Academic literature on the topic 'Stochastic Volatility'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stochastic Volatility.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stochastic Volatility"
Blanco, Belen. "Capturing the volatility smile: parametric volatility models versus stochastic volatility models." Public and Municipal Finance 5, no. 4 (December 26, 2016): 15–22. http://dx.doi.org/10.21511/pmf.05(4).2016.02.
Full textSABANIS, SOTIRIOS. "STOCHASTIC VOLATILITY." International Journal of Theoretical and Applied Finance 05, no. 05 (August 2002): 515–30. http://dx.doi.org/10.1142/s021902490200150x.
Full textAlghalith, Moawia, Christos Floros, and Konstantinos Gkillas. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility." Risks 8, no. 2 (April 11, 2020): 35. http://dx.doi.org/10.3390/risks8020035.
Full textVeraart, Almut E. D., and Luitgard A. M. Veraart. "Stochastic volatility and stochastic leverage." Annals of Finance 8, no. 2-3 (May 21, 2010): 205–33. http://dx.doi.org/10.1007/s10436-010-0157-3.
Full textGuyon, Julien. "Stochastic Volatility Modeling." Quantitative Finance 17, no. 6 (April 18, 2017): 825–28. http://dx.doi.org/10.1080/14697688.2017.1309181.
Full textBandi, Federico M., and Roberto Renò. "NONPARAMETRIC STOCHASTIC VOLATILITY." Econometric Theory 34, no. 6 (July 3, 2018): 1207–55. http://dx.doi.org/10.1017/s0266466617000457.
Full textCapobianco, E. "Stochastic Volatility Systems." International Journal of Modelling and Simulation 17, no. 2 (January 1997): 137–42. http://dx.doi.org/10.1080/02286203.1997.11760322.
Full textIlinski, Kirill, and Oleg Soloviev. "Stochastic volatility membrane." Wilmott 2004, no. 3 (May 2004): 74–81. http://dx.doi.org/10.1002/wilm.42820040317.
Full textMahatma, Yudi, and Ibnu Hadi. "Stochastic Volatility Estimation of Stock Prices using the Ensemble Kalman Filter." InPrime: Indonesian Journal of Pure and Applied Mathematics 3, no. 2 (November 10, 2021): 136–43. http://dx.doi.org/10.15408/inprime.v3i2.20256.
Full textSun, Ya, Meiyi Wang, and Hua Xie. "Volatility analysis of the flight block time based on the stochastic volatility model." Journal of Physics: Conference Series 2489, no. 1 (May 1, 2023): 012002. http://dx.doi.org/10.1088/1742-6596/2489/1/012002.
Full textDissertations / Theses on the topic "Stochastic Volatility"
Andersson, Kristina. "Stochastic Volatility." Thesis, Uppsala University, Department of Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121722.
Full textGaliotos, Vassilis. "Stochastic Volatility and the Volatility Smile." Thesis, Uppsala University, Department of Mathematics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120151.
Full textLe, Truc. "Stochastic volatility models." Monash University, School of Mathematical Sciences, 2005. http://arrow.monash.edu.au/hdl/1959.1/5181.
Full textZeytun, Serkan. "Stochastic Volatility, A New Approach For Vasicek Model With Stochastic Volatility." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606561/index.pdf.
Full textCap, Thi Diu. "Implied volatility with HJM–type Stochastic Volatility model." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54938.
Full textJacquier, Antoine. "Implied volatility asymptotics under affine stochastic volatility models." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6142.
Full textOzkan, Pelin. "Analysis Of Stochastic And Non-stochastic Volatility Models." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605421/index.pdf.
Full textVavruška, Marek. "Realised stochastic volatility in practice." Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-165381.
Full textHrbek, Filip. "Metody předvídání volatility." Master's thesis, Vysoká škola ekonomická v Praze, 2015. http://www.nusl.cz/ntk/nusl-264689.
Full textLopes, Moreira de Veiga Maria Helena. "Modelling and forecasting stochastic volatility." Doctoral thesis, Universitat Autònoma de Barcelona, 2004. http://hdl.handle.net/10803/4046.
