Academic literature on the topic 'Stochastic modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stochastic modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stochastic modelling"
Varetsky, Y., and Z. Hanzelka. "STOCHASTIC MODELLING OF A HYBRID RENEWABLE ENERGY SYSTEM." Tekhnichna Elektrodynamika 2016, no. 2 (March 10, 2016): 58–62. http://dx.doi.org/10.15407/techned2016.02.058.
Full textDobrow, Robert P. "Applied Stochastic Modelling." Technometrics 44, no. 1 (February 2002): 91. http://dx.doi.org/10.1198/tech.2002.s667.
Full textAlbert, Jim. "Applied Stochastic Modelling." Journal of the American Statistical Association 97, no. 457 (March 2002): 354–55. http://dx.doi.org/10.1198/jasa.2002.s448.
Full textAuton, Tim. "Applied Stochastic Modelling." Journal of the Royal Statistical Society: Series D (The Statistician) 52, no. 2 (July 2003): 244. http://dx.doi.org/10.1111/1467-9884.t01-2-00356.
Full textHartley, R., M. H. A. Davies, and R. B. Vintner. "Stochastic Modelling and Control." Journal of the Operational Research Society 37, no. 9 (September 1986): 928. http://dx.doi.org/10.2307/2582813.
Full textBlokker, Mirjam. "Stochastic Water Demand Modelling." Water Intelligence Online 10 (2011): 9781780400853. http://dx.doi.org/10.2166/9781780400853.
Full textStemler, Thomas, Johannes P. Werner, Hartmut Benner, and Wolfram Just. "Stochastic modelling of intermittency." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1910 (January 13, 2010): 273–84. http://dx.doi.org/10.1098/rsta.2009.0196.
Full textHartley, R. "Stochastic Modelling and Control." Journal of the Operational Research Society 37, no. 9 (November 1986): 928–29. http://dx.doi.org/10.1057/jors.1986.158.
Full textJones, P. W. "Stochastic Modelling and Analysis." Technometrics 30, no. 3 (August 1988): 361. http://dx.doi.org/10.1080/00401706.1988.10488425.
Full textCui, Lirong, and Haitao Liao. "Stochastic modelling with applications." IMA Journal of Management Mathematics 32, no. 1 (September 7, 2020): 1–2. http://dx.doi.org/10.1093/imaman/dpaa018.
Full textDissertations / Theses on the topic "Stochastic modelling"
Ozkan, Erhun. "Stochastic Inventory Modelling." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12612097/index.pdf.
Full textBaduraliya, Chaminda Hasitha. "Stochastic modelling in finance." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=16938.
Full textChen, Peng. "Modelling the Stochastic Correlation." Thesis, KTH, Matematisk statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188501.
Full textI det här examensarbetet fokuserar vi främst på att studera korrelation mellan aktier. Korrelationen mellan aktier har fått allt större uppmärksamhet. Vanligtvis antas korrelation vara konstant, trots att empiriska studier antyder att den är tidsvarierande. I det här examensarbetet studerar vi egenskaper hos korrelationen mellan Wienerprocesser och inför en stokastisk korrelationsmodell. Baserat på kalibreringsmetoder av Zetocha implementerar vi kalibrering för en ny uppsättning av marknadsdata.
Lopes, Moreira de Veiga Maria Helena. "Modelling and forecasting stochastic volatility." Doctoral thesis, Universitat Autònoma de Barcelona, 2004. http://hdl.handle.net/10803/4046.
Full textEn mi primer capítulo, intento modelar las principales características de las series financieras, como a persistencia y curtosis. Los modelos de volatilidad estocástica estimados son extensiones directas de los modelos de Gallant y Tauchen (2001), donde incluyo un elemento de retro-alimentación. Este elemento es de extrema importancia porque permite captar el hecho de que períodos de alta volatilidad están, en general, seguidos de periodos de gran volatilidad y viceversa. En este capítulo, como en toda la tesis, uso el método de estimación eficiente de momentos de Gallant y Tauchen (1996). De la estimación surgen dos modelos posibles de describir los datos, el modelo logarítmico con factor de volatilidad y retroalimentación y el modelo logarítmico con dos factores de volatilidad. Como no es posible elegir entre ellos basados en los tests efectuados en la fase de la estimación, tendremos que usar el método de reprogección para obtener mas herramientas de comparación. El modelo con un factor de volatilidad se comporta muy bien y es capaz de captar la "quiebra" de los mercados financieros de 1987.
En el segundo capítulo, hago la evaluación del modelo con dos factores de volatilidad en términos de predicción y comparo esa predicción con las obtenidas con los modelos GARCH y ARFIMA. La evaluación de la predicción para los tres modelos es hecha con la ayuda del R2 de las regresiones individuales de la volatilidad "realizada" en una constante y en las predicciones. Los resultados empíricos indican un mejor comportamiento del modelo en tiempo continuo. Es más, los modelos GARCH y ARFIMA parecen tener problemas en seguir la marcha de la volatilidad "realizada".
