Academic literature on the topic 'Storage projects'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Storage projects.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Storage projects"
Singh, Rajindar, and Marc Chable. "Ten years of CO2 storage and operations." APPEA Journal 57, no. 2 (2017): 643. http://dx.doi.org/10.1071/aj16086.
Full textBowden, A. R., and A. Rigg. "ASSESSING RISK IN CO2 STORAGE PROJECTS." APPEA Journal 44, no. 1 (2004): 677. http://dx.doi.org/10.1071/aj03034.
Full textBonnici, Maximilian, Henry Greene, and Isabelle Bonnici. "Barriers for Clean Energy Projects." Journal of Clean Energy Technologies 9, no. 2 (April 2021): 24–27. http://dx.doi.org/10.18178/jocet.2021.9.2.256.
Full textVladuca, Iulian, Ramona-Manuela Stanciuc, Ana-Maria Obreja, and Doru Cioclea. "Ideas for storing CO2 from the Turceni Power Plant, in closed mining areas from the Jiu Valley, Romania." MATEC Web of Conferences 342 (2021): 03006. http://dx.doi.org/10.1051/matecconf/202134203006.
Full textPun, Santa Bahadur. "Storage Projects in Nepal’s Electricity Development Decade 2016/2026 For Whom Nepal’s Storage Projects Toll?" Hydro Nepal: Journal of Water, Energy and Environment 20 (January 27, 2017): 6–10. http://dx.doi.org/10.3126/hn.v20i0.16479.
Full textvan der Linden, Cornelis, and Bill Townsend. "Maximising value in mega-projects: Ichthys LNG project." APPEA Journal 56, no. 2 (2016): 576. http://dx.doi.org/10.1071/aj15082.
Full textYang, Huijia, Weiguang Fan, Guangyu Qin, and Zhenyu Zhao. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project." Energies 14, no. 4 (February 20, 2021): 1129. http://dx.doi.org/10.3390/en14041129.
Full textGordon, Lee, and Michael Bennett. "Legal implications for renewable energy storage projects." Renewable Energy Focus 17, no. 1 (January 2016): 46–48. http://dx.doi.org/10.1016/j.ref.2015.11.006.
Full textBowden, Adrian R., Donna F. Pershke, and Rick Chalaturnyk. "Biosphere risk assessment for CO2 storage projects." International Journal of Greenhouse Gas Control 16 (June 2013): S291—S308. http://dx.doi.org/10.1016/j.ijggc.2013.02.015.
Full textAraiza, Jorge, Joshua Hambrick, Justin Moon, Michael Starke, and Charlie Vartanian. "Grid Energy-Storage Projects: Engineers Building and Using Knowledge in Emerging Projects." IEEE Electrification Magazine 6, no. 3 (September 2018): 14–19. http://dx.doi.org/10.1109/mele.2018.2849842.
Full textDissertations / Theses on the topic "Storage projects"
Brown, Christopher J. "Planning decision framework for brackish water aquifer, storage and recovery (ASR) projects." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013031.
Full textCoello, Behr Andres. "Energy Storage and Electric Motor Systems Projects for Hands-on Student Learning." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/84516.
Full textMaster of Science
Mazzoldi, Alberto. "Leakage and atmospheric dispersion of CO2 associated with carbon capture and storage projects." Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/11443/.
Full textSadri, Saeid Lonbani. "An Integrated information system for building construction projects." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/19468.
Full textMARCON, DIOGO REATO. "NUMERICAL MODELING OF THE CO2 INJECTION IN SALINE AQUIFERS: INVESTIGATION OF THE RELEVANT PARAMETERS FOR OPTIMIZING THE STORAGE IN CCS – CARBON CAPTURE AND STORAGE PROJECTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15354@1.
Full textThis work shows an analysis of the technique of carbon dioxide injection into saline aquifers with the purpose of discharge and storage. The final goal was to obtain the features of the aquifer, and of the injection process, to be selected in order to make the amount of stored CO2 higher and the injection time smaller. Considering such objective it was initially done a bibliography revision about the available lab data of the CO2 and water properties. It was also surveyed information about the natural CO2 fields that can be applied as analogous into the geological storage of such gas, and it was surveyed important information about the conditions considered suitable to the technique highlighted here and about numerical simulation studies. Then, with all the information surveyed on the previous works and, after validation of the fluid model to the lab data, it was set the process variables to be analyzed and a methodology was built for the study. The procedure consisted in establishing the assumptions to be applied on the numerical simulation of the base case and in generating the derived scenarios. By that way, it was required a change in each of the following properties, individually: salinity, depth, horizontal permeability, relation between vertical and horizontal permeabilities, injection rate, porosity and residual water saturation. Finally, it was applied the criterion set with the proposed methodology in order to compare the simulation results and it was concluded that, following the adopted assumptions, the most important features which allowed the storage of a higher amount of CO2 and a lower injection time, were in a decreasing order: higher injection rate, higher horizontal permeability and lower depth for the injection.
