Dissertations / Theses on the topic 'Stochastic modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stochastic modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ozkan, Erhun. "Stochastic Inventory Modelling." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12612097/index.pdf.
Full textBaduraliya, Chaminda Hasitha. "Stochastic modelling in finance." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16938.
Full textChen, Peng. "Modelling the Stochastic Correlation." Thesis, KTH, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188501.
Full textI det här examensarbetet fokuserar vi främst på att studera korrelation mellan aktier. Korrelationen mellan aktier har fått allt större uppmärksamhet. Vanligtvis antas korrelation vara konstant, trots att empiriska studier antyder att den är tidsvarierande. I det här examensarbetet studerar vi egenskaper hos korrelationen mellan Wienerprocesser och inför en stokastisk korrelationsmodell. Baserat på kalibreringsmetoder av Zetocha implementerar vi kalibrering för en ny uppsättning av marknadsdata.
Lopes, Moreira de Veiga Maria Helena. "Modelling and forecasting stochastic volatility." Doctoral thesis, Universitat Autònoma de Barcelona, 2004. http://hdl.handle.net/10803/4046.
Full textEn mi primer capítulo, intento modelar las principales características de las series financieras, como a persistencia y curtosis. Los modelos de volatilidad estocástica estimados son extensiones directas de los modelos de Gallant y Tauchen (2001), donde incluyo un elemento de retro-alimentación. Este elemento es de extrema importancia porque permite captar el hecho de que períodos de alta volatilidad están, en general, seguidos de periodos de gran volatilidad y viceversa. En este capítulo, como en toda la tesis, uso el método de estimación eficiente de momentos de Gallant y Tauchen (1996). De la estimación surgen dos modelos posibles de describir los datos, el modelo logarítmico con factor de volatilidad y retroalimentación y el modelo logarítmico con dos factores de volatilidad. Como no es posible elegir entre ellos basados en los tests efectuados en la fase de la estimación, tendremos que usar el método de reprogección para obtener mas herramientas de comparación. El modelo con un factor de volatilidad se comporta muy bien y es capaz de captar la "quiebra" de los mercados financieros de 1987.
En el segundo capítulo, hago la evaluación del modelo con dos factores de volatilidad en términos de predicción y comparo esa predicción con las obtenidas con los modelos GARCH y ARFIMA. La evaluación de la predicción para los tres modelos es hecha con la ayuda del R2 de las regresiones individuales de la volatilidad "realizada" en una constante y en las predicciones. Los resultados empíricos indican un mejor comportamiento del modelo en tiempo continuo. Es más, los modelos GARCH y ARFIMA parecen tener problemas en seguir la marcha de la volatilidad "realizada".
Finalmente, en el tercer capítulo hago una extensión del modelo de volatilidad estocástica de memoria larga de Harvey (2003). O sea, introduzco un factor de volatilidad de corto plazo. Este factor extra aumenta la curtosis y ayuda a captar la persistencia (que es captada con un proceso integrado fraccional, como en Harvey (1993)). Los resultados son probados y el modelo implementado empíricamente.
The purpose of my thesis is to model and forecast the volatility of the financial series of returns by using both continuous and discrete time stochastic volatility models.
In my first chapter I try to fit the main characteristics of the financial series of returns such as: volatility persistence, volatility clustering and fat tails of the distribution of the returns.The estimated logarithmic stochastic volatility models are direct extensions of the Gallant and Tauchen's (2001) by including the feedback feature. This feature is of extreme importance because it allows to capture the low variability of the volatility factor when the factor is itself low (volatility clustering) and it also captures the increase in volatility persistence that occurs when there is an apparent change in the pattern of volatility at the very end of the sample. In this chapter, as well as in all the thesis, I use Efficient Method of Moments of Gallant and Tauchen (1996) as an estimation method. From the estimation step, two models come out, the logarithmic model with one factor of volatility and feedback (L1F) and the logarithmic model with two factors of volatility (L2). Since it is not possible to choose between them based on the diagnostics computed at the estimation step, I use the reprojection step to obtain more tools for comparing models. The L1F is able to reproject volatility quite well without even missing the crash of 1987.
In the second chapter I fit the continuous time model with two factors of volatility of Gallant and Tauchen (2001) for the return of a Microsoft share. The aim of this chapter is to evaluate the volatility forecasting performance of the continuous time stochastic volatility model comparatively to the ones obtained with the traditional GARCH and ARFIMA models. In order to inquire into this, I estimate using the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996) a continuous time stochastic volatility model for the logarithm of asset price and I filter the underlying volatility using the reprojection technique of Gallant and Tauchen (1998). Under the assumption that the model is correctly specified, I obtain a consistent estimator of the integrated volatility by fitting a continuous time stochastic volatility model to the data. The forecasting evaluation for the three estimated models is going to be done with the help of the R2 of the individual regressions of realized volatility on the volatility forecasts obtained from the estimated models. The empirical results indicate the better performance of the continuous time model in the out-of-sample periods compared to the ones of the traditional GARCH and ARFIMA models. Further, these two last models show difficulties in tracking the growth pattern of the realized volatility. This probably is due to the change of pattern in volatility in this last part of the sample.
