Academic literature on the topic 'Stochastic neural networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stochastic neural networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stochastic neural networks"
Reddy, BhanuTeja, and Usha J.C. "Prediction of Stock Market using Stochastic Neural Networks." International Journal of Innovative Research in Computer Science & Technology 7, no. 5 (September 2019): 128–38. http://dx.doi.org/10.21276/ijircst.2019.7.5.1.
Full textWong, Eugene. "Stochastic neural networks." Algorithmica 6, no. 1-6 (June 1991): 466–78. http://dx.doi.org/10.1007/bf01759054.
Full textZhou, Wuneng, Xueqing Yang, Jun Yang, and Jun Zhou. "Stochastic Synchronization of Neutral-Type Neural Networks with Multidelays Based onM-Matrix." Discrete Dynamics in Nature and Society 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/826810.
Full textHu, Shigeng, Xiaoxin Liao, and Xuerong Mao. "Stochastic Hopfield neural networks." Journal of Physics A: Mathematical and General 36, no. 9 (February 19, 2003): 2235–49. http://dx.doi.org/10.1088/0305-4470/36/9/303.
Full textGao, Zhan, Elvin Isufi, and Alejandro Ribeiro. "Stochastic Graph Neural Networks." IEEE Transactions on Signal Processing 69 (2021): 4428–43. http://dx.doi.org/10.1109/tsp.2021.3092336.
Full textSAKTHIVEL, RATHINASAMY, R. SAMIDURAI, and S. MARSHAL ANTHONI. "EXPONENTIAL STABILITY FOR STOCHASTIC NEURAL NETWORKS OF NEUTRAL TYPE WITH IMPULSIVE EFFECTS." Modern Physics Letters B 24, no. 11 (May 10, 2010): 1099–110. http://dx.doi.org/10.1142/s0217984910023141.
Full textWu, Chunmei, Junhao Hu, and Yan Li. "Robustness Analysis of Hybrid Stochastic Neural Networks with Neutral Terms and Time-Varying Delays." Discrete Dynamics in Nature and Society 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/278571.
Full textKanarachos, Andreas E., and Kleanthis T. Geramanis. "Semi-Stochastic Complex Neural Networks." IFAC Proceedings Volumes 31, no. 12 (June 1998): 47–52. http://dx.doi.org/10.1016/s1474-6670(17)36040-8.
Full textPeretto, Pierre, and Jean-jacques Niez. "Stochastic Dynamics of Neural Networks." IEEE Transactions on Systems, Man, and Cybernetics 16, no. 1 (January 1986): 73–83. http://dx.doi.org/10.1109/tsmc.1986.289283.
Full textHurtado, Jorge E. "Neural networks in stochastic mechanics." Archives of Computational Methods in Engineering 8, no. 3 (September 2001): 303–42. http://dx.doi.org/10.1007/bf02736646.
Full textDissertations / Theses on the topic "Stochastic neural networks"
Pensuwon, Wanida. "Stochastic dynamic hierarchical neural networks." Thesis, University of Hertfordshire, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366030.
Full textCAMPOS, LUCIANA CONCEICAO DIAS. "PERIODIC STOCHASTIC MODEL BASED ON NEURAL NETWORKS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17076@1.
Full textProcesso Estocástico é um ramo da teoria da probabilidade onde se define um conjunto de modelos que permitem o estudo de problemas com componentes aleatórias. Muitos problemas reais apresentam características complexas, tais como não-linearidade e comportamento caótico, que necessitam de modelos capazes de capturar as reais características do problema para obter um tratamento apropriado. Porém, os modelos existentes ou são lineares, cuja aplicabilidade a esses problemas pode ser inadequada, ou necessitam de uma formulação complexa, onde a aplicabilidade é limitada e específica ao problema, ou dependem de suposições a priori sobre o comportamento do problema para poderem ser aplicados. Isso motivou a elaboração de um novo modelo de processo estocástico genérico, intrinsecamente não-linear, que possa ser aplicado em uma gama de problemas de fenômenos não-lineares, de comportamento altamente estocástico, e até mesmo com características periódicas. Como as redes neurais artificiais são modelos paramétricos não-lineares, simples de entendimento e implementação, capazes de capturar comportamentos de variados tipos de problemas, decidiu-se então utilizá-las como base do novo modelo proposto nessa tese, que é denominado Processo Estocástico Neural. A não-linearidade, obtida através das redes neurais desse processo estocástico, permite que se capture adequadamente o comportamento da série histórica de problemas de fenômenos não-lineares, com características altamente estocásticas e até mesmo periódicas. O objetivo é usar esse modelo para gerar séries temporais sintéticas, igualmente prováveis à série histórica, na solução desses tipos de problemas, como por exemplo os problemas que envolvem fenômenos climatológicos, econômicos, entre outros. Escolheu-se, como estudo de caso dessa tese, aplicar o modelo proposto no tratamento de afluências mensais sob o contexto do planejamento da operação do sistema hidrotérmico brasileiro. Os resultados mostraram que o Processo Estocástico Neural consegue gerar séries sintéticas com características similares às séries históricas de afluências mensais.
Stochastic Process is a branch of probability theory which defines a set of templates that allow the study of problems with random components. Many real problems exhibit complex characteristics such as nonlinearity and chaotic behavior, which require models capable of capture the real characteristics of the problem for a appropriate treatment. However, existing models have limited application to certain problems or because they are linear models (whose application gets results inconsistent or inadequate) or because they require a complex formulation or depend on a priori assumptions about the behavior of the problem, which requires a knowledge the problem at a level of detail that there is not always available. This motivated the development of a model stochastic process based on neural networks, so that is generic to be applied in a range of problems involving highly stochastic phenomena of behavior and also can be applied to phenomena that have periodic characteristics. As artificial neural networks are non-linear models, simple to understand and implementation, able to capture behaviors of varied types problems, then decided to use them as the basis of new model proposed in this thesis, which is an intrinsically non-linear model, called the Neural Stochastic Process. Through neural networks that stochastic process, can adequately capture the behavior problems of the series of phenomena with features highly stochastic and / or periodical. The goal is to use this model to generate synthetic time series, equally likely to historical series, in solution of various problems, eg problems phenomena involving climatology, economic, among others. It was chosen as a case study of this thesis, applying the model proposed in the treatment of monthly inflows in the context of operation planning of the Brazilian hydrothermal system. The Results showed that the process can Stochastic Neural generate synthetic series of similar characteristics to the historical monthly inflow series.
Sutherland, Connie. "Spatio-temporal feedback in stochastic neural networks." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27559.
Full textLing, Hong. "Implementation of Stochastic Neural Networks for Approximating Random Processes." Master's thesis, Lincoln University. Environment, Society and Design Division, 2007. http://theses.lincoln.ac.nz/public/adt-NZLIU20080108.124352/.
Full textZhao, Jieyu. "Stochastic bit stream neural networks : theory, simulations and applications." Thesis, Royal Holloway, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338916.
Full textHyland, P. "On the implementation of neural networks using stochastic arithmetic." Thesis, Bangor University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306224.
Full textTodeschi, Tiziano. "Calibration of local-stochastic volatility models with neural networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23052/.
Full text陳穎志 and Wing-chi Chan. "Modelling of nonlinear stochastic systems using neural and neurofuzzy networks." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31241475.
Full textChan, Wing-chi. "Modelling of nonlinear stochastic systems using neural and neurofuzzy networks /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22925843.
Full textRising, Barry John Paul. "Hardware architectures for stochastic bit-stream neural networks : design and implementation." Thesis, Royal Holloway, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326219.
Full textBooks on the topic "Stochastic neural networks"
Zhou, Wuneng, Jun Yang, Liuwei Zhou, and Dongbing Tong. Stability and Synchronization Control of Stochastic Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47833-2.
Full textInternational Conference on Applied Stochastic Models and Data Analysis (12th : 2007 : Chania, Greece), ed. Advances in data analysis: Theory and applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks. Boston: Birkhäuser, 2010.
Find full textZhu, Q. M. Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1994.
Find full textThathachar, Mandayam A. L. Networks of learning automata: Techniques for online stochastic optimization. Boston, MA: Kluwer Academic, 2003.
Find full textS, Sastry P., ed. Networks of learning automata: Techniques for online stochastic optimization. Boston: Kluwer Academic, 2004.
Find full textFocus, Symposium on Learning and Adaptation in Stochastic and Statistical Systems (2001 Baden-Baden Germany). Proceedings of the Focus Symposium on Learning and Adaptation in Stochastic and Statistical Systems. Windsor, Ont: International Institute for Advanced Studies in Systems Research and Cybernetics, 2002.
Find full textCurram, Stephen. representing intelligent decision making in discrete event simulation: a stochastic neural network approach. [s.l.]: typescript, 1997.
Find full textFalmagne, Jean-Claude, David Eppstein, Christopher Doble, Dietrich Albert, and Xiangen Hu. Knowledge spaces: Applications in education. Heidelberg: Springer, 2013.
Find full textFalmagne, Jean-Claude. Knowledge Spaces: Applications in Education. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textHangartner, Ricky Dale. Probabilistic computation in stochastic pulse neuromime networks. 1994.
Find full textBook chapters on the topic "Stochastic neural networks"
Rojas, Raúl. "Stochastic Networks." In Neural Networks, 371–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61068-4_14.
Full textMüller, Berndt, and Joachim Reinhardt. "Stochastic Neurons." In Neural Networks, 37–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97239-3_4.
Full textMüller, Berndt, Joachim Reinhardt, and Michael T. Strickland. "Stochastic Neurons." In Neural Networks, 38–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57760-4_4.
Full textHänggi, Martin, and George S. Moschytz. "Stochastic Optimization." In Cellular Neural Networks, 101–25. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3220-7_6.
Full textRennolls, Keith, Alan Soper, Phil Robbins, and Ray Guthrie. "Stochastic Neural Networks." In ICANN ’93, 481. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2063-6_122.
Full textZhang, Yumin, Lei Guo, Lingyao Wu, and Chunbo Feng. "On Stochastic Neutral Neural Networks." In Advances in Neural Networks — ISNN 2005, 69–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427391_10.
Full textSiegelmann, Hava T. "Stochastic Dynamics." In Neural Networks and Analog Computation, 121–39. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-0707-8_9.
Full textGolea, Mostefa, Masahiro Matsuoka, and Yasubumi Sakakibara. "Stochastic simple recurrent neural networks." In Grammatical Interference: Learning Syntax from Sentences, 262–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0033360.
Full textHidalgo, Jorge, Luís F. Seoane, Jesús M. Cortés, and Miguel A. Muñoz. "Stochastic Amplification in Neural Networks." In Trends in Mathematics, 45–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08138-0_9.
Full textHerve, Thierry, Olivier Francois, and Jacques Demongeot. "Markovian spatial properties of a random field describing a stochastic neural network: Sequential or parallel implementation?" In Neural Networks, 81–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52255-7_29.
Full textConference papers on the topic "Stochastic neural networks"
Gao, Zhan, Elvin Isufi, and Alejandro Ribeiro. "Stochastic Graph Neural Networks." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054424.
Full textZhao, J. "Stochastic connection neural networks." In 4th International Conference on Artificial Neural Networks. IEE, 1995. http://dx.doi.org/10.1049/cp:19950525.
Full textChien, Jen-Tzung, and Yu-Min Huang. "Stochastic Convolutional Recurrent Networks." In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9206970.
Full textGalan-Prado, Fabio, Alejandro Moran, Joan Font, Miquel Roca, and Josep L. Rossello. "Stochastic Radial Basis Neural Networks." In 2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS). IEEE, 2019. http://dx.doi.org/10.1109/patmos.2019.8862129.
Full textRamakrishnan, Swathika, and Dhireesha Kudithipudi. "On accelerating stochastic neural networks." In NANOCOM '17: ACM The Fourth Annual International Conference on Nanoscale Computing and Communication. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3109453.3123959.
Full textWeller, Dennis D., Nathaniel Bleier, Michael Hefenbrock, Jasmin Aghassi-Hagmann, Michael Beigl, Rakesh Kumar, and Mehdi B. Tahoori. "Printed Stochastic Computing Neural Networks." In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021. http://dx.doi.org/10.23919/date51398.2021.9474254.
Full textGulshad, Sadaf, Dick Sigmund, and Jong-Hwan Kim. "Learning to reproduce stochastic time series using stochastic LSTM." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965942.
Full textNikolic, Konstantin P., and Ivan B. Scepanovic. "Stochastic search-based neural networks learning algorithms." In 2008 9th Symposium on Neural Network Applications in Electrical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/neurel.2008.4685579.
Full textJuuti, Mika, Francesco Corona, and Juha Karhunen. "Stochastic Discriminant Analysis." In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280609.
Full textKosko, B. "Stochastic competitive learning." In 1990 IJCNN International Joint Conference on Neural Networks. IEEE, 1990. http://dx.doi.org/10.1109/ijcnn.1990.137718.
Full textReports on the topic "Stochastic neural networks"
Burton, Robert M., and Jr. Topics in Stochastics, Symbolic Dynamics and Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, December 1996. http://dx.doi.org/10.21236/ada336426.
Full text