Dissertations / Theses on the topic 'Strain Rate Sensitivity (SRS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 33 dissertations / theses for your research on the topic 'Strain Rate Sensitivity (SRS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Pelini, Angelo. "Influence of Strain Rate Sensitivity (SRS) of Additive Manufactured Ti-6Al-4V on Nanoscale Wear Resistance." Youngstown State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1516980302644593.
Full textBînţu, Alexandra. "Analysis and control of SRS of Al-Mg alloys and TWIP steel for improved mechanical performance." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/16856.
Full textNesta tese são apresentados estudos experimentais e microestruturais para a análise e controlo da sensibilidade à velocidade de deformação (SRS) da liga AA5182 e do aço TWIP com o objetivo de melhorar o comportamento mecânico destes materiais. Os aços TWIP são materiais com elevada resistência mecânica e excecional capacidade de encruamento, parâmetros que conduzem à absorção de uma quantidade significativa de energia antes de rotura. As ligas de AlMg são materiais leves, com boa resistência à corrosão e boas propriedades mecânicas. A larga variedade de aplicações, como por exemplo na indústria automóvel, permitirá melhorar a performance dos produtos e economizar energia. O maior problema destes materiais prende-se com a baixa ou negativa sensibilidade à velocidade de deformação que conduz a uma deformação heterogénea e limita a deformação após estricção. Neste trabalho são estudados métodos para melhorar a SRS das ligas de AlMg através de combinação de deformação plástica severa e tratamentos térmicos, e é investigada a origem física da baixa ou até negativa SRS do aço TWIP através de ensaios à escala macro, micro e nano. Estes estudos são complementados e sustentados por um amplo programa de observações microestructurais através de técnicas de microscopia TEM, SEM e EBSD. A deformação plástica severa na liga de AlMg foi aplicada através de laminagem. Foi demonstrado que o tipo de laminagem (simétrica versus assimétrica), o grau de redução de laminagem e o tratamento térmico realizado após a laminagem são os principais fatores que afetam a evolução da SRS. Especificamente, o aumento do grau de laminagem (de 50% para 90%) resulta num aumento da SRS. A técnica de laminagem assimétrica inversa (ASRR) revelou ser a mais eficiente no aumento do SRS, sendo que esta produz a maior deformação equivalente no material. Adicionalmente, para este tipo de laminagem e uma redução da espessura de 90%, verificou-se que a tensão de cedência aumenta para um tratamento térmico mais longo (de 30min a 120min). Conjetura-se que o processo físico associado ao comportamento observado está relacionado com a movimentação de ida e volta de solutos de Mg da solução sólida para precipitados/cachos durante o processo de laminagem e posterior tratamento térmico. A investigação à sensibilidade da velocidade de deformação de aço TWIP com base em testes mecânicos e caracterização microestrutural foi outro objetivo desta tese. Demonstrou-se que as amostras testadas com uma velocidade de deformação reduzida apresentam uma densidade de maclas maior do que as amostras testadas a uma velocidade de deformação maior. À escala macroscópica este traduz-se numa taxa de encruamento maior para velocidades reduzidas, conduzindo a um coeficiente de sensibilidade à velocidade de deformação em termos de taxa de encruamento negativo. Foi observada uma diminuição da SRS com o aumento da deformação, passando de valores positivos a negativos. O presente estudo demonstrou a importância da medida de escala utilizada na investigação do SRS através de uma combinação de testes de micro- e nano-indentações. Nomeadamente, quando o material é testado a uma escala nanométrica, através de nano-indentação, as amostras pré-deformadas em tração com taxas de deformação menores apresentam sistematicamente uma dureza menor do que as amostras pré-deformadas com taxas mais elevadas. À medida que o volume de material testado aumenta, a dureza relativa das duas amostras passa gradualmente da tendência observada à escala nano para aquela observada à escala macroscópica. O efeito está ligado ao mecanismo de interação entre as estruturas de deslocações e maclas.
In this thesis are presented experimental and microstructural studies for strain rate sensitivity (SRS) control and analysis of AA5182 and Twinning Induced Plasticity steel for improved mechanical performance. TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. Al-Mg alloys are lightweight materials with good corrosion resistance and adequate material properties. The broader use of these materials, for example in the automotive industry, would allow improved product performance and energy savings. The formability of these materials is strongly affected by their negative strain rate sensitivity (SRS) which leads to early failure and limits the post necking deformation. In this work we study ways to improve the strain rate sensitivity of Al-Mg alloys through a combination of severe plastic deformation and annealing, and we investigate the physical origins of the low and potentially negative strain rate sensitivity of TWIP steel through macro, micro and nanoscale testing. These studies are supported by extensive microstructural observations. The severe plastic deformation applied to Al-Mg alloys is applied by rolling. It is shown that the type of rolling (symmetric versus asymmetric), the rolling reduction degree and the applied heat treatment performed after rolling are the main factors affecting the evolution of SRS. Specifically, SRS increases with increasing the degree of rolling for given post-rolling heat treatment. The reversed asymmetric rolling technique appears to be the most efficient in increasing SRS since it produces the largest equivalent plastic strain in the sample. Furthermore, the evolution of tensile flow stresses depends on the chosen thermal treatment; it was observed that the yield stress increases with increasing the annealing time for rolling reduction of 85%. It is conjectured that the physical process responsible for the observed behavior is related to the movement of Mg from solid solution to precipitates/clusters and back during rolling and subsequent annealing. The investigation of the strain rate sensitivity of TWIP steel based on mechanical tests and microstructural characterization is another objective of this thesis. It was demonstrated that slower-deformed samples have a higher twin density, which leads to larger flow stress measured in a macroscopic uniaxial test and results in negative strain hardening rate sensitivity. The SRS is observed to decrease with strain, becoming negative for larger strains. The correlation between SRS and the probing scale was revealed by a combination of micro- and nano-indentation experiments. When probed at the nanoscale by nano-indentation, samples pre-deformed in tension at smaller strain rates exhibit systematically smaller hardness than samples pre-deformed at higher rates. As the volume of material probed increases, the relative hardness of the two types of samples gradually shifts from the trend observed at the nanoscale to that observed macroscopically. The effect is linked to the dislocation-twin interaction mechanism.
Ochola, Robert O. "Investigation of strain rate sensitivity of polymer matrix composites." Thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/6740.
Full textAn investigation into high strain rate behaviour of polymer composites was performed by developing a finite element model for a fibre reinforced polymer (FRP) plates impacted at varying strain rates. The work was divided into three facets, firstly to characterize the FRP material at varying strain rates, to develop a constitutive model to elucidate the relationship between strain rate and ultimate stress and lastly to use the experimental data to develop a finite element model. Experimental work performed in support of this model includes material characterization of unidirectional carbon and glass fibre reinforced epoxy at varying impact strain rates. The data is then used to develop a suite of constitutive equations that relate the strain rate, ultimate stress and material loading type. The model is of a linear and non-linear viscoelastic type, depending on the type of loading and is applicable to a FRP plate undergoing out-of-plane stresses. This model incorporates techniques for approximating the quasi-static and dynamic response to general time-varying loads. The model also accounts for the effects of damage, the linear and non-linear viscoelastic constitutive laws reporting failure by instantaneously reducing the relevant elastic modulus to zero. An explicit solver is therefore utilised in order to ensure stability of the numerical procedure. Glass fibre reinforced plastics (GFRP) was found to be more strain rate sensitive in all directions when compared to carbon fibre reinforced plastics (CFRP). The validation process therefore involves plate impact experimental testing on GFRP plates. The data from these experiments compare to within 8% of the finite element model that incorporates both damage and the developed strain rate sensitivity constitutive equations. For the first time a model that includes progressive damage with built-in strain rate sensitivity is developed for these particular FRP systems. Furthermore, the ultimate stress has been related to strain rate using an empirical technique. This technique allows for the prediction of dynamic ultimate stresses given the quasi-static ultimate stresses, again for this particular material systems.
Larour, Patrick [Verfasser]. "Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain / vorgelegt von Patrick Larour." Aachen : Shaker, 2010. http://d-nb.info/1007085649/34.
Full textSiddiqui, Md Tareq. "Scaling studies on the tensile strain rate sensitivity of laminated composites." Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/5207.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering.
Musanje, Lawrence. "Filled resin dental restorative materials exposure reciprocity and strain rate sensitivity /." Thesis, Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22666679.
Full textLimbach, René [Verfasser], Lothar [Gutachter] Wondraczek, Christoph Gutachter] Kirchlechner, and Delia S. [Gutachter] [Brauer. "Strain-rate sensitivity of glasses / René Limbach ; Gutachter: Lothar Wondraczek, Christoph Kirchlechner, Delia S. Brauer." Jena : Friedrich-Schiller-Universität Jena, 2017. http://d-nb.info/1206275251/34.
Full textJuratovac, Joseph M. "Strain Rate Sensitivity of Ti-6Al-4V and Inconel 718 and its Interaction with Fatigue Performance at Different Speeds." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1605875502029283.
Full textHosseinzadeh, Delandar Arash. "Numerical Modeling of Plasticity in FCC Crystalline Materials Using Discrete Dislocation Dynamics." Licentiate thesis, KTH, Materialteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175424.
Full textQC 20151015
Hasan, Md Nazmul. "Microstructure and mechanical properties of a CrMnFeCoNi high-entropy alloy with gradient structures." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23036.
Full textLangille, Michael. "Influence des constituants microstructuraux sur la formabilité de tôles en alliages d’aluminium." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI034/document.
Full textDue to the increased demand for light weighting in automotive vehicles, solutions need to be created to allow automotive manufacturers to switch from highly formable but heavy steels to less formable but lighter aluminium alloys for body-in-white components; doors, roofs, hood. The 6xxx-series of aluminium alloys, based on the system of Al-Mg-Si-Cu, have shown promise for providing adequate strength and corrosion resistance but still, in the current state, one of their main limitations concerns their formability. This thesis aims to understand the effect of Si, Mg, and Cu additions under two different processing routes on the mechanical and formability properties of the AA6xxx-series. Differential scanning calorimetry and hardness testing are used to identify the effects of solute additions on the cluster states after natural ageing and pre-ageing. Tensile testing is used to capture the main mechanical properties: yield strength, tensile strength, strain hardening rate, and uniform elongation. Strain rate sensitivity testing is performed using dynamic strain rate changes to obtain not only the strain rate sensitivity due to rate-change increases (termed up-change), but uniquely, the strain rate sensitivity for rate-change decreases (termed down-change). Finally, using constitutive equations, the mechanical properties are used in combination with finite element modeling to capture the evolution of the strain and strain rate distribution in the evolution and transition of diffuse to local necking. It was found that in the case of natural ageing for one month (NA1m) two cluster types were detected, a less thermally stable species having a high dependency on the Cu and Mg contents, and a more thermally stable species being equally sensitive to all solute species. When samples were first pre-aged, then allowed to naturally age for one month (sNA1m) only the more thermally stable cluster species being equally sensitive to all solute additions existed. The formation of these different cluster types dependent on the heat treatment translated into the effects of specific solute additions on the observed mechanical properties. In the NA1m condition, the effects of Cu and Mg additions to the alloy showed the largest increases on the yield strength and strain hardening rate, as compared to Si additions. This is in contrast to the sNA1m condition whereby Cu, Mg, and Si additions all increased the yield strength equally while Cu additions proved to have the strongest effect on increasing the strain hardening rate, followed by the effect of Si additions, while Mg additions did not have an effect. From the strain rate sensitivity tests, an asymmetry between the up-change and down-change tests was observed whereby the down-change strain rate sensitivity was found to be larger than the up-change strain rate sensitivity. Additionally, Si additions were found to increase both the up-change and down-change strain rate sensitivity in both the NA1m and sNA1m conditions. Finally, the application of these mechanical properties to the onset and evolution of the diffuse and local neck demonstrated that increasing the strain hardening exponent delays the onset of diffuse necking, while increasing both the up-change and down-change strain rate sensitivities provides a more uniform strain and strain rate distribution around the neck, permitting the stabilization and propagation of the neck and delaying the onset of local necking. The effect of the up-change strain rate sensitivity was found to be more important than the down-change due to the intensity of the strain rate increase in the interior of the neck occurring over a much smaller area
Nanjappa, Jagdish. "Web-based dynamic material modeling." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1174918633.
Full textDiao, Hui. "Deformation behaviours of coarse-grained and nanocrystalline Mg-5wt% Al alloys." Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/46870/1/Hui_Diao%27s_Thesis.pdf.
Full textHooshmand, Mohammad Shahriar. "Atomic-scale modeling of twinning in titanium and other HCP alloys." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1566143337320934.
Full textChu, XingRong. "Caractérisation expérimentale et prédiction de la formabilité d'un alliage d'aluminium en fonction de la température et de la vitesse de déformation." Phd thesis, INSA de Rennes, 2013. http://tel.archives-ouvertes.fr/tel-00910093.
Full textParvatareddy, Hari. "Durability of Polyimide Adhesives and Their Bonded Joints for High Temperature Applications." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/29554.
Full textPh. D.
Zuanetti, Bryan. "Characterization of Polyetherimide Under Static, Dynamic, and Multiple Impact Conditions." Honors in the Major Thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1569.
Full textB.S.M.E.
Bachelors
Engineering and Computer Science
Mechanical and Aerospace Engineering
Martin, Morgana. "Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungsten." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22693.
Full textCommittee Chair: Thadhani, Naresh; Committee Member: Doyoyo, Mulalo; Committee Member: Kecskes, Laszlo; Committee Member: Li, Mo; Committee Member: Sanders, Thomas; Committee Member: Zhou, Min.
Liu, Shibo. "Numerical and experimental study on residual stresses in laser beam welding of dual phase DP600 steel plates." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0003/document.
Full textLaser welding process is widely used in assembly work of automobi le industry. DP600 dual phase steeis a high strength steel to reduce automobile weight. Residual stresses are produced during laser weldingDP600. Continuum mechanics is used for analyzing res idual stresses by finite element simulation.Based on experimental tensile tests, the DP600 steel constitutive model are identified. The hardening termaccording to Ludwik law, Voce law and a proposed synthesis model are studied. The temperature sensitivityof Johnson-Cook, Khan, Chen and a proposed temperature sensitivity model are investigated. The strain ratesensitivity model proposed by A. Gavrus and planar anisotropy defined by Hi ll theory are also used.Cellul ar Automaton (CA) 20 method are programed for the simulation of solidification microstructureevolution during laser welding process. The temperature field of CA are imported from finite element analysimodel. The analysis function of nucleation, solid fraction, interface concentration, surface tension an isotropy,diffusion, interface growth ve locity and conservation equations are presented in detail. By comparing thesimulation and experimental results, good accordances are found.Modelling by a finite element method of laser welding process are presented. Geometry of specimen, heatsource, boundary conditions, DP600 dual phase steel material properties such as conductivity, density, specifiheat, expansion, elasticity and plasticity are introduced. Models analyzing hardening term, strain ratesensitivity, temperature sensitivity, plastic an isotropy and elastic an isotropy are simulated.The numerical results of laser welding DP600 steel process are presented. The influence of hardening term,strain rate sensitivity, temperature sensitivity and anisotropy on residual stresses are analyzed. Comparisonwith experimental data show good numerical accuracy.Keywords: Laser Welding, DP600, Residual Stress, Cellular Automaton, Hardening, Temperature sensitivity,Strain Rate Sensitivity, Anisotropy, Mixture dual phase law
Surand, Martin. "Étude du comportement viscoplastique en traction et en fluage de l’alliage TA6V de 20 à 600 degrés Celsius." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0096/document.
