Kugelann, 1794, are revised, based on the study of 7,654 specimens. The 29 previously named species are redescribed, and 56 new species are described. The species are placed in 24 species groups. High resolution digital images of all primary types are presented (online version in color), and geographic distributions are mapped. Male genitalia, representative female terminal abdominal segments and representative spermathecae are illustrated. Australian Hydraena are typically found in sandy/gravelly stream margins, often in association with streamside litter; some species are primarily pond dwelling, a few species are humicolous, and one species may be subterranean. The areas of endemicity and species richness coincide quite closely with the Bassian, Torresian, and Timorian biogeographic subregions. Eleven species are shared between the Bassian and Torresian subregions, and twelve are shared between the Torresian and Timorian subregions. Only one species, H. impercepta Zwick, is known to be found in both Australia and Papua New Guinea. One Australian species, H. ambiflagellata, is also known from New Zealand. New species of Hydraena are: H. affirmata (Queensland, Palmerston National Park, Learmouth Creek), H. ambiosina (Queensland, 7 km NE of Tolga), H. antaria (New South Wales, Bruxner Flora Reserve), H. appetita (New South Wales, 14 km W Delagate), H. arcta (Western Australia, Synnot Creek), H. ascensa (Queensland, Rocky Creek, Kennedy Hwy.), H. athertonica (Queensland, Davies Creek), H. australula (Western Australia, Synnot Creek), H. bidefensa (New South Wales, Bruxner Flora Reserve), H. biimpressa (Queensland, 19.5 km ESE Mareeba), H. capacis (New South Wales, Unumgar State Forest, near Grevillia), H. capetribensis (Queensland, Cape Tribulation area), H. converga (Northern Territory, Roderick Creek, Gregory National Park), H. cubista (Western Australia, Mining Camp, Mitchell Plateau), H. cultrata (New South Wales, Bruxner Flora Reserve), H. cunninghamensis (Queensland, Main Range National Park, Cunningham's Gap, Gap Creek), H. darwini (Northern Territory, Darwin), H. deliquesca (Queensland, 5 km E Wallaman Falls), H. disparamera (Queensland, Cape Hillsborough), H. dorrigoensis (New South Wales, Dorrigo National Park, Rosewood Creek, upstream from Coachwood Falls), H. ferethula (Northern Territory, Cooper Creek, 19 km E by S of Mt. Borradaile), H. finniganensis (Queensland, Gap Creek, 5 km ESE Mt. Finnigan), H. forticollis (Western Australia, 4 km W of King Cascade), H. fundaequalis (Victoria, Simpson Creek, 12 km SW Orbost), H. fundata (Queensland, Hann Tableland, 13 km WNW Mareeba), H. hypipamee (Queensland, Mt. Hypipamee National Park, 14 km SW Malanda), H. inancala (Queensland, Girraween National Park, Bald Rock Creek at "Under-ground Creek"), H. innuda (Western Australia, Mitchell Plateau, 16 mi. N Amax Camp), H. intraangulata (Queensland, Leo Creek Mine, McIlwrath Range, E of Coen), H. invicta (New South Wales, Sydney), H. kakadu (Northern Territory, Kakadu National Park, Gubara), H. larsoni (Queensland, Windsor Tablelands), H. latisoror (Queensland, Lamington National Park, stream at head of Moran's Falls), H. luminicollis (Queensland, Lamington National Park, stream at head of Moran's Falls), H. metzeni (Queensland, 15 km NE Mareeba), H. millerorum (Victoria, Traralgon Creek, 0.2 km N 'Hogg Bridge', 5.0 km NNW Balook), H. miniretia (Queensland, Mt. Hypipamee National Park, 14 km SW Malanda), H. mitchellensis (Western Australia, 4 km SbyW Mining Camp, Mitchell Plateau), H. monteithi (Queensland, Thornton Peak, 11 km NE Daintree), H. parciplumea (Northern Territory, McArthur River, 80 km SW of Borroloola), H. porchi (Victoria, Kangaroo Creek on Springhill Rd., 5.8 km E Glenlyon), H. pugillista (Queensland, 7 km N Mt. Spurgeon), H. queenslandica (Queensland, Laceys Creek, 10 km SE El Arish), H. reticuloides (Queensland, 3 km ENE of Mt. Tozer), H. reticulositis (Western Australia, Mining Camp, Mitchell Plateau), H. revelovela (Northern Territory, Kakadu National Park, GungurulLookout), H. spinissima (Queensland, Main Range National Park, Cunningham's Gap, Gap Creek), H. storeyi (Queensland, Cow Bay, N of Daintree River), H. tenuisella (Queensland, 3 km W of Batavia Downs), H. tenuisoror (Australian Capital Territory, Wombat Creek, 6 km NE of Piccadilly Circus), H. textila (Queensland, Laceys Creek, 10 km SE El Arish), H. tridisca (Queensland, Mt. Hemmant), H. triloba (Queensland, Mulgrave River, Goldsborough Road Crossing), H. wattsi (Northern Territory, Holmes Jungle, 11 km NE by E of Darwin), H. weiri (Western Australia, 14 km SbyE Kalumburu Mission), H. zwicki (Queensland, Clacherty Road, via Julatten).
APA, Harvard, Vancouver, ISO, and other styles
17

Gardner, JL, and M. Serena. "Spatial-Organization and Movement Patterns of Adult Male Platypus, Ornithorhynchus-Anatinus (Monotremata, Ornithorhynchidae)." Australian Journal of Zoology 43, no. 1 (1995): 91. http://dx.doi.org/10.1071/zo9950091.

Full text
Abstract:
Home-range size and overlap and movement patterns of adult male platypus, Ornithorhynchus anatinus, occupying streams in southern Victoria were investigated near the start of the breeding season using radio-tracking techniques. On the basis of a sample of males monitored for four or more complete activity periods, home-range size varied from 2.9 to 7.0 km, with individuals (n = 4) moving a mean net distance of 2.0 +/- 1.4 km per activity period. Longer-range movements were also observed, with one male travelling at least 15 km from one stream catchment to another via an intervening stretch of river. Some home ranges of males were mutually exclusive whereas others overlapped substantially; in the latter case, males largely avoided each other, spending most of their time in different parts of the shared area. All home ranges of males apparently overlapped those of two or more adult females. Three patterns of travel over complete activity periods were recognised, including unidirectional travel (point A to B), return travel (A to B to A) and multidirectional travel with multiple, relatively short-range backtracking. Males occupying overlapping areas often moved multidirectionally and rarely undertook unidirectional travel, whereas the converse applied to males occupying exclusive areas.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography