Academic literature on the topic 'Strain Rate Sensitivity (SRS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Strain Rate Sensitivity (SRS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Strain Rate Sensitivity (SRS)"
Chun, Y. B., and Chris H. J. Davies. "Twinning-Induced Negative Strain Rate Sensitivity in Wrought Magnesium Alloy AZ31." Materials Science Forum 654-656 (June 2010): 707–10. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.707.
Full textVigié, Héloise, Thalita de Paula, Martin Surand, and Bernard Viguier. "Low Temperature Strain Rate Sensitivity of Titanium Alloys." Solid State Phenomena 258 (December 2016): 570–73. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.570.
Full textMay, Johannes, Heinz Werner Höppel, and Matthias Göken. "Strain Rate Sensitivity of Ultrafine Grained FCC- and BCC-Type Metals." Materials Science Forum 503-504 (January 2006): 781–86. http://dx.doi.org/10.4028/www.scientific.net/msf.503-504.781.
Full textVevecka-Priftaj, Aferdita, Andreas Böhner, Johannes May, Heinz Werner Höppel, and Matthias Göken. "Strain Rate Sensitivity of Ultrafine Grained Aluminium Alloy AA6061." Materials Science Forum 584-586 (June 2008): 741–47. http://dx.doi.org/10.4028/www.scientific.net/msf.584-586.741.
Full textLee, Min-Su, Yong-Taek Hyun, and Tea-Sung Jun. "Effect of oxygen contents on strain rate sensitivity of commercially pure titanium." MATEC Web of Conferences 321 (2020): 04009. http://dx.doi.org/10.1051/matecconf/202032104009.
Full textJun, Tea-Sung. "Local strain rate sensitivity of α+β phases within dual-phase Ti alloys." Journal of Physics: Conference Series 2169, no. 1 (January 1, 2022): 012040. http://dx.doi.org/10.1088/1742-6596/2169/1/012040.
Full textZhang, Fan, Cheng Wen Tan, and Hong Nian Cai. "Influence of Precipitate Phase on the Strain Rate Sensitivity of Mg-Gd-Y Alloy." Advanced Materials Research 311-313 (August 2011): 792–97. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.792.
Full textLi, Mingcan. "Effect of Annealing on Strain Rate Sensitivity of Metallic Glass under Nanoindentation." Metals 10, no. 8 (August 6, 2020): 1063. http://dx.doi.org/10.3390/met10081063.
Full textWang, Xiang, Zhi Qiang Ren, Wei Xiong, Si Nan Liu, Ying Liu, Si Lan, and Jing Tao Wang. "Negative Strain Rate Sensitivity Induced by Structure Heterogeneity in Zr64.13Cu15.75Ni10.12Al10 Bulk Metallic Glass." Metals 11, no. 2 (February 18, 2021): 339. http://dx.doi.org/10.3390/met11020339.
Full textChinh, Nguyen Q., Tamás Csanádi, Jenő Gubicza, Ruslan Valiev, Boris Straumal, and Terence G. Langdon. "The Effect of Grain Boundary Sliding and Strain Rate Sensitivity on the Ductility of Ultrafine-Grained Materials." Materials Science Forum 667-669 (December 2010): 677–82. http://dx.doi.org/10.4028/www.scientific.net/msf.667-669.677.
Full textDissertations / Theses on the topic "Strain Rate Sensitivity (SRS)"
Pelini, Angelo. "Influence of Strain Rate Sensitivity (SRS) of Additive Manufactured Ti-6Al-4V on Nanoscale Wear Resistance." Youngstown State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1516980302644593.
Full textBînţu, Alexandra. "Analysis and control of SRS of Al-Mg alloys and TWIP steel for improved mechanical performance." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/16856.
Full textNesta tese são apresentados estudos experimentais e microestruturais para a análise e controlo da sensibilidade à velocidade de deformação (SRS) da liga AA5182 e do aço TWIP com o objetivo de melhorar o comportamento mecânico destes materiais. Os aços TWIP são materiais com elevada resistência mecânica e excecional capacidade de encruamento, parâmetros que conduzem à absorção de uma quantidade significativa de energia antes de rotura. As ligas de AlMg são materiais leves, com boa resistência à corrosão e boas propriedades mecânicas. A larga variedade de aplicações, como por exemplo na indústria automóvel, permitirá melhorar a performance dos produtos e economizar energia. O maior problema destes materiais prende-se com a baixa ou negativa sensibilidade à velocidade de deformação que conduz a uma deformação heterogénea e limita a deformação após estricção. Neste trabalho são estudados métodos para melhorar a SRS das ligas de AlMg através de combinação de deformação plástica severa e tratamentos térmicos, e é investigada a origem física da baixa ou até negativa SRS do aço TWIP através de ensaios à escala macro, micro e nano. Estes estudos são complementados e sustentados por um amplo programa de observações microestructurais através de técnicas de microscopia TEM, SEM e EBSD. A deformação plástica severa na liga de AlMg foi aplicada através de laminagem. Foi demonstrado que o tipo de laminagem (simétrica versus assimétrica), o grau de redução de laminagem e o tratamento térmico realizado após a laminagem são os principais fatores que afetam a evolução da SRS. Especificamente, o aumento do grau de laminagem (de 50% para 90%) resulta num aumento da SRS. A técnica de laminagem assimétrica inversa (ASRR) revelou ser a mais eficiente no aumento do SRS, sendo que esta produz a maior deformação equivalente no material. Adicionalmente, para este tipo de laminagem e uma redução da espessura de 90%, verificou-se que a tensão de cedência aumenta para um tratamento térmico mais longo (de 30min a 120min). Conjetura-se que o processo físico associado ao comportamento observado está relacionado com a movimentação de ida e volta de solutos de Mg da solução sólida para precipitados/cachos durante o processo de laminagem e posterior tratamento térmico. A investigação à sensibilidade da velocidade de deformação de aço TWIP com base em testes mecânicos e caracterização microestrutural foi outro objetivo desta tese. Demonstrou-se que as amostras testadas com uma velocidade de deformação reduzida apresentam uma densidade de maclas maior do que as amostras testadas a uma velocidade de deformação maior. À escala macroscópica este traduz-se numa taxa de encruamento maior para velocidades reduzidas, conduzindo a um coeficiente de sensibilidade à velocidade de deformação em termos de taxa de encruamento negativo. Foi observada uma diminuição da SRS com o aumento da deformação, passando de valores positivos a negativos. O presente estudo demonstrou a importância da medida de escala utilizada na investigação do SRS através de uma combinação de testes de micro- e nano-indentações. Nomeadamente, quando o material é testado a uma escala nanométrica, através de nano-indentação, as amostras pré-deformadas em tração com taxas de deformação menores apresentam sistematicamente uma dureza menor do que as amostras pré-deformadas com taxas mais elevadas. À medida que o volume de material testado aumenta, a dureza relativa das duas amostras passa gradualmente da tendência observada à escala nano para aquela observada à escala macroscópica. O efeito está ligado ao mecanismo de interação entre as estruturas de deslocações e maclas.
In this thesis are presented experimental and microstructural studies for strain rate sensitivity (SRS) control and analysis of AA5182 and Twinning Induced Plasticity steel for improved mechanical performance. TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. Al-Mg alloys are lightweight materials with good corrosion resistance and adequate material properties. The broader use of these materials, for example in the automotive industry, would allow improved product performance and energy savings. The formability of these materials is strongly affected by their negative strain rate sensitivity (SRS) which leads to early failure and limits the post necking deformation. In this work we study ways to improve the strain rate sensitivity of Al-Mg alloys through a combination of severe plastic deformation and annealing, and we investigate the physical origins of the low and potentially negative strain rate sensitivity of TWIP steel through macro, micro and nanoscale testing. These studies are supported by extensive microstructural observations. The severe plastic deformation applied to Al-Mg alloys is applied by rolling. It is shown that the type of rolling (symmetric versus asymmetric), the rolling reduction degree and the applied heat treatment performed after rolling are the main factors affecting the evolution of SRS. Specifically, SRS increases with increasing the degree of rolling for given post-rolling heat treatment. The reversed asymmetric rolling technique appears to be the most efficient in increasing SRS since it produces the largest equivalent plastic strain in the sample. Furthermore, the evolution of tensile flow stresses depends on the chosen thermal treatment; it was observed that the yield stress increases with increasing the annealing time for rolling reduction of 85%. It is conjectured that the physical process responsible for the observed behavior is related to the movement of Mg from solid solution to precipitates/clusters and back during rolling and subsequent annealing. The investigation of the strain rate sensitivity of TWIP steel based on mechanical tests and microstructural characterization is another objective of this thesis. It was demonstrated that slower-deformed samples have a higher twin density, which leads to larger flow stress measured in a macroscopic uniaxial test and results in negative strain hardening rate sensitivity. The SRS is observed to decrease with strain, becoming negative for larger strains. The correlation between SRS and the probing scale was revealed by a combination of micro- and nano-indentation experiments. When probed at the nanoscale by nano-indentation, samples pre-deformed in tension at smaller strain rates exhibit systematically smaller hardness than samples pre-deformed at higher rates. As the volume of material probed increases, the relative hardness of the two types of samples gradually shifts from the trend observed at the nanoscale to that observed macroscopically. The effect is linked to the dislocation-twin interaction mechanism.
Ochola, Robert O. "Investigation of strain rate sensitivity of polymer matrix composites." Thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/6740.
Full textAn investigation into high strain rate behaviour of polymer composites was performed by developing a finite element model for a fibre reinforced polymer (FRP) plates impacted at varying strain rates. The work was divided into three facets, firstly to characterize the FRP material at varying strain rates, to develop a constitutive model to elucidate the relationship between strain rate and ultimate stress and lastly to use the experimental data to develop a finite element model. Experimental work performed in support of this model includes material characterization of unidirectional carbon and glass fibre reinforced epoxy at varying impact strain rates. The data is then used to develop a suite of constitutive equations that relate the strain rate, ultimate stress and material loading type. The model is of a linear and non-linear viscoelastic type, depending on the type of loading and is applicable to a FRP plate undergoing out-of-plane stresses. This model incorporates techniques for approximating the quasi-static and dynamic response to general time-varying loads. The model also accounts for the effects of damage, the linear and non-linear viscoelastic constitutive laws reporting failure by instantaneously reducing the relevant elastic modulus to zero. An explicit solver is therefore utilised in order to ensure stability of the numerical procedure. Glass fibre reinforced plastics (GFRP) was found to be more strain rate sensitive in all directions when compared to carbon fibre reinforced plastics (CFRP). The validation process therefore involves plate impact experimental testing on GFRP plates. The data from these experiments compare to within 8% of the finite element model that incorporates both damage and the developed strain rate sensitivity constitutive equations. For the first time a model that includes progressive damage with built-in strain rate sensitivity is developed for these particular FRP systems. Furthermore, the ultimate stress has been related to strain rate using an empirical technique. This technique allows for the prediction of dynamic ultimate stresses given the quasi-static ultimate stresses, again for this particular material systems.
Larour, Patrick [Verfasser]. "Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain / vorgelegt von Patrick Larour." Aachen : Shaker, 2010. http://d-nb.info/1007085649/34.
Full textSiddiqui, Md Tareq. "Scaling studies on the tensile strain rate sensitivity of laminated composites." Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/5207.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering.
Musanje, Lawrence. "Filled resin dental restorative materials exposure reciprocity and strain rate sensitivity /." Thesis, Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22666679.
Full textLimbach, René [Verfasser], Lothar [Gutachter] Wondraczek, Christoph Gutachter] Kirchlechner, and Delia S. [Gutachter] [Brauer. "Strain-rate sensitivity of glasses / René Limbach ; Gutachter: Lothar Wondraczek, Christoph Kirchlechner, Delia S. Brauer." Jena : Friedrich-Schiller-Universität Jena, 2017. http://d-nb.info/1206275251/34.
Full textJuratovac, Joseph M. "Strain Rate Sensitivity of Ti-6Al-4V and Inconel 718 and its Interaction with Fatigue Performance at Different Speeds." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1605875502029283.
Full textHosseinzadeh, Delandar Arash. "Numerical Modeling of Plasticity in FCC Crystalline Materials Using Discrete Dislocation Dynamics." Licentiate thesis, KTH, Materialteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175424.
Full textQC 20151015
Hasan, Md Nazmul. "Microstructure and mechanical properties of a CrMnFeCoNi high-entropy alloy with gradient structures." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23036.
Full textBooks on the topic "Strain Rate Sensitivity (SRS)"
Goble, David Leroy. Strain rate sensitivity index of thermoplastics from variable strain rate and stress relaxation testing. 1991.
Find full textRosca, Monica, Sergio Mondillo, and Kim O’Connor. Left atrium. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0022.
Full textBook chapters on the topic "Strain Rate Sensitivity (SRS)"
Hay, Jennifer, Verena Maier, Karsten Durst, and Mathias Göken. "Strain-Rate Sensitivity (SRS) of Nickel by Instrumented Indentation." In MEMS and Nanotechnology, Volume 6, 47–52. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4436-7_8.
Full textAmbrosio, Jorge A. C. "Material Strain Rate Sensitivity." In Crashworthiness, 33–47. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-2572-4_3.
Full textTanimura, Shinji, and Koichi Ishikawa. "A Constitutive Equation Describing Strain Hardening, Strain Rate Sensitivity, Temperature Dependence and Strain Rate History Effect." In Anisotropy and Localization of Plastic Deformation, 417–20. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_97.
Full textShioiri, J., K. Sakino, and S. Santoh. "Strain Rate Sensitivity of Flow Stress at Very High Rates of Strain." In Constitutive Relation in High/Very High Strain Rates, 49–58. Tokyo: Springer Japan, 1996. http://dx.doi.org/10.1007/978-4-431-65947-1_6.
Full textTabachnikova, E. D., V. Z. Bengus, V. D. Natsik, A. V. Podolskii, S. N. Smirnov, R. Z. Valiev, V. V. Stolyarov, and I. V. Alexandrov. "Low Temperature Strain Rate Sensitivity of Some Nanostructured Metals." In Nanomaterials by Severe Plastic Deformation, 207–12. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602461.ch3p.
Full textLin, Gao, and Dong Ming Yan. "Strain-Rate Sensitivity of Concrete: Influence of Moisture Content." In Experimental Mechanics in Nano and Biotechnology, 1661–64. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-415-4.1661.
Full textAvril, Stéphane, Fabrice Pierron, Junhui Yan, and Michael A. Sutton. "Identification of Strain-Rate Sensitivity With the Virtual Fields Method." In Experimental Analysis of Nano and Engineering Materials and Structures, 661–62. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_328.
Full textPrime, Michael B. "Strain Rate Sensitivity of Richtmyer-Meshkov Instability Experiments for Metal Strength." In Dynamic Behavior of Materials, Volume 1, 13–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62956-8_3.
Full textAlturk, Rakan, Steven Mates, Zeren Xu, and Fadi Abu-Farha. "Effects of Microstructure on the Strain Rate Sensitivity of Advanced Steels." In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, 243–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51493-2_24.
Full textWang, Lei, Yang Liu, Xiu Song, Junchao Jin, Jinhui Du, and Beijiang Zhang. "Study on the Strain Rate Sensitivity of a Ni-Based Superalloy." In PRICM, 469–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch57.
Full textConference papers on the topic "Strain Rate Sensitivity (SRS)"
Shi, Ming F., and David J. Meuleman. "Strain Rate Sensitivity of Automotive Steels." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920245.
Full textWright, J. K., J. A. Simpson, R. N. Wright, L. J. Carroll, and T. L. Sham. "Strain Rate Sensitivity of Alloys 800H and 617." In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-98045.
Full textSyed, Izhar H. "Strain Rate Sensitivity of Graphite/Polymer Laminate Composites." In Shock Compression of Condensed Matter - 2001: 12th APS Topical Conference. AIP, 2002. http://dx.doi.org/10.1063/1.1483632.
Full textMiglin, M. T., and J. L. Nelson. "Strain Rate Sensitivity of Alloy 718 Stress Corrosion Cracking." In Superalloys. TMS, 1991. http://dx.doi.org/10.7449/1991/superalloys_1991_695_704.
Full textIsakov, M., V. T. Kuokkala, and R. Ruoppa. "Instantaneous strain rate sensitivity of metastable austenitic stainless steel." In DYMAT 2009 - 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/dymat/2009205.
Full textAnanthakrishna, Garani. "Bistability, negative strain rate sensitivity and visualization of dislocation configurations." In International conference on Statistical Mechanics of Plasticity and Related Instabilities. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.023.0043.
Full textWu, Q. S., X. Wei, Y. L. Wang, and L. Q. Heng. "Strain Rate Sensitivity of a Ferrite and Martensite Dual Phase Steel." In The 2nd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU 2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813140622_0032.
Full textBelingardi, G., G. Chiandussi, and A. Ibba. "Identification of strain-rate sensitivity parameters of steel sheet by genetic algorithm optimisation." In HIGH PERFORMANCE STRUCTURES AND MATERIALS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/hpsm06021.
Full textRifai, M., Mujamilah, and H. Miyamoto. "Microstructure and strain rate sensitivity in pure magnesium subjected to severe plastic deformation." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NUCLEAR SCIENCE, TECHNOLOGY, AND APPLICATION 2020 (ICONSTA 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0066260.
Full textWang, B., J. Zheng, and G. Lu. "Dynamic strength and strain rate sensitivity of 37 wt% Pb 63 wt% Su eutectic solders." In 2006 8th Electronics Packaging Technology Conference. IEEE, 2006. http://dx.doi.org/10.1109/eptc.2006.342798.
Full textReports on the topic "Strain Rate Sensitivity (SRS)"
Dilmore, M. F., Thomas B. Crenshaw, and Brad Lee Boyce. The strain-rate sensitivity of high-strength high-toughness steels. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/902598.
Full textTaylor. L51755 Development and Testing of an Advanced Technology Vibration Transmission. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 1996. http://dx.doi.org/10.55274/r0010124.
Full textLiu and Nixon. L52305 Probabilistic Analysis of Pipeline Uplift Resistance. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2010. http://dx.doi.org/10.55274/r0000002.
Full textOhad, Itzhak, and Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, December 1995. http://dx.doi.org/10.32747/1995.7613031.bard.
Full textTENSILE BEHAVIOUR OF TMCP Q690D HIGH-STRENGTH STRUCTURAL STEEL AT STRAIN RATES FROM 0.00025 TO 760 S-1. The Hong Kong Institute of Steel Construction, March 2022. http://dx.doi.org/10.18057/ijasc.2022.18.1.7.
Full text