Contents
Academic literature on the topic 'Stratégies de préhension'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stratégies de préhension.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stratégies de préhension"
Mathieu, Marie-Eve. "Diabetaction – Programme d’exercices pour personnes diabétiques de type 2 ou à risque : effets sur la pratique d’activités physiques, la condition physique, la qualité de vie et différents paramètres de santé." Applied Physiology, Nutrition, and Metabolism 33, no. 6 (December 2008): 1259–60. http://dx.doi.org/10.1139/h08-100.
Full textDissertations / Theses on the topic "Stratégies de préhension"
Reghem, Elodie. "Stratégies comportementales et cinématiques de la préhension chez les primates." Phd thesis, Toulon, 2012. http://tel.archives-ouvertes.fr/tel-00829107.
Full textBarbedette, Bertrand. "Pédalage du cycliste et préhension pollicidigitale : étude biomécanique et identification de stratégies motrices." Le Mans, 1999. http://www.theses.fr/1999LEMA1004.
Full textMichel, Cédric. "Stratégie de saisie pour une main robotisée à caractère anthropomorphique." Paris 6, 2006. http://www.theses.fr/2006PA066387.
Full textYesudasu, Santheep. "Cοntributiοn à la manipulatiοn de cοlis sοus cοntraintes par un tοrse humanοïde : applicatiοn à la dépaléttisatiοn autοnοme dans les entrepôts lοgistiques." Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04874770.
Full textThis PhD thesis explores the development and implementation of URNik-AI, an AI-powered automated depalletizing system designed to handle cardboard boxes of varying sizes and weights using a dual-arm humanoid torso. The primary objective is to enhance the efficiency, accuracy, and reliability of industrial depalletizing tasks through the integration of advanced robotics, computer vision, and deep learning techniques.The URNik-AI system consists of two UR10 robotic arms equipped with six-axis force/torque sensors and gripper tool sets. An ASUS Xtion RGB-D camera is mounted on Dynamixel Pro H42 pan-tilt servos to capture high-resolution images and depth data. The software framework includes ROS Noetic, ROS 2, and the MoveIt framework, enabling seamless communication and coordination of complex movements. This system ensures high precision in detecting, grasping, and handling objects in diverse industrial environments.A significant contribution of this research is the implementation of deep learning models, such as YOLOv3 and YOLOv8, to enhance object detection and pose estimation capabilities. YOLOv3, trained on a dataset of 807 images, achieved F1-scores of 0.81 and 0.90 for single and multi-face boxes, respectively. The YOLOv8 model further advanced the system's performance by providing keypoint and skeleton detection capabilities, which are essential for accurate grasping and manipulation. The integration of point cloud data for pose estimation ensured precise localization and orientation of boxes.Comprehensive testing demonstrated the system's robustness, with high precision, recall, and mean average precision (mAP) metrics confirming its effectiveness. This thesis makes several significant contributions to the field of robotics and automation, including the successful integration of advanced robotics and AI technologies, the development of innovative object detection and pose estimation techniques, and the design of a versatile and adaptable system architecture