Academic literature on the topic 'Stochastic Differential Geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stochastic Differential Geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stochastic Differential Geometry"
Kendall, Wilfrid S. "Stochastic differential geometry: An introduction." Acta Applicandae Mathematicae 9, no. 1-2 (1987): 29–60. http://dx.doi.org/10.1007/bf00580820.
Full textCatuogno, Pedro, and Paulo Ruffino. "Geometry of Stochastic Delay Differential Equations." Electronic Communications in Probability 10 (2005): 190–95. http://dx.doi.org/10.1214/ecp.v10-1151.
Full textThiruthummal, Abhiram Anand, and Eun-jin Kim. "Monte Carlo Simulation of Stochastic Differential Equation to Study Information Geometry." Entropy 24, no. 8 (August 12, 2022): 1113. http://dx.doi.org/10.3390/e24081113.
Full textKendall, Wilfrid S. "Stochastic Differential Geometry, a Coupling Property, and Harmonic Maps." Journal of the London Mathematical Society s2-33, no. 3 (June 1986): 554–66. http://dx.doi.org/10.1112/jlms/s2-33.3.554.
Full textDimakis, Aristophanes, and Folkert M�ller-Hoissen. "Stochastic differential calculus, the Moyal *-product, and noncommutative geometry." Letters in Mathematical Physics 28, no. 2 (June 1993): 123–37. http://dx.doi.org/10.1007/bf00750305.
Full textManton, Jonathan H. "A Primer on Stochastic Differential Geometry for Signal Processing." IEEE Journal of Selected Topics in Signal Processing 7, no. 4 (August 2013): 681–99. http://dx.doi.org/10.1109/jstsp.2013.2264798.
Full textKühnel, Line, Stefan Sommer, and Alexis Arnaudon. "Differential geometry and stochastic dynamics with deep learning numerics." Applied Mathematics and Computation 356 (September 2019): 411–37. http://dx.doi.org/10.1016/j.amc.2019.03.044.
Full textAgrachev, Andrei, Ugo Boscain, Robert Neel, and Luca Rizzi. "Intrinsic random walks in Riemannian and sub-Riemannian geometry via volume sampling." ESAIM: Control, Optimisation and Calculus of Variations 24, no. 3 (2018): 1075–105. http://dx.doi.org/10.1051/cocv/2017037.
Full textAshyralyev, Allaberen, and Ülker Okur. "Stability of Stochastic Partial Differential Equations." Axioms 12, no. 7 (July 24, 2023): 718. http://dx.doi.org/10.3390/axioms12070718.
Full textAndrianantenainarinoro, T. R. H., R. A. Randrianomenjanahary, and T. J. Rabeherimanana. "AMPLITUDE ADJUSTMENT WITH FIWASVJ MODEL." Advances in Mathematics: Scientific Journal 11, no. 4 (April 28, 2022): 383–413. http://dx.doi.org/10.37418/amsj.11.4.7.
Full textDissertations / Theses on the topic "Stochastic Differential Geometry"
Yang, Weiye. "Stochastic analysis and stochastic PDEs on fractals." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:43a7af74-c531-424a-9f3d-4277138affbb.