Full textClassical life time of aeronautic parts lasts several decades. However, for some special applications with short life time and without repairs or recovery of parts, material design is tailored “close to real needs”. This justifies characterization at higher temperatures of well-known alloys and not developing new alloys. The study presented in this manuscript is included within this frame of short life applications. Forged Ti-6Al-4V (Ti-64) alloy with a bimodal microstructure is the most common titanium alloy in aeronautic and is usually limited below 350°C applications during classical life time. In order to use this alloy during a ten hour application, this thesis consists in characterizing Ti-64 from 20°C to 600°C. In a first time, characterization is focused on initial metallurgical state coming from a forged billet and on its thermal stability. Then, mechanical behavior of Ti-64 is studied by tensile testing from 20°C to 600°C, highlighting strain rate sensitivity (SRS) of flow stress. SRS is depending on temperature. This dependency is usually due to dynamic strain ageing phenomenon. Mechanical behavior characterization continues with creep testing from 20°C to 600°C for several stress levels (from 0.3 to 1 time yield stress values). Different behaviors versus temperature are revealed. Deformed samples by tensile testing and creep testing are analyzed by transmission electronic microscopy to bring information about deformation mechanisms controlling the different behaviors of the alloy. Thanks to tensile and creep testing, a viscoplastic modeling of Ti-64 from 20°C to 600°C has been performed and validated by fitting results from complex thermo mechanical tests with finite elements simulations. Comparison of mechanical behavior with deformation mechanisms leads to a discussion about viscoplasticity of Ti-64, and finally results in a proposal modeling creep behavior of Ti-64 from 20°C to 600°C. The model is able to estimate qualitatively creep curves using strain rate sensitivity measured during tensile tests
ZHOU, XIAO-WEI. "Contribution au comportement dynamique des materiaux metalliques : etude experimentale de l'alliage al-li en torsion et en compression, simulation numerique du processus de penetration a grande vitesse." Nantes, 1988. http://www.theses.fr/1988NANT2014.
Full textYazar, K. U. "Effect of microstructure and texture on the dwell fatigue behaviour of titanium alloys." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5046.
Full textGoble, David Leroy. "Strain rate sensitivity index of thermoplastics from variable strain rate and stress relaxation testing." Thesis, 1991. http://hdl.handle.net/1957/38086.
Full textBarai, Pallab. "Creep resistance and strain-rate sensitivity of nanocrystalline materials." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17274.
Full textyu-ting, Guo, and 郭昱廷. "Strain-Rate Sensitivity on Stress-Strain Behavior of RPC by Modified Inclusion Theory." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/51959221283141952660.
Full text國立高雄應用科技大學
土木工程與防災科技研究所
96
This research is to investigate the strain rate effect on the stress-strain curve of RPC composites by using the inclusion theory and the secant moduli. The composite material is examined at the age of 7 days with RPC mortar as the matrix, and three volume concentrations, 1%, 2% and 3%, of the steel fiber as the inclusion respectively. Strain rates with 5×10^-6/s、5.5×10^-5/s、1×10^-4/s、1×10^-3 /s、1×10^-2 /s and 1×10^-1/s by MTS, and with 2×10^2/s ~1×10^3 /sby SHPB are applied to the materials, respectively. A four-parameter mechanics model in term of the strain rate is proposed to simulate the stress-strain curves of the RPC matrix. From the simulated results of the RPC matrix, the mean-field approach and the secant modulus method are used to simulate the stress-strain relationship of the RPC composites. Results show that dynamic four-parameter mechanics model can be derived from the static mechanics model, and four parameters with K1、K2、η1 and η2 are determined from the experimental stress-stain curves of the matrix simulated the RPC matrix. Meanwhile, the simulated stress-strain curves and the experimental ones are pretty close to the each other in RPC composites with different strain rates at the peak strain 2×10^-3 ~ 3×10^-3. Thus, the proposed approach by combining the inclusion theory and the secant modulus is suitable for predicting the stress-strain relationship of the RPC composites with dynamic different strain rates.
Laubscher, Rudolph Frans. "An evaluation of strain rate sensitivity of certain stainless steels." Thesis, 2012. http://hdl.handle.net/10210/5959.