Finally, in the third chapter I come back to the model specification and I extend the long memory stochastic volatility model of Harvey (1993) by introducing a short run volatility factor. This extra factor increases kurtosis and helps the model capturing volatility persistence (that it is captured by a fractionally integrated process as in Harvey (1993) ). Futhermore, considering some restrictions of the parameters it is possible to fit the empirical fact of small first order autocorrelation of squared returns. All these results are proved theoretically and the model is implemented empirically using the S&P 500 composite index returns. The empirical results show the superiority of the model in fitting the main empirical facts of the financial series of returns.
Löfdahl, Björn. "Stochastic modelling in disability insurance." Licentiate thesis, KTH, Matematisk statistik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134233.
Full textQC 20131204
Currie, James. "Stochastic modelling of TCR binding." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590430.
Full textTsang, Wai-yin, and 曾慧賢. "Aspects of modelling stochastic volatility." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31223515.
Full textFerreira, Jose Antonio de Sousa Jorge. "Some contributions to stochastic modelling." Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312790.
Full textLuo, Yang. "Stochastic modelling in biological systems." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610145.
Full textDalton, Rowan. "Modelling stochastic multi-curve basis." Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27102.
Full textTsang, Wai-yin. "Aspects of modelling stochastic volatility /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22078952.
Full textSahoo, Anita. "Stochastic modelling of tumour growth." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501402.
Full textMalada, Awelani. "Stochastic reliability modelling for complex systems." Thesis, Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-10182006-170927.
Full textAlisar, Ibrahim. "Stochastic Modelling Of Wind Energy Generation." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614930/index.pdf.
Full textMenz, William Jefferson. "Stochastic modelling of silicon nanoparticle synthesis." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245146.
Full textStrubbe, Stefan Nicolaas. "Compositional modelling of stochastic hybrid systems." Enschede : University of Twente [Host], 2005. http://doc.utwente.nl/50865.
Full textBujorianu, Manuela-Luminita. "Stochastic hybrid system : modelling and verification." Thesis, University of Stirling, 2005. http://hdl.handle.net/1893/3451.
Full textMcNaught, Kenneth R. "Extensions of stochastic combat modelling methodology." Thesis, Cranfield University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266484.
Full textPham, Duy. "Markov-functional and stochastic volatility modelling." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55161/.
Full textPowell, Jonathan. "Stochastic modelling of atmospheric gravity waves." Thesis, University of Edinburgh, 2004. http://hdl.handle.net/1842/15652.
Full textHe, Enuo. "Stochastic modelling of the cell cycle." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:04185cde-85af-4e24-8d06-94b865771cf1.
Full textObisesan, Abayomi. "Stochastic damage modelling of ship collisions." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231845.
Full textAlbertyn, Martin. "Generic simulation modelling of stochastic continuous systems." Thesis, Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-05242005-112442.
Full textBarbu, Monica Constanta. "Stochastic modelling applications in continuous time finance /." [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18290.pdf.
Full textde, la Cruz Moreno Roberto. "Stochastic multi-scale modelling of tumour growth." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457590.
Full textCancer is one of the principal causes of death in the world . Despite all the resources invested in research for the development of new targeted therapies, the most used treatments to fight cancer continue to be non-specific therapies, such as surgery, radiotherapy and chemotherapy, that affect both healthy and cancer cells. In contraposition to unspecific therapies, an alternative approach has been used in medicine that is commonly referred to as the magic bullet to guide the development of new targeted therapies. The concept consists of finding a drug with a specific target (gene, protein, etc.) implicated at a particular stage of development of the disease by killing just unhealthy cells whilst leaving normal cells unharmed. Although it is not a new approach, its impact on complex diseases has been discreet . The lack of effectiveness of the magic bullet approach brings about two questions: Why does that approach fail in the case of cancer? and What do we do to improve its effectiveness? . The behaviour and traits of biological systems are influenced by a complex network of interactions between genes and gene products which regulate gene expression. The non-linear, high-dimensional dynamical structures have undergone evolutionary changes by natural selection. As time progresses, the resilience of the phenotype against genetic alteration increases allowing canalisation (the ability to become more robust). Particularly, in malignancies these properties and structures are exploited by the tumour to increase its proliferative potential and resist therapies. The layers of complexities involved within the system, induce difficulties in predicting the effect of a perturbation applied in the system. In order to successfully address the issues, a huge amount of research has been undertaken involving analysis and development of multi-scale models. These models incorporate different sub-models corresponding to different biological levels such that the global tissue behaviour could be analysed as an emergent property of the coupled elements. Multi-scale models are known to be affected by a number of issues. The principal aim of this thesis is the formulation and analysis of stochastic multi-scale model of the dynamics of cellular populations that shed light on: • The effects of coupling between intrinsic fluctuations at the intracellular and population levels. We aim to establish how the different sources of noise affect global properties of growing tumours, such as the speed of invasion. • Derive coarse-grained limits of these models so that the parameters of the multi- scale models can be lumped together into a smaller number of parameters. This will facilitate the task of parameter estimation. • To formulate hybrid methods which allow us to simulate larger systems while losing none of the essential features of the multi-scale system. To this end, we establish a systematic way to consider the noise in multi-scale models.