Full textEn mi primer capítulo, intento modelar las principales características de las series financieras, como a persistencia y curtosis. Los modelos de volatilidad estocástica estimados son extensiones directas de los modelos de Gallant y Tauchen (2001), donde incluyo un elemento de retro-alimentación. Este elemento es de extrema importancia porque permite captar el hecho de que períodos de alta volatilidad están, en general, seguidos de periodos de gran volatilidad y viceversa. En este capítulo, como en toda la tesis, uso el método de estimación eficiente de momentos de Gallant y Tauchen (1996). De la estimación surgen dos modelos posibles de describir los datos, el modelo logarítmico con factor de volatilidad y retroalimentación y el modelo logarítmico con dos factores de volatilidad. Como no es posible elegir entre ellos basados en los tests efectuados en la fase de la estimación, tendremos que usar el método de reprogección para obtener mas herramientas de comparación. El modelo con un factor de volatilidad se comporta muy bien y es capaz de captar la "quiebra" de los mercados financieros de 1987.
En el segundo capítulo, hago la evaluación del modelo con dos factores de volatilidad en términos de predicción y comparo esa predicción con las obtenidas con los modelos GARCH y ARFIMA. La evaluación de la predicción para los tres modelos es hecha con la ayuda del R2 de las regresiones individuales de la volatilidad "realizada" en una constante y en las predicciones. Los resultados empíricos indican un mejor comportamiento del modelo en tiempo continuo. Es más, los modelos GARCH y ARFIMA parecen tener problemas en seguir la marcha de la volatilidad "realizada".
Finalmente, en el tercer capítulo hago una extensión del modelo de volatilidad estocástica de memoria larga de Harvey (2003). O sea, introduzco un factor de volatilidad de corto plazo. Este factor extra aumenta la curtosis y ayuda a captar la persistencia (que es captada con un proceso integrado fraccional, como en Harvey (1993)). Los resultados son probados y el modelo implementado empíricamente.
The purpose of my thesis is to model and forecast the volatility of the financial series of returns by using both continuous and discrete time stochastic volatility models.
In my first chapter I try to fit the main characteristics of the financial series of returns such as: volatility persistence, volatility clustering and fat tails of the distribution of the returns.The estimated logarithmic stochastic volatility models are direct extensions of the Gallant and Tauchen's (2001) by including the feedback feature. This feature is of extreme importance because it allows to capture the low variability of the volatility factor when the factor is itself low (volatility clustering) and it also captures the increase in volatility persistence that occurs when there is an apparent change in the pattern of volatility at the very end of the sample. In this chapter, as well as in all the thesis, I use Efficient Method of Moments of Gallant and Tauchen (1996) as an estimation method. From the estimation step, two models come out, the logarithmic model with one factor of volatility and feedback (L1F) and the logarithmic model with two factors of volatility (L2). Since it is not possible to choose between them based on the diagnostics computed at the estimation step, I use the reprojection step to obtain more tools for comparing models. The L1F is able to reproject volatility quite well without even missing the crash of 1987.
In the second chapter I fit the continuous time model with two factors of volatility of Gallant and Tauchen (2001) for the return of a Microsoft share. The aim of this chapter is to evaluate the volatility forecasting performance of the continuous time stochastic volatility model comparatively to the ones obtained with the traditional GARCH and ARFIMA models. In order to inquire into this, I estimate using the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996) a continuous time stochastic volatility model for the logarithm of asset price and I filter the underlying volatility using the reprojection technique of Gallant and Tauchen (1998). Under the assumption that the model is correctly specified, I obtain a consistent estimator of the integrated volatility by fitting a continuous time stochastic volatility model to the data. The forecasting evaluation for the three estimated models is going to be done with the help of the R2 of the individual regressions of realized volatility on the volatility forecasts obtained from the estimated models. The empirical results indicate the better performance of the continuous time model in the out-of-sample periods compared to the ones of the traditional GARCH and ARFIMA models. Further, these two last models show difficulties in tracking the growth pattern of the realized volatility. This probably is due to the change of pattern in volatility in this last part of the sample.
