Dissertations / Theses on the topic 'Stochastics dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stochastics dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Makuch, Martin. "Circumplanetary dust dynamics application to Martian dust tori and Enceladus dust plumes /." Phd thesis, [S.l.] : [s.n.], 2007. http://opus.kobv.de/ubp/volltexte/2007/1440.
Full textMueller, Felix. "Formation of spatio–temporal patterns in stochastic nonlinear systems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16527.
Full textIn this work problems are investigated that arises from resarch fields of noise induced dynamics, pattern formation in active media and synchronisation of self-sustained oscillators. The applied model systems exhibit excitable, oscillatory and bistable behavior as basic modes of nonlinear dynamics. Addition of stochastic fluctuations contribute to the appearance of complex behavior. The extracellular potassium concentration fed by surrounding activated neurons and the feeback to these neurons is modelled. Beside considering the local behavior, nucleation of spatially extended structures is studied. We find typical fronts and spirales as well as unusal patterns such as moving clusters and inverted waves. The boundary conditions of the considered system play an essential role in the formation process of such structures. We present methods to find expressions of the front velocity for discretely coupled bistable units as well as for the countinus front interacting with boundary values. Canonical bifurcation scenarios can be quantified. The feedback mechanism from the model for neuronal units can be generalized further. A two-state model is defined by two waiting time distributions representing excitable dynamics. We analyse the instantaneous and delayed response of the ensemble. In the case of delayed feedback a Hopf-bifurcation occur which lead to oscillations of the mean activity. In the last chapter the transport and diffusion of Brownian particles in a spatio-temporal oscillating potential is discussed. As a cause of nearly dispersionless transport synchronisations mechanisms can be identified. We find an estimation for parameter values which maximizes the effective diiffusion.
Dean, David Stanley. "Stochastic dynamics." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318048.
Full textAlmada, Monter Sergio Angel. "Scaling limit for the diffusion exit problem." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39518.
Full textLythe, Grant David. "Stochastic slow-fast dynamics." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338108.
Full textRestrepo, Juan M., and Shankar Venkataramani. "Stochastic longshore current dynamics." ELSEVIER SCI LTD, 2016. http://hdl.handle.net/10150/621938.
Full textSanyal, Suman. "Stochastic dynamic equations." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Sanyal_09007dcc80519030.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed August 21, 2008) Includes bibliographical references (p. 124-131).
Yilmaz, Bulent. "Stochastic Approach To Fusion Dynamics." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608517/index.pdf.
Full textDe, Fabritiis Gianni. "Stochastic dynamics of mesoscopic fluids." Thesis, Queen Mary, University of London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268402.
Full textStocks, Nigel Geoffrey. "Experiments in stochastic nonlinear dynamics." Thesis, Lancaster University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315224.
Full textXie, Yan. "STOCHASTIC DYNAMICS OF GENE TRANSCRIPTION." UKnowledge, 2011. http://uknowledge.uky.edu/statistics_etds/2.
Full textNaylor, Sarah Louise. "Stochastic dynamics in periodic potentials." Thesis, University of Nottingham, 2006. http://eprints.nottingham.ac.uk/10179/.
Full textHerbert, Julian Richard. "Stochastic processes for parasite dynamics." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368164.
Full textGriffin, T. C. L. "Dynamics of stochastic nonsmooth systems." Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411095.
Full textSwinburne, Thomas. "Stochastic dynamics of crystal defects." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24878.
Full textZhitlukhin, Mikhail Valentinovich. "Stochastic dynamics of financial markets." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/stochastic-dynamics-of-financial-markets(4eb80d2a-e90a-4ab0-b9e2-ad930c8a4d94).html.
Full textSato, Kenji. "Stochastic and Pseudostochastic Economic Dynamics." Kyoto University, 2012. http://hdl.handle.net/2433/157505.
Full textSiriwardena, Pathiranage Lochana Pabakara. "STOCHASTIC MODELS IN POPULATION DYNAMICS." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/908.
Full textSehl, Mary Elizabeth. "Stochastic dynamics of cancer stem cells." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=2023755671&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textPerelló, Josep 1974. "Correlated Stochastic Dynamics in Financial Markets." Doctoral thesis, Universitat de Barcelona, 2001. http://hdl.handle.net/10803/1787.
Full textOption pricing is perhaps most complete problem. Until very recently, stochastic differential equations theory was solely applied to finance by mathematicians. The thesis reviews the theory of Black-Scholes and pays attention to questions that had not interested too much to the mathematicians but that are of importance from a physicist point of view. Among other things, thesis derives the so-called Black-Scholes option price following the rules used by physicists (Stratonovich). Mathematicians have been using Itô convention for deriving this price and thesis founds that both approaches are equivalent. Thesis also focus on the martingale option pricing which directly relates the stock probability density to the option price. The thesis optimizes the martingale method to implement it in cases where only the characteristic function is known.