Senjaya, Rudy. "Web-based library for student projects/theses and faculty research papers." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/47.
Full textMichail, Nancy. "Importance of improved communication between stakeholders in information systems implementation projects." View thesis, 2006. http://handle.uws.edu.au:8081/1959.7/31558.
Full textA thesis presented to the University of Western Sydney, College of Business, School of Management, in partial fulfilment of the requirements for the degree of Master Commerce (Honours), Management. Includes bibliographies.
Gasparini, Andrea. "Experimental and numerical modelling of CO2 behaviour in the soil-atmosphere interface : implications far risk assessment of carbon capture storage projects." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672088.
Full textEl almacenamiento geológico de CO2 se considera una de las opciones tecnológicamente viables para disminuir las emisiones industriales de esta especie de gas que contribuye fuertemente al efecto invernadero en la atmósfera (IPCC. 2005). Como es natural, el petróleo y el gas se almacenan en rocas porosas que tienen las mismas características geológicas clave requeridas para el almacenamiento de CO2. por lo que CCS tiene como objetivo recrear un proceso natural para atrapar dióxido de carbono durante millones de años en un acuífero salino profundo o en campos de petróleo y gas agotados. La liberación episódica de CO2 del subsuelo puede ocurrir por procesos naturales (es decir. desgasificación del manto, descarbonatación térmica. áreas volcánicas) o industriales (almacenamiento geológico de CO2. CCS). Debido a que las fugas pueden ocurrir en cada paso de un proyecto de CCS. el monitoreo asume un papel importante no solo durante y después de la inyección. sino también antes para conocer el estado de todo el sitio desde las profundidades del subsuelo (nivel del yacimiento) hasta la superficie. En este sentido. el uso de modelos numéricos de dispersión atmosférica ayuda a predecir la dispersión de la columna de gas enriquecido con CO2 una vez emitida desde el subsuelo y permite un mapa preciso del nivel de riesgo a lo largo del tiempo bajo condiciones meteorológicas particulares. El objetivo de este proyecto de doctorado consiste en dar una mejor comprensión del comportamiento del CO2 en la zona insaturada y su dispersión atmosférica. Los resultados se obtienen a partir de modelos experimentales y numéricos de fugas de CO2 de un sitio de fugas artificiales y de análogos naturales aplicados a la evaluación de riesgos para sitios de CCS. Para alcanzar los objetivos antes mencionados y probar los resultados. este plan de investigación combina la actividad experimental en el sitio y la modelización numérica. La primera parte del plan de investigación consistió en una aportación al proyecto PISCO2 en las instalaciones de ES.CO2 situadas en Ponferrada (España). El objetivo de este proyecto fue predecir cómo el CO2 inyectado se moverá lateralmente y verticalmente en la zona insaturada y determinar los parámetros críticos que afectarán los ecosistemas. Esta parte ha sido publicada en una revista de revisión por pares y presentada en un congreso internacional. La segunda parte del proyecto de doctorado se ha centrado en el estudio de dos análogos naturales en áreas volcánicas. Los análogos naturales proporcionan evidencias del impacto de la fuga de CO2. para ambos sitios se han seguido dos enfoques: a) medición directa de la concentración de aire y b) modelado atmosférico numérico con el código TW ODEE2. El estudio de las emisiones de CO2 en los sistemas naturales proporciona una valiosa información sobre la evaluación y cuantificación de los riesgos potenciales relacionados con las fugas de almacenamiento subterráneo de carbono. Las emisiones de CO2 se estudian en una gran variedad de entornos geológicos, es decir, cuencas sedimentarias, áreas volcánicas activas y no activas, regiones sísmicas y campos geotérmicos. Los resultados obtenidos de este doctorado aportan: • Acoplamiento de datos experimentales y numéricos para probar nuevos métodos y/o códigos numéricos; • Nuevos elementos para el conocimiento de los comportamientos del CO2 en la zona insaturada como se ve en PISCO2; • Nuevas pistas sobre técnicas de monitoreo no invasivas para sitios CCS y análogos naturales; • La utilidad de estudiar análogos naturales; • La utilidad del sistema SAP, como buen método para evaluar altas emisiones de gases subterráneos; • La eficiencia de la modelización atmosférica como metodología valiosa en la evaluación de riesgos ; • La importancia de los mapas de evaluación de riesgos en áreas de desgasificación activa; • La necesidad de producir mapas de predicción para evaluar escenarios peligrosos. • Se ha demostrado que los modelos numéricos (transporte multifásico y dispersión de gas atmosférico) son herramientas útiles para predecir el comportamiento de los gases en la zona vadosa y en la atmósfera cercana al suelo.