Finally, in the third chapter I come back to the model specification and I extend the long memory stochastic volatility model of Harvey (1993) by introducing a short run volatility factor. This extra factor increases kurtosis and helps the model capturing volatility persistence (that it is captured by a fractionally integrated process as in Harvey (1993) ). Futhermore, considering some restrictions of the parameters it is possible to fit the empirical fact of small first order autocorrelation of squared returns. All these results are proved theoretically and the model is implemented empirically using the S&P 500 composite index returns. The empirical results show the superiority of the model in fitting the main empirical facts of the financial series of returns.
Books on the topic "Stochastic Volatility"
Takahashi, Makoto, Yasuhiro Omori, and Toshiaki Watanabe. Stochastic Volatility and Realized Stochastic Volatility Models. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0935-3.
Full textHafner, Reinhold. Stochastic Implied Volatility. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-17117-8.
Full textStochastic volatility modeling. Boca Raton: CRC Press, 2016.
Find full textFornari, Fabio, and Antonio Mele. Stochastic Volatility in Financial Markets. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4533-0.
Full textHarvey, Andrew. The econometrics of stochastic volatility. London: London School of Economics Financial Markets Group, 1993.
Find full textBishwal, Jaya P. N. Parameter Estimation in Stochastic Volatility Models. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03861-7.
Full textMelino, Angelo. Pricing foreign currency options with stochastic volatility. Toronto: Dept. of Economics; Institute for Policy Analysis, University of Toronto, 1988.
Find full textHafner, Reinhold. Stochastic implied volatility: A factor-based model. Berlin: Springer, 2004.
Find full textSandmann, G. Maximum likelihood estimation of stochastic volatility models. London: London School of Economics, Financial Markets Group, 1996.
Find full textAït-Sahalia, Yacine. Maximum likelihood estimation of stochastic volatility models. Cambridge, MA: National Bureau of Economic Research, 2004.
Find full textBook chapters on the topic "Stochastic Volatility"
Chiarella, Carl, Xue-Zhong He, and Christina Sklibosios Nikitopoulos. "Stochastic Volatility." In Dynamic Modeling and Econometrics in Economics and Finance, 315–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45906-5_15.
Full textAndersen, Torben G., and Luca Benzoni. "Stochastic Volatility." In Complex Systems in Finance and Econometrics, 694–726. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-7701-4_38.
Full textAndersen, Torben G., and Luca Benzoni. "Stochastic Volatility." In Encyclopedia of Complexity and Systems Science, 1–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27737-5_527-3.
Full textLorig, Matthew, and Ronnie Sircar. "Stochastic Volatility." In Financial Signal Processing and Machine Learning, 135–61. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118745540.ch7.
Full textPrivault, Nicolas. "Stochastic Volatility." In Introduction to Stochastic Finance with Market Examples, 249–76. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003298670-8.
Full textAndersen, Torben G., and Luca Benzoni. "Stochastic Volatility." In Encyclopedia of Complexity and Systems Science, 8783–815. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_527.
Full textAusting, Peter. "Stochastic Volatility." In Smile Pricing Explained, 71–95. London: Palgrave Macmillan UK, 2014. http://dx.doi.org/10.1057/9781137335722_7.
Full textTakahashi, Makoto, Yasuhiro Omori, and Toshiaki Watanabe. "Stochastic Volatility Model." In Stochastic Volatility and Realized Stochastic Volatility Models, 7–30. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0935-3_2.
Full textTakahashi, Makoto, Yasuhiro Omori, and Toshiaki Watanabe. "Asymmetric Stochastic Volatility Model." In Stochastic Volatility and Realized Stochastic Volatility Models, 31–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0935-3_3.
Full textTakahashi, Makoto, Yasuhiro Omori, and Toshiaki Watanabe. "Introduction." In Stochastic Volatility and Realized Stochastic Volatility Models, 1–6. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0935-3_1.
Full textConference papers on the topic "Stochastic Volatility"
Tian, Yu, Zili Zhu, Fima Klebaner, and Kais Hamza. "A Hybrid Stochastic Volatility Model Incorporating Local Volatility." In 2012 Fourth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2012. http://dx.doi.org/10.1109/iccis.2012.20.
Full textGonzaga, Alex C. "Seasonal long-memory stochastic volatility." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4826027.
Full textSimandl, Miroslav, and Tomas Soukup. "Gibbs sampler to stochastic volatility models." In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7076061.