Finalmente, en el tercer capítulo hago una extensión del modelo de volatilidad estocástica de memoria larga de Harvey (2003). O sea, introduzco un factor de volatilidad de corto plazo. Este factor extra aumenta la curtosis y ayuda a captar la persistencia (que es captada con un proceso integrado fraccional, como en Harvey (1993)). Los resultados son probados y el modelo implementado empíricamente.
The purpose of my thesis is to model and forecast the volatility of the financial series of returns by using both continuous and discrete time stochastic volatility models.
In my first chapter I try to fit the main characteristics of the financial series of returns such as: volatility persistence, volatility clustering and fat tails of the distribution of the returns.The estimated logarithmic stochastic volatility models are direct extensions of the Gallant and Tauchen's (2001) by including the feedback feature. This feature is of extreme importance because it allows to capture the low variability of the volatility factor when the factor is itself low (volatility clustering) and it also captures the increase in volatility persistence that occurs when there is an apparent change in the pattern of volatility at the very end of the sample. In this chapter, as well as in all the thesis, I use Efficient Method of Moments of Gallant and Tauchen (1996) as an estimation method. From the estimation step, two models come out, the logarithmic model with one factor of volatility and feedback (L1F) and the logarithmic model with two factors of volatility (L2). Since it is not possible to choose between them based on the diagnostics computed at the estimation step, I use the reprojection step to obtain more tools for comparing models. The L1F is able to reproject volatility quite well without even missing the crash of 1987.
In the second chapter I fit the continuous time model with two factors of volatility of Gallant and Tauchen (2001) for the return of a Microsoft share. The aim of this chapter is to evaluate the volatility forecasting performance of the continuous time stochastic volatility model comparatively to the ones obtained with the traditional GARCH and ARFIMA models. In order to inquire into this, I estimate using the Efficient Method of Moments (EMM) of Gallant and Tauchen (1996) a continuous time stochastic volatility model for the logarithm of asset price and I filter the underlying volatility using the reprojection technique of Gallant and Tauchen (1998). Under the assumption that the model is correctly specified, I obtain a consistent estimator of the integrated volatility by fitting a continuous time stochastic volatility model to the data. The forecasting evaluation for the three estimated models is going to be done with the help of the R2 of the individual regressions of realized volatility on the volatility forecasts obtained from the estimated models. The empirical results indicate the better performance of the continuous time model in the out-of-sample periods compared to the ones of the traditional GARCH and ARFIMA models. Further, these two last models show difficulties in tracking the growth pattern of the realized volatility. This probably is due to the change of pattern in volatility in this last part of the sample.
Finally, in the third chapter I come back to the model specification and I extend the long memory stochastic volatility model of Harvey (1993) by introducing a short run volatility factor. This extra factor increases kurtosis and helps the model capturing volatility persistence (that it is captured by a fractionally integrated process as in Harvey (1993) ). Futhermore, considering some restrictions of the parameters it is possible to fit the empirical fact of small first order autocorrelation of squared returns. All these results are proved theoretically and the model is implemented empirically using the S&P 500 composite index returns. The empirical results show the superiority of the model in fitting the main empirical facts of the financial series of returns.
Löfdahl, Björn. "Stochastic modelling in disability insurance." Licentiate thesis, KTH, Matematisk statistik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134233.
Full textQC 20131204
Currie, James. "Stochastic modelling of TCR binding." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590430.
Full textTsang, Wai-yin, and 曾慧賢. "Aspects of modelling stochastic volatility." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31223515.
Full textFerreira, Jose Antonio de Sousa Jorge. "Some contributions to stochastic modelling." Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312790.
Full textLuo, Yang. "Stochastic modelling in biological systems." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610145.
Full textDalton, Rowan. "Modelling stochastic multi-curve basis." Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27102.
Full textBooks on the topic "Stochastic modelling"
Luo, Xiaoguang. GPS Stochastic Modelling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34836-5.
Full textMorgan, Byron J. T. Applied stochastic modelling. 2nd ed. Boca Raton: Chapman & Hall/CRC, 2008.
Find full textDavis, M. H. A., and R. B. Vinter. Stochastic Modelling and Control. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4828-0.
Full textGermani, Alfredo, ed. Stochastic Modelling and Filtering. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0009045.
Full textIndia) International Conference on Stochastic Modelling (2002 Cochin. Advances in stochastic modelling. Edited by Artalejo J. R, Krishnamoorthy A, and International Workshop on Retrial Queues (4th : 2002 : Cochin, India). Neshanic Station, NJ: Notable Publications, 2002.
Find full textB, Vinter R., ed. Stochastic modelling and control. London: Chapman and Hall, 1985.
Find full textWilkinson, Darren James. Stochastic modelling for systems biology. 2nd ed. Boca Raton: Taylor & Francis, 2012.
Find full textChrister, Anthony H., Shunji Osaki, and Lyn C. Thomas, eds. Stochastic Modelling in Innovative Manufacturing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59105-1.
Full textAdler, Robert J., Peter Müller, and Boris L. Rozovskii, eds. Stochastic Modelling in Physical Oceanography. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4612-2430-3.
Full textHübl, Alexander. Stochastic Modelling in Production Planning. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-19120-7.