The study of the correlations observed in markets conform the second block of the thesis. Good knowledge of correlations is essential to perform predictions. In this sense, two diffusive models are presented. First model proposes a market described by a singular two-dimensional process driven by an Ornstein-Uhlenbeck process where noise source is Gaussian and white. The model correctly describes the volatility as a function of time by considering the memory effects in the stock price changes. This model gives reason of the market inefficiencies due to the absence of liquidity or any other type of market interties. These correlations appear to have a a long range persistence in the option price and entails a remarkable influence in the risk due to holding an option. The second model is a stochastic volatility model. In this case, prices are described by a two-dimensional process with two Gaussian white noise sources and where volatility follows an Ornstein-Uhlenbeck process. Their statistical properties are studied and these describe most of the empirical market properties such as the leverage effect.
Li, Na. "Stochastic Models of Stock Market Dynamics." Thesis, Uppsala universitet, Analys och tillämpad matematik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-144307.
Full textDobay, Maria Pamela. "Dynamics of stochastic membrane rupture events." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-154957.
Full textPerelló, Palou Josep. "Correlated Stochastic Dynamics in Financial Markets." Doctoral thesis, Universitat de Barcelona, 2001. http://hdl.handle.net/10803/1787.
Full textJatuviriyapornchai, Watthanan. "Population dynamics and stochastic particle systems." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/99427/.
Full textRidden, Sonya. "Stochastic models of stem cell dynamics." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/401863/.
Full textFerreira, Brigham Marco Paulo. "Nonstationary Stochastic Dynamics of Neuronal Membranes." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066111/document.
Full textNeurons interact through their membrane potential that generally has a complex time evolution due to numerous irregular synaptic inputs received. This complex time evolution is best described in probabilistic terms due to this irregular or "noisy" activity. The time evolution of the membrane potential is therefore both stochastic and deterministic: it is stochastic since it is driven by random input arrival times, but also deterministic, since subjecting a biological neuron to the same sequence of input arrival times often results in very similar membrane potential traces. In this thesis, we investigated key statistical properties of a simplified neuron model under nonstationary input from other neurons that results in nonstationary evolution of membrane potential statistics. We considered a passive neuron model without spiking mechanism that is driven by input currents or conductances in the form of shot noise processes. Under such input, membrane potential fluctuations can be modeled as filtered shot noise currents or conductances. We analyzed the statistical properties of these filtered processes in the framework of Poisson Point Processes transformations. The key idea is to express filtered shot noise as a transformation of random input arrival times and to apply the properties of these transformations to derive its nonstationary statistics. Using this formalism we derive exact analytical expressions, and useful approximations, for the mean and joint cumulants of the filtered process in the general case of variable input rate. This work opens many perspectives for analyzing neurons under in vivo conditions, in the presence of intense and noisy synaptic inputs
Brett, Tobias Stefan. "Stochastic population dynamics with delay reactions." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/stochastic-population-dynamics-with-delay-reactions(61982a13-b969-4d8d-904b-21c289c813f2).html.
Full textChallenger, Joseph Daniel. "The stochastic dynamics of biochemical systems." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/the-stochastic-dynamics-of-biochemical-systems(bdc0634e-12d7-49c8-a587-041483c54498).html.
Full textConstable, George William Albert. "Fast timescales in stochastic population dynamics." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/fast-timescales-in-stochastic-population-dynamics(2e9cace8-e615-44ec-818e-26b96aaa6459).html.
Full textBlack, Andrew James. "The stochastic dynamics of epidemic models." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/the-stochastic-dynamics-of-epidemic-models(196cf4a1-2db2-4696-bc64-64fb28cb0b7d).html.
Full textOrr, Genevieve Beth. "Dynamics and algorithms for stochastic search /." Full text open access at:, 1995. http://content.ohsu.edu/u?/etd,197.
Full textGarofalo, Marco. "Dynamics of numerical stochastic perturbation theory." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31086.
Full textWang, Shi'an. "Stochastic Dynamic Model of Urban Traffic and Optimum Management of Its Flow and Congestion." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37254.
Full textKuhlbrodt, Till. "Stability and variability of open-ocean deep convection in deterministic and stochastic simple models." Phd thesis, [S.l. : s.n.], 2002. http://pub.ub.uni-potsdam.de/2002/0033/kuhlb.pdf.
Full textPensuwon, Wanida. "Stochastic dynamic hierarchical neural networks." Thesis, University of Hertfordshire, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366030.
Full textRué, Queralt Pau. "Transient and stochastic dynamics in cellular processes." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/128333.