Full textHsu, Ai-Chi, Hsiao-Fen Hsiao, and Shih-Jui Yang. "A Grey-Artificial Neural Network Stochastic Volatility Model for Return Volatility." In 2009 International Conference on Management and Service Science (MASS). IEEE, 2009. http://dx.doi.org/10.1109/icmss.2009.5301917.
Full textKanniainen, Juho. "Cause of Stock Return Stochastic Volatility: Query by Way of Stochastic Calculus." In Recent Advances in Stochastic Modeling and Data Analysis. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709691_0003.
Full textYu, Jun, and Zhenlin Yang. "A class of nonlinear stochastic volatility models." In 9th Joint Conference on Information Sciences. Paris, France: Atlantis Press, 2006. http://dx.doi.org/10.2991/jcis.2006.87.
Full textFigà-Talamanca, Gianna, and Maria Letizia Guerra. "Fuzzy Option Value with Stochastic Volatility Models." In 2009 Ninth International Conference on Intelligent Systems Design and Applications. IEEE, 2009. http://dx.doi.org/10.1109/isda.2009.243.
Full textSun, You-fa, Cheng-ke Zhang, and Jing-guang Gao. "Feedback and stochastic volatility stock pricing model." In 2008 International Conference on Management Science and Engineering (ICMSE). IEEE, 2008. http://dx.doi.org/10.1109/icmse.2008.4669069.
Full textDu, Jun, and Yang Liu. "Credit Risk Pricing with Multivariate Stochastic Volatility." In 2009 International Joint Conference on Computational Sciences and Optimization, CSO. IEEE, 2009. http://dx.doi.org/10.1109/cso.2009.50.
Full textTang, J., and S. S. T. Yau. "Exotic option, stochastic volatility and incentive scheme." In COMPUTATIONAL FINANCE 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/cf060181.
Full textReports on the topic "Stochastic Volatility"
Campbell, John, Stefano Giglio, Christopher Polk, and Robert Turley. An Intertemporal CAPM with Stochastic Volatility. Cambridge, MA: National Bureau of Economic Research, September 2012. http://dx.doi.org/10.3386/w18411.
Full textAit-Sahalia, Yacine, and Robert Kimmel. Maximum Likelihood Estimation of Stochastic Volatility Models. Cambridge, MA: National Bureau of Economic Research, June 2004. http://dx.doi.org/10.3386/w10579.
Full textFernandez-Villaverde, Jesus, Pablo Guerrón-Quintana, and Juan Rubio-Ramírez. Estimating Dynamic Equilibrium Models with Stochastic Volatility. Cambridge, MA: National Bureau of Economic Research, September 2012. http://dx.doi.org/10.3386/w18399.
Full textMulligan, Casey. Robust Aggregate Implications of Stochastic Discount Factor Volatility. Cambridge, MA: National Bureau of Economic Research, January 2004. http://dx.doi.org/10.3386/w10210.
Full textKristensen, Dennis, and Shin Kanaya. Estimation of stochastic volatility models by nonparametric filtering. Institute for Fiscal Studies, March 2015. http://dx.doi.org/10.1920/wp.cem.2015.0915.
Full textTrolle, Anders, and Eduardo Schwartz. Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives. Cambridge, MA: National Bureau of Economic Research, December 2006. http://dx.doi.org/10.3386/w12744.
Full textAlizadeh, Sassan, Michael Brandt, and Francis Diebold. High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models. Cambridge, MA: National Bureau of Economic Research, March 2001. http://dx.doi.org/10.3386/w8162.
Full textDiebold, Francis, Frank Schorfheide, and Minchul Shin. Real-Time Forecast Evaluation of DSGE Models with Stochastic Volatility. Cambridge, MA: National Bureau of Economic Research, September 2016. http://dx.doi.org/10.3386/w22615.
Full textBaldivieso, Sebastian. Sensitivity Diagnostics and Adaptive Tuning of the Multivariate Stochastic Volatility Model. Portland State University Library, February 2020. http://dx.doi.org/10.15760/etd.7296.
Full textChacko, George, and Luis Viceira. Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets. Cambridge, MA: National Bureau of Economic Research, October 1999. http://dx.doi.org/10.3386/w7377.
Full text