Girotto, Rogério Mendoza. "Caracterização de um modelo de armazenagem horizontal: estudo de caso." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-19072007-150849/.
Full textThis paper approaches the development and the implantation of a storage project of components (parts) in an industry named \"white line\" in Rio Claro city, located in São Paulo State, Brazil, which migrated from a vertical storage model, to a horizontal model, without any equipment, being called as Flat Storage. The concern of this research is presenting to the public in general, specially academics and logistics professionals, the previous scenario to the project and the reasons that had led it to the development of this storage concept, HOW the implantation was carried through, the previous scenario aligned with the benefits met, by making a comparison with the previous scene. Finally, a convergence is made of the way the project was developed and implanted in accordance with the recommendations found in the PMBOK guide, mainly under the aspects which are based on the areas of Knowledge of Project Management, bearing in mind to show how this project must have been developed. The first conclusion was that the responsible person for the project had difficulties due to the fact that the Project Management \"methodology\" was not followed. Therefore, the difficulties encountered pointed to incautious evidences. We also concluded that the storage model implanted, although very much alike the trends found in books and in practical in use, was very well accepted under some aspects in the studied scene.
LaMay, Mary Louise. "Memory for common and bizarre imagery: A storage-retrieval analysis." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1465.
Full textBooks on the topic "Storage projects"
Reader's Digest Association. Our best storage & organizing projects. [U.S.?]: Reader's Digest Association, 2011.
Find full text58 home shelving & storage projects. Blue Ridge Summit, PA: Tab Books, 1985.
Find full text1944-, Stiles Jeanie, ed. Storage projects you can build. Shelburne, Vt: Chapters Pub., 1996.
Find full textHughes, Herb. Cabinets, shelves & home storage solutions: 24 custom storage projects. Upper Saddle River, NJ: Creative Homeowner, 2004.
Find full textArmpriester, Kate. 50 storage projects for the home. Danbury, Conn: Popular Science Books, 1988.
Find full textArmpriester, Kate. 50 storage projects for the home. New York: Sterling Pub. Co., 1989.
Find full textJacobs, David H. Home storage: Projects for every room. New York: TAB Books, 1994.
Find full textHughes, Herb. Cabinets & built-ins: 26 custom storage projects. Upper Saddle River, NJ: Creative Homeowner Press, 1996.
Find full textHarrold, Jim. Home workshop storage: 21 projects to build. Atglen, PA: Schiffer Publishing Ltd, 2013.
Find full textMovable storage projects: Ingenious space-saving solutions. New York: Sterling Pub. Co., 1993.
Find full textBook chapters on the topic "Storage projects"
De Bauw, R., E. Millich, J. P. Joulia, D. Van Asselt, and J. W. Bronkhorst. "Storage." In European Communities Oil and Gas Technological Development Projects, 333–42. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3247-0_11.
Full textDussaud, Michel. "Review of World Wide Storage Projects." In Underground Storage of Natural Gas, 23–29. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0993-9_3.
Full textSaini, Dayanand. "Simultaneous CO2-EOR and Storage Projects." In Engineering Aspects of Geologic CO2 Storage, 11–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56074-8_2.
Full textRingrose, Philip. "CO2 Storage Project Design." In How to Store CO2 Underground: Insights from early-mover CCS Projects, 85–126. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33113-9_3.
Full textLe Guen, Yvi, Stéphanie Dias, Olivier Poupard, Katriona Edlmann, and Christopher Ian McDermott. "Risk Management for CO2 Geological Storage Projects." In Geological Storage of CO2 in Deep Saline Formations, 521–41. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-0996-3_10.
Full textSaini, Dayanand. "Reservoir Modeling of Simultaneous CO2-EOR and Storage Projects." In Engineering Aspects of Geologic CO2 Storage, 65–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56074-8_8.
Full textVadasz, Peter. "On the Peak-Off-Peak Price Functions Based on Marginal Cost Methods to be Used in Energy Storage Projects." In Energy Storage Systems, 605–17. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2350-8_28.
Full textLiebscher, Axel, Jürgen Wackerl, and Martin Streibel. "Geologic Storage of Hydrogen - Fundamentals, Processing, and Projects." In Hydrogen Science and Engineering : Materials, Processes, Systems and Technology, 629–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527674268.ch26.