Full textEn aquesta Tesi s’estudien diferents processos intracel·lulars i de poblacions cel·lulars regits per dinàmica estocàstica i no lineal. El problemes biològics tractats graviten al voltant el concepte de dinàmica transitòria i de relaxació d’un estat dinàmic pertorbat a l’estat estacionari. En aquest sentit, en tots els processos estudiats, les fluctuacions estocàstiques, presents intrínsecament o aplicades de forma externa, hi tenen un paper constructiu, ja sigui empenyent els sistemes fora de l’equilibri, interferint amb les lleis deterministes subjacents, o establint els nivells d’heterogeneïtat necessaris. La primera part de la Tesi es dedica a l’estudi de processos cel·lulars transitoris regulats genèticament. En ella analitzem des d’un punt de vista teòric tres circuits genètics de control de polsos excitables i, contràriament al que s’havia especulat anteriorment, establim que tots ells poden treballar en dos tipus de règim excitable. Analitzem també com, en presència de soroll molecular, aquests circuits excitables poden generar polsos periòdics i multimodals degut a la combinació de dos fenòmens induïts per soroll: l’estabilització estocàstica d’estats inestables i la ressonància de coherència. D’altra banda, estudiem com un mecanisme genètic excitable pot ser el responsable de regular a nivell transcripcional les fluctuacions que s’observen experimentalment en alguns factors de pluripotència en cèl·lules mare embrionàries. En l’embrió, la pluripotència és un estat cel·lular transitori i la sortida de les cèl·lules d’aquest sembla que està associada a fluctuacions transcripcionals. En relació al control de la pluripotència, presentem també un nou mecanisme basat en la regulació post-traduccional d’un petit conjunt de 4 factors de pluripotència. El model teòric proposat, basat en la formació de complexos entre els diferents factors de pluripotència, l’hem validat mitjançant experiments quantitatius en cèl·lules individuals. El model postula que l’estat de pluripotència no depèn dels nivells cel·lulars d’un únic factor, sinó d’un equilibri de correlacions entre diverses proteïnes. A més, prediu el fenotip de cèl·lules mutants i suggereix que la funció reguladora de les interaccions entre les quatre proteïnes és la d’esmorteir l’activitat transcripcional d’Oct4, un dels principals factors de pluripotència. En el segon apartat de la Tesi estudiem el comportament d’una xarxa computacional de senyalització cel·lular de fibroblast humà en presència de senyals externs fluctuants i cíclics. Els resultats obtinguts mostren que la xarxa respon de forma no trivial a les fluctuacions ambientals, fins i tot en presència d’una senyal externa. Diferents nivells de soroll permeten modular la resposta de la xarxa, mitjançant la selecció de rutes alternatives de transmissió de la informació. Finalment, estudiem la dinàmica de poblacions cel·lulars durant la formació de biofilms, pel·lícules arrugades d’aglomerats de bacteris que conformen un dels exemples més simples d’estructures multicel·lulars autoorganitzades. En aquesta Tesi presentem un model espai-temporal de creixement i mort cel·lular motivat per l’evidència experimental sobre l’aparició de patrons de mort massiva de bacteris previs a la formació de les arrugues dels biofilms. Aquests patrons localitzats concentren les forces mecàniques durant l’expansió del biofilm i inicien la formació de les arrugues característiques. En aquest sentit, el model proposat explica com es formen els patrons de mort a partir dels canvis de mobilitat dels bacteris deguts a la producció de matriu extracel·lular combinats amb un creixement espacialment heterogeni. Una important predicció del model és que la producció de matriu és un procés clau per a l’aparició dels patrons i, per tant de les arrugues. En aquest aspecte, els nostres resultats experimentals en bacteris mutants que no produeixen components essencials de la matriu, confirmen les prediccions.
Erdmann, Thorsten. "Stochastic dynamics of adhesion clusters under force." Phd thesis, [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=97610492X.
Full textMartí, Ortega Daniel. "Neural stochastic dynamics of perceptual decision making." Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7552.
Full textComputational models based on large-scale, neurobiologically-inspired networks describe the decision-related activity observed in some cortical areas as a transition between attractors of the cortical network. Stimulation induces a change in the attractor configuration and drives the system out from its initial resting attractor to one of the existing attractors associated with the categorical choices. The noise present in the system renders transitions random. We show that there exist two qualitatively different mechanisms for decision, each with distinctive psychophysical signatures. The decision mechanism arising at low inputs, entirely driven by noise, leads to skewed distributions of decision times, with a mean governed by the amplitude of the noise. Moreover, both decision times and performances are monotonically decreasing functions of the overall external stimulation. We also propose two methods, one based on the macroscopic approximation and one based on center manifold theory, to simplify the description of multistable stochastic neural systems.