Chaleeraktrakoon, Chavalit. "Stochastic modelling and simulation of streamflow processes." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28704.
Full textGregotski, Mark Edward. "Fractal stochastic modelling of airborne magnetic data." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74300.
Full textFrom a data modelling viewpoint, the magnetic measurements are derived from a linear superposition of a deterministic system function and a stochastic excitation process. A symmetric operator corresponds to the system function, and the near-surface magnetic source distribution represents the excitation process. The deconvolution procedure assumes an autoregressive (AR) system function and proceeds iteratively using bi-directional AR (BDAR) filtering in one dimension, which is extended to four-pass AR filtering in two dimensions. The traditional assumption of a spectrally white innovation is used in the deconvolution procedure. The data are modified prior to deconvolution by a Fourier domain prewhitening technique, to account for the long wavelength content of the fractal innovation. Deconvolution of the modified data produces the system function, which is removed from the original data to produce the near-surface magnetic source distribution. This distribution serves as a susceptibility map which can be used for enhancing magnetic field anomalies and geological mapping. Thus, the statistical descriptions of near-surface magnetic sources are useful for modelling airborne magnetic data in "shield-type" geologic environments.
Turfus, C. "Stochastic modelling of turbulent dispersion near surfaces." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333097.
Full textLi, Guangquan. "Stochastic modelling of carcinogenesis : theory and application." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486378.
Full textHuang, Hong-Chih. "Stochastic modelling and control of pension plans." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/549.
Full textSerrano, Rico Alan Edwin. "Stochastic Information Technology Modelling for Business Processes." Thesis, Brunel University, 2002. http://bura.brunel.ac.uk/handle/2438/2035.
Full textConway, Eunan Martin. "Stochastic modelling and forecasting of solar radiation." Thesis, Northumbria University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367414.
Full textBradley, Jeremy Thomas. "Towards reliable modelling with stochastic process algebras." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302166.
Full textGraham, D. P. "Stochastic modelling and analysis of construction processes." Thesis, University of Edinburgh, 2005. http://hdl.handle.net/1842/12054.
Full textZverovich, Victor. "Modelling and solution methods for stochastic optimisation." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/5922.
Full textSzekely, Tamas. "Stochastic modelling and simulation in cell biology." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.
Full textDay, Mark Stephen. "Stochastic modelling of lymphocyte dynamics and interactions." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/5274/.
Full textMorgan, Meirion. "Reaction problems in stochastic chemistry." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301256.
Full textHa, Minh Thien. "Modelling of stochastic and quasi-periodic texture images /." [S.l.] : [s.n.], 1989. http://library.epfl.ch/theses/?nr=804.
Full textVan, Loon Jasper. "Functional and stochastic modelling of satellite gravity data /." Delft : NCG Nederlandse Commissie voor Geodesie, 2008. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=9789061323075.
Full textKholtygin, A. F. "Modelling the induced clumping stochastic line profile variability." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1818/.
Full textOnof, Christian. "Stochastic modelling of British rainfall using Poisson processes." Thesis, Imperial College London, 1992. http://hdl.handle.net/10044/1/8718.
Full textWang, Xi. "Smoothing with application to stochastic fire growth modelling." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62501.
Full textIrving K. Barber School of Arts and Sciences (Okanagan)
Mathematics, Department of (Okanagan)
Graduate
Lozano, Torrubia Pablo. "Stochastic modelling of abrasive waterjet controlled-depth machining." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/35119/.
Full textLim, Shen Hin Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Calibration-free image sensor modelling: deterministic and stochastic." Awarded by:University of New South Wales. Mechanical & Manufacturing Engineering, 2009. http://handle.unsw.edu.au/1959.4/44563.
Full textCao, Robin [Verfasser]. "Hierarchical stochastic modelling in multistable perception / Robin Cao." Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1138276545/34.
Full textFerrero, Charlie David. "Stochastic modelling of thermal histories in sedimentary basins." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.408156.
Full textBlackwell, Paul Gavin. "The stochastic modelling of social and territorial behaviour." Thesis, University of Nottingham, 1990. http://eprints.nottingham.ac.uk/13594/.
Full textZhang, Wenjuan. "Stochastic modelling and applications in condition-based maintenance." Thesis, University of Salford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409365.
Full textKeenan, Christopher Ryan. "Stochastic modelling for high fidelity DPGS quality assessment." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249721.
Full text