Full textSamadi, Jaleh, and Emmanuel Garbolino. "Systemic Methodology for Risk Management of CTSC Projects." In Future of CO2 Capture, Transport and Storage Projects, 41–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74850-4_3.
Full textSamadi, Jaleh, and Emmanuel Garbolino. "Systems Theory, System Dynamics and Their Contribution to CTSC Risk Management." In Future of CO2 Capture, Transport and Storage Projects, 27–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74850-4_2.
Full textConference papers on the topic "Storage projects"
Yiu, Kevin. "Battery technologies for electric vehicles and other green industrial projects." In Energy Storage. IEEE, 2011. http://dx.doi.org/10.1109/pesa.2011.5982908.
Full textO'Neill, J. N., and R. W. Vernon. "Building Confidence in Transnational CCS Projects." In Fourth EAGE CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20140124.
Full textAlbaric, J., V. Oye, and D. Kühn. "Microseismic Monitoring in Carbon Capture and Storage Projects." In Fourth EAGE CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20140138.
Full textBasava-Reddi, M., B. Beck, M. Haines, T. Dixon, and N. Wildgust. "What Have We Learnt from Demonstration Projects?" In Second EAGE CO2 Geological Storage Workshop 2010. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.155.p006.
Full textJafari, Alireza, and John Faltinson. "Transitioning of Existing CO2-EOR Projects to Pure CO2 Storage Projects." In SPE Unconventional Resources Conference Canada. Society of Petroleum Engineers, 2013. http://dx.doi.org/10.2118/167180-ms.
Full textSams, Kimberly, and Richard Esposito. "SECARB: Partnering with Industry for Large Scale CCS Projects." In NETL Carbon Storage R&D Project Review Meeting. US DOE, 2013. http://dx.doi.org/10.2172/1765672.
Full textRingrose, P. "Lessons Learned from the Sleipner and In Salah Projects." In Second EAGE CO2 Geological Storage Workshop 2010. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.155.013.
Full textHovorka, Susan. "Monitoring CO2 EOR Projects To Document Storage Permanence." In ACI’s 4th Carbon Dioxide Utilization Conference San Antonio, TX February 2015. US DOE, 2015. http://dx.doi.org/10.2172/1749868.
Full textAlgharaib, M., and N. Abu Al-Soof. "Economical Modeling of CO2 Capturing and Storage Projects." In SPE Saudi Arabia Section Technical Symposium. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/120815-ms.
Full textRommerskirchen, R. "Influencing The CO2-Oil Interaction For Improved Miscibility And Enhanced Recovery In CCUS Projects." In Fifth CO2 Geological Storage Workshop. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802986.
Full textReports on the topic "Storage projects"
Pesaran, A., C. Ban, A. Brooker, J. Gonder, J. Ireland, M. Keyser, G. Kim, et al. NREL Energy Storage Projects: FY2013 Annual Report. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1148622.
Full textPesaran, Ahmad, Chunmei Ban, Evan Burton, Jeff Gonder, Peter Grad, Myungsoo Jun, Matt Keyser, et al. NREL Energy Storage Projects. FY2014 Annual Report. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1215080.
Full textPesaran, A., C. Ban, A. Brooker, A. Dillon, J. Gonder, J. Ireland, M. Keyser, et al. NREL Energy Storage Projects -- FY2012 Annual Report. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1069177.
Full textPesaran, Ahmad, Chunmei Ban, Anne Dillon, Jeff Gonder, John Ireland, Matt Keyser, Gi-Heon Kim, et al. FY2011 Annual Report for NREL Energy Storage Projects. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1046264.
Full textBender, Donald Arthur, Raymond Harry Byrne, and Daniel R. Borneo. ARRA Energy Storage Demonstration Projects: Lessons Learned and Recommendations. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1504840.
Full textJohnson, B. K. Summary of seasonal thermal energy storage field test projects in the United States. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/6285339.
Full textHeadley, Alexander, Clifford Hansen, and Tu Nguyen. Maximizing Revenue from Electrical Energy Storage Paired with Community Solar Projects in NYISO Markets. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1762986.
Full textMatzel, E., C. Morency, M. Pyle, D. Templeton, and J. A. White. A microseismic workflow for managing induced seismicity risk as CO2 storage projects. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1389989.
Full textMoody, Mark, and J. R. Sminchak. Systematic assessment of wellbore integrity for geologic carbon storage projects using regulatory and industry information. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1235555.
Full textWitt, Adam, Dol Raj Chalise, Boualem Hadjerioua, Michael Manwaring, and Norm Bishop. Development and Implications of a Predictive Cost Methodology for Modular Pumped Storage Hydropower (m-PSH) Projects in the United States. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329154.
Full text