Full textIn mechanical design and analysis the mechanical properties of the material used are crucial to achieve effective design or analysis. In designing structures that are susceptible to dynamic loading different mechanical properties of the material may be needed than those used for quasi-static situations. Usually when one refers to the dynamic properties of a metal one refers to the notch toughness of the material. That is the resistance of the material to crack propagation under dynamic loading. Another less well known dynamic property of a metal is strain rate sensitivity. This implies that mechanical properties like yield strength, tensile strength and rupture strain varies according to strain rate. Typical applications where these properties are of use are in impact situations such as vehicle collisions and cold and hot working of metals in the manufacturing industry. The mechanical properties of certain metallic components or structures may change when the component or structure are subjected to dynamic loading that causes permanent deformation. The purpose of this investigation is to investigate the strain rate sensitive behaviour of certain stainless steels. The steels investigated are AISI Types 304, 316 and 430 stainless steels, 3CR12 corrosion resisting steel (a proprietary alloy also known as Type 1.4003) and mild steel which acts as a reference. The strain rate sensitivity of the above mentioned steels are investigated experimentally at room temperature for strain rates between 10' to approximately 100 s -1 . The steels are all tested in as delivered sheet form and testing is conducted in both rolling directions. The testing at the medium strain rates necessitated the design and construction of a dynamic tensile tester, the design of which, is also presented. The implementation of strain rate sensitive material properties into structural design and analysis are investigated and a constitutive model is proposed. The implementation of the proposed constitutive model into numerical methods analysis tools such as the finite element method is discussed and presented. The practical implementation of the proposed constitutive model is illustrated by numerically analysing the problem of a clamped beam struck transversely by a mass and comparing this with available experimental data. The validity of a typical constant velocity tensile test that is used to determine strain rate sensitive material properties is also investigated numerically to place the experimental results obtained into perspective. All the steels tested are found to be strain rate sensitive. Their behaviour is satisfactorily described by the constitutive model presented. No general trend regarding strain rate sensitivity is found when the results of the two rolling directions are compared. The importance of including strain rate sensitivity into structural design and analysis is illustrated by the analysis of the clamped beam struck transversely by a mass. The numerical results compare well with the available experimental data. It transpires from the numerical analysis of a typical constant velocity tensile test that it is difficult to obtain a constant strain rate throughout the gauge length of a typical test specimen. It also shows that there exists an optimum specimen geometry where the strain rate variation in the gauge length is at a minimum.
Wowk, DIANE. "Effects of Prestrain on the Strain Rate Sensitivity of AA5754 Sheet." Thesis, 2008. http://hdl.handle.net/1974/1504.
Full textThesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2008-09-23 20:11:30.829
Marques, Sérgio. "An evaluation of strain rate sensitivity of selected stainless steels at different temperatures." Thesis, 2012. http://hdl.handle.net/10210/7613.
Full textIn the design and analysis of components and structures, detailed information on the material behaviour and its properties is required. When a material is loaded dynamically, such as in metal punching, the material properties may not be the same as when loaded statically. This is known as the strain rate sensitivity of a material, which implies that properties such as the yield strength, tensile strength and ductility may vary with the rate at which the material is loaded. South Africa is one of the large stainless steel producing countries. Seventy percent of the known chromium ore reserves are found in the Bushveld Igneous Complex in the Northern Province and Mpumalanga. To compete on the global stainless steel market it is essential that the South African producers have all the relevant product information directly available. Considerable research has been performed on mild steel at different strain rates and temperatures[1]. Work has also been done on some austenitic stainless steels. Very little, or no work has been done in this regard on ferritic and martensitic stainless steels and on the proprietary alloy 3CR12[2]. The aim of this thesis is to investigate the strain rate sensitivity of Types 304, 430 and 316 stainless steel, 3CR12 corrosion resistant steel and mild steel at different temperatures. To achieve this, tensile tests are performed. at strain rates between 10's -1 to approximately 100s -1 and at temperatures ranging from -40°C to 140°C. Shear tests are also performed at various strain rates, to investigate the effect that material behaviour has on a typical metal working process. The results obtained show that all the materials tested are strain rate sensitive. The strain rate sensitivity varies as a function of the material tested and the testing temperature. Constitutive models which take into account the strain rate sensitivity at room temperature for all the materials are also presented. These models describe the behaviour of the material fairly accurately. Three dimensional plots are also presented which depict how the yield strength, tensile strength and elongation vary as a function of both strain rate and temperature. These plots clearly show material trends for the strain rates and temperatures tested.
Isaacson, Aaron C. Copley S. M. Rao Suren B. "A strain rate sensitivity investigation of aerospace steel gear teeth via instrumented impact testing." 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-3868/index.html.
Full textHuang, W. B., and 黃文彬. "Effect of Hydrogen Embrittlement and Strain Rate Sensitivity in the Laser Welds of Maraging Steel." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/83354311925693571628.