Dammer, Stephan M. "Stochastic many-particle systems with irreversible dynamics." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974953334.
Full textDammer, Stephan Markus. "Stochastic many-particle systems with irreversible dynamics." Gerhard-Mercator-Universitaet Duisburg, 2005. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-01282005-115619/.
Full textSulstarova, Astrit. "Sovereign debt dynamics in a stochastic environment /." Genève : Inst. Univ. de Hautes Etudes Internat, 2008. http://www.gbv.de/dms/zbw/569461138.pdf.
Full textMeadows, Brian K. "Spatiotemporal dynamics of stochastic and chaotic arrays." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30747.
Full textLiang, Gechun. "A functional approach to backward stochastic dynamics." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:afb9af6f-c79c-4204-838d-2a4872c1c796.
Full textMitrovic, Djordje. "Stochastic optimal control with learned dynamics models." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/4783.
Full textRODRIGUEZ, CARLOS ENRIQUE OLIVARES. "EFFECTIVE STOCHASTIC DYNAMICS OF SIMPLIFIED PROTEIN SEQUENCES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2013. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23611@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
As proteínas e outros peptídeos são cadeias de aminoácidos que desempenham funções biológicas específicas dentro de um organismo. A funcionalidade dessas estruturas depende da sua organização tridimensional, portanto é importante determinar quais são os fatores que controlam o bom enovelamento. Se a sequência é conhecida em principio poder-se-ia predizer sua estrutura 3D mediante uma dinâmica molecular de todos os átomos da sequência e das moléculas de água circundantes, mas é claro que esse tipo de simulação é inviável com os recursos computacionais atuais. Alternativamente, consideramos modelos simplificados que levem em conta somente as características principais de cada monômero e das partículas do meio. Efetuamos simulações de dinâmica molecular, considerando interações do tipo Lennard Jones entre monômeros (distinguindo entre monômeros polares e hidrofóbicos) e adicionalmente incorporando uma força estocástica (Langevin) para complementar a influência do meio aquoso. Consideramos diversas sequências lineares, simétricas e de comprimento fixo, evoluindo no espaço bi ou tridimensional. Como resultado destas simulações, podemos descrever a evolução temporal no espaço de conformações mediante variáveis efetivas ou coordenadas de reação, tais como o raio de giro, a distância entre as extremidades ou o número de contatos entre monômeros não ligados. Da análise das séries temporais dessas variáveis efetivas, extraímos os coeficientes que permitem construir seja a equação diferencial estocástica do movimento das variáveis efetivas ou a equação de Fokker-Planck associada. Estas equações para um número reduzido de graus de liberdade permitem, em princípio, obter informações sobre mudanças conformacionais, difíceis de acessar na descrição completa no espaço de fases original, de alta dimensionalidade. Discutimos as vantagens e limitações desta abordagem.
Proteins and other peptides are aminoacid chains that perform specific biological functions within an organism. The functionality of these structures depends on their three-dimensional organization, so it is important to determine what are the factors that control the proper folding. If the sequence is known, in principle it would be possible to predict its 3D structure by means of molecular dynamics of all atoms of the sequence and the surrounding water molecules, but it is clear that this type of simulation is not feasible with the current computational resources. Alternatively, we consider simplified models that take into account only the main characteristics of each monomer and the particles of the medium. We have performed molecular dynamics simulations, considering the LennardJones-like interactions between monomers (distinguishing between polar and hydrophobic monomers) and additionally incorporating a stochastic (Langevin) force to complement the influence of the aqueous medium. We considered several linear sequences, symmetric, with fixed-length, evolving in the tri or bi-dimensional space. As a result of these simulations, we can describe the temporal evolution in the space of conformations through effective variables or reaction coordinates, such as gyration radius, distance between ends or number of contacts between unbound monomers. From the analysis of the time series of the effective variables, we extract the coefficients that allow to build the stochastic differential equation of motion of the effective variables or its associated Fokker-Planck equation. These equations for a limited number of degrees of freedom provide, in principle, information on conformational changes, which are difficult to access in the description of the original, high dimensional, phase. We discuss the advantages and limitations of this approach.
Geffert, Paul Matthias. "Nonequilibrium dynamics of piecewise-smooth stochastic systems." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/46783.
Full textVon, Gottberg friedrich K. (Friedrich Klemens). "Stochastic dynamics simulations of surfactant self-assembly." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42642.
Full textCao, Jiarui. "Dynamics of condensation in stochastic particle systems." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/77674/.
Full textDickson, Scott M. "Stochastic neural network dynamics : synchronisation and control." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16508.
Full textShen, Tongye. "Fluctuations and stochastic dynamics in molecular biophysics /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3061634.
Full text