Full textBook chapters on the topic "Stochastic modelling"
Ghosh, Anindya, Bapi Saha, and Prithwiraj Mal. "Stochastic Modelling." In Textile Engineering, 411–32. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003081234-12.
Full textSerovajsky, Simon. "Stochastic models." In Mathematical Modelling, 339–60. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003035602-18.
Full textHaas, Peter J. "Modelling Power." In Stochastic Petri Nets, 111–43. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/0-387-21552-2_4.
Full textTeng, Long, Matthias Ehrhardt, and Michael Günther. "Modelling Stochastic Correlation." In Mathematics in Industry, 113–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23413-7_14.
Full textLindenschmidt, Karl-Erich. "Stochastic Modelling Framework." In River Ice Processes and Ice Flood Forecasting, 175–228. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28679-8_8.
Full textLindenschmidt, Karl-Erich. "Stochastic Modelling Framework." In River Ice Processes and Ice Flood Forecasting, 195–252. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-49088-0_8.
Full textDavis, M. H. A., and R. B. Vinter. "Stochastic models." In Stochastic Modelling and Control, 60–99. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4828-0_2.
Full textRenard, Philippe, Andres Alcolea, and David Ginsbourger. "Stochastic versus Deterministic Approaches." In Environmental Modelling, 133–49. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118351475.ch8.
Full textLuo, Xiaoguang. "Introduction." In GPS Stochastic Modelling, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34836-5_1.
Full textLuo, Xiaoguang. "Mathematical Background." In GPS Stochastic Modelling, 7–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34836-5_2.
Full textConference papers on the topic "Stochastic modelling"
Ney, Hermann. "Stochastic modelling." In the workshop. Morristown, NJ, USA: Association for Computational Linguistics, 2001. http://dx.doi.org/10.3115/1118037.1118042.
Full textGarbaczewski, Piotr. "Stochastic modelling of nonlinear dynamical systems." In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302402.
Full textTautu, Petre. "Stochastic Modelling in Biology." In Proceedings of the Workshop. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540711.
Full textMaher, Mike. "Stochastic Modelling of Sport." In 2012 Ninth International Conference on Quantitative Evaluation of Systems (QEST). IEEE, 2012. http://dx.doi.org/10.1109/qest.2012.40.
Full textSeddon, Keith, Behnam Pirouz, and Timothy Fitton. "Stochastic beach profile modelling." In 18th International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, Perth, 2015. http://dx.doi.org/10.36487/acg_rep/1504_35_seddon.
Full textMARIANI, L., G. TURCHETTI, and F. LUCIANI. "STOCHASTIC MODELS OF IMMUNE SYSTEM AGING." In Modelling Biomedical Signals. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778055_0007.
Full textWilczyński, Bartek. "A stochastic extension of R. Thomas regulatory network modelling." In Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-19.
Full textCH. IVANOV, PLAMEN, and CHUNG-CHUAN LO. "STOCHASTIC APPROACHES TO MODELING OF PHYSIOLOGICAL RHYTHMS." In Modelling Biomedical Signals. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778055_0003.
Full text"STOCHASTIC MODELLING IN HEALTHCARE SYSTEMS." In 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003576101090115.
Full textSmieja, Jaroslaw. "Deterministic Modeling of Stochastic Gene Transcription Processes." In Modelling, Identification and Control. Calgary,AB,Canada: ACTAPRESS, 2014. http://dx.doi.org/10.2316/p.2014.809-018.
Full textReports on the topic "Stochastic modelling"
Yanev, Nikolay M., Vessela K. Stoimenova, and Dimitar V. Atanasov. Stochastic Modelling and Estimation of COVID-19 Population Dynamics. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2020. http://dx.doi.org/10.7546/crabs.2020.04.02.
Full textNg, B. Survey of Bayesian Models for Modelling of Stochastic Temporal Processes. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/900168.
Full textBenoit, N., D. Marcotte, J. W. Molson, A F Bajc, and H. A. J. Russell. Stochastic hydrogeological modelling workflow in a glacial sedimentary basin, southern Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2020. http://dx.doi.org/10.4095/321107.
Full textFleming, Wendell H., and Harold J. Kushner. Numerical Methods and Approximation and Modelling Problems in Stochastic Control Theory. Fort Belvoir, VA: Defense Technical Information Center, November 1988. http://dx.doi.org/10.21236/ada218419.
Full textOsadetz, K. G., Z. Chen, and H. Gao. SuperSD, Version 1.0: a pool-based stochastic simulation program for modelling the spatial distribution of undiscovered petroleum resources. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2003. http://dx.doi.org/10.4095/214036.
Full textAnsari, S. M., E. M. Schetselaar, and J. A. Craven. Three-dimensional magnetotelluric modelling of the Lalor volcanogenic massive-sulfide deposit, Manitoba. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/328003.
Full textPerdigão, Rui A. P., and Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, November 2020. http://dx.doi.org/10.46337/201111.
Full textPerdigão, Rui A. P. New Horizons of Predictability in Complex Dynamical Systems: From Fundamental Physics to Climate and Society. Meteoceanics, October 2021. http://dx.doi.org/10.46337/211021.
Full text