Full text國立海洋大學
材料工程研究所
84
In this study, slow strain rate tension will be performed in order to investigate the effect of hydrogen on the plates and laser welds of Ti-strengthened maraging steel. The influence of tensile strain rate, environment and microstructure aged at various conditions will be evaluated. Further understanding of the hydrogen effects on the Ti-strengthened maraging steel will be obtained. The result indicated that the T-250 laser weld and plate subjected to a 482℃(900℉) aging treatment have the highest strength and the lowest elongation. The specimens subjected to a 426℃(800℉) aging have the highest sensitivity of strain rate, the strength and elongation are largely decreased as the tensile strain rate is decreased or the amount of hydrogen is increased. Testing in the hydrogen environment, the feature of fracture surface is mostly intergranular fracture. As the aging temperature is increased, less sensitive to the strain rate or hydrogen embrittlement is obtained.For the fatigue crack growth test: The crack growth rate and the effect of environments reduced with increasing aging temperature. For the specimens subjected to a 593℃(1100℉) aging, the precipitation of reverted austenite rearrenged themself in various orientation. The result indicated that reverted austenite could impinge the crack propagation or blunt the crack tip, so better fatigue properties would be expected.
Mamun, Muhammad. "Loading Rate Effects and Sulphate Resistance of Fibre Reinforced Cement-based Foams." Master's thesis, 2010. http://hdl.handle.net/10048/1486.
Full textStructural Engineering
Taherishargh, Mehdi. "The fabrication processes and mechanical properties of advanced metallic syntactic foams." Thesis, 2016. http://hdl.handle.net/1959.13/1317469.
Full textIn the last two decades a great deal of research has been focused on the development and characterisation of metallic foams for special purpose applications. Due to their high strength to weight ratios and highly porous structures, metallic foams have unique energy absorption, damping, and thermal properties. However, these materials have not yet been widely used in industry, simply because of their higher costs when compared to their polymeric competitors in the market. In recent years, researchers have shown considerable interest in metallic syntactic foams, which are produced by embedding hollow or porous low density heat resistant particles in a metallic matrix. Owing to their relatively simple manufacturing processes, metallic syntactic foams have lower costs when compared to other foams. However, the typical aluminium syntactic foams have significantly higher densities (reportedly more than 1.4 g/cm³). This is mainly due to the high densities of the filler particles (typically more than 0.6 g/cm³) and the failure of particles during the manufacturing process. In this thesis, the major limitations of the metallic syntactic foams, i.e., their high densities and relatively high costs, are addressed by introducing a novel light porous filler material, Expanded Perlite (EP). A large volume fraction of internal porosity (≥95%) reduces the density of this natural volcanic glass down to only 0.18 g/cm³. Being mined in large quantities, to the author’s knowledge EP has the lowest price when compared to its competitors. The large particle size range, from 300 μm to 6 mm, allows for the simple, cost efficient manufacture of foams with the desired properties. EP/A356 aluminium syntactic foams were successfully fabricated using a melt infiltration technique. Depending on the manufacturing parameters, the densities of the foams may vary between 0.7 and 1.05 g/cm³, which are the lowest among the typical syntactic foams. The produced foams were then subjected to a wide range of microstructural, structural, and mechanical testing for a comprehensive characterisation of the material. With a special focus on the energy absorption capabilities of the foams, attempts were made to improve the mechanical responses of the foams by adjusting their structures and microstructures. Heat treatment, a smaller EP particle size, and a higher sphericity of the particles were shown to be effective parameters which increase the mechanical strength and energy absorption capacities of the foams. The positive strain rate sensitivity of the compressive properties makes this foam attractive for crash cushioning applications. The foams also showed outstanding performances under cyclic compressive loading conditions. Following the major characterisations, an application of EP/aluminium syntactic foam, as the core of hollow steel tubes, was investigated. The compressive and bending properties of the foam filled tubes improved considerably when compared to empty tubes. A second novel filler material, with a higher density and crushing strength than those of expanded perlite, was employed for the manufacture of high strength syntactic foams, while maintaining a low price. Syntactic foams with a density of 1.5 g/cm³ were made by the infiltration of packed beds of pumice, a natural porous volcanic glass with a particle density of 0.75 g/cm³, with molten aluminium. The pumice/aluminium syntactic foams showed a 35% increase in their energy absorption capacities when compared to the EP/aluminium syntactic foams.
(8102429), Xuedong Zhai. "MECHANICAL BEHAVIORS OF BIOMATERIALS OVER A WIDE RANGE OF LOADING RATES." Thesis, 2019.
Find full text