Full textMorgado, Leandro Batista 1977. "Dinâmica de semimartingales com saltos : decomposição e retardo." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306280.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T10:29:03Z (GMT). No. of bitstreams: 1 Morgado_LeandroBatista_D.pdf: 1320837 bytes, checksum: db1015f01556b3de2b1f7ca1c6bf33d3 (MD5) Previous issue date: 2015
Resumo: Este trabalho aborda alguns aspectos da teoria de equações diferenciais estocásticas em relação a semimartingales com saltos, suas aplicações na decomposição de fluxos estocásticos em variedades, bem como algumas implicações de natureza geométrica. Inicialmente, em uma variedade munida de distribuições complementares, discutimos o problema da decomposição de fluxos estocásticos contínuos, isto é, gerados por EDE em relação ao movimento Browniano. Resultados anteriores garantem a existência de uma decomposição em difeomorfismos que preservam as distribuições até um tempo de parada. Usando a assim denominada equação de Marcus, bem como uma técnica que denominamos equação 'stop and go', vamos construir um fluxo estocástico próximo ao original, com a propriedade adicional que o fluxo construído pode ser decomposto além do tempo de parada inicial. Em seguida, trataremos da decomposição de fluxos estocásticos no caso descontínuo, isto é, para processos gerados por uma EDE em relação a um semimartingale com saltos. Após uma discussão sobre a existência da decomposição, obtemos as EDEs para as componentes respectivas, a partir de uma extensão que propomos da fórmula de Itô-Ventzel-Kunita. Finalmente, propomos um modelo de equações diferenciais estocásticas com retardo incluindo saltos. A ideia é modelar certos fenômenos em que a informação pode chegar ao receptor por diferentes canais: de forma contínua, mas com retardo, e em tempos discretos, de forma instantânea. Vamos abordar aspectos geométricos relacionados ao tema: transporte paralelo em curvas diferenciáveis com saltos, bem como possibilidade de levantamento de uma solução do nosso modelo de equação para o fibrado de bases de uma variedade diferenciável
Abstract: The main subject of this thesis is the theory of stochastic differential equations driven by semimartingales with jumps. We consider applications in the decomposition of stochastic flows in differentiable manifolds, and geometrical aspects about these equations. Initially, in a differentiable manifold endowed with a pair of complementary distributions, we discuss the decomposition of continuous stochastic flows, that is, flows generated by SDEs driven by Brownian motion. Previous results guarantee that, under some assumptions, there exists a decomposition in diffeomorphisms that preserves the distributions up to a stopping time. Using the so called Marcus equation, and a technique that we call 'stop and go' equation, we construct a stochastic flow close to the original one, with the property that the constructed flow can be decomposed further on the stopping time. After, we deal with the decomposition of stochastic flows in the discontinuous case, that is, processes generated by SDEs driven by semimartingales with jumps. We discuss the existence of this decomposition, and obtain the SDEs for the respective components, using an extension of the Itô-Ventzel-Kunita formula. Finally, we propose a model of stochastic differential equations including delay and jumps. The idea is to describe some phenomena such that the information comes to the receptor by different channels: continuously, with some delay, and in discrete times, instantaneously. We deal with geometrical aspects related with this subject: parallel transport in càdlàg curves, and lifting of solutions of these equations to the linear frame bundle of a differentiable manifold
Doutorado
Matematica
Doutor em Matemática
Silva, Júnior Rinaldo Vieira da 1981. "Calculo estocastico em variedades Finsler." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306287.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-04T02:49:45Z (GMT). No. of bitstreams: 1 SilvaJunior_RinaldoVieirada_M.pdf: 1586291 bytes, checksum: 8d01bdf434ecba2fb62a57725c46dd4a (MD5) Previous issue date: 2005
Resumo: Nesta dissertação fizemos um estudo da teoria de difusão em variedades Finsler, onde abor-damos o transporte paralelo estocástico, desenvolvimento estocástico de Cartan e Movimento Browniano. O objetivo principal é obter uma descrição mais geométrica dos objetos citados acima ainda que por enquanto em coordenadas locais e assim termos um paralelo entre o cálculo estocástico em variedades Riemannianas e variedades Finsler
Abstract: In this work we study diffusion theory in Finsler manifolds. It includes the stochastic par-allel transport, stochastic Cartan development and Brownian motion. The main objective is to provide a geometric description of the objects mentioned and 50 to draw a compari-50n between stochastic calculus in Riemannian manifolds and stochastic calculus in Finsler manifolds
Mestrado
Matematica
Mestre em Matemática
Björnberg, Jakob Erik. "Graphical representations of Ising and Potts models : Stochastic geometry of the quantum Ising model and the space-time Potts model." Doctoral thesis, KTH, Matematik (Inst.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11267.
Full textHTML clipboard Statistisk fysik syftar till att förklara ett materials makroskopiska egenskaper i termer av dess mikroskopiska struktur. En särskilt intressant egenskap är är fenomenet fasövergång, det vill säga en plötslig förändring i de makroskopiska egenskaperna när externa förutsättningar varieras. Två modeller är särskilt intressanta för en matematiker, nämligen Ising-modellen av en magnet och perkolationsmodellen av ett poröst material. Dessa två modeller sammanförs av den så-kallade fk-modellen, en slumpgrafsmodell som först studerades av Fortuin och Kasteleyn på 1970-talet. fk-modellen har sedermera visat sig vara extremt användbar för att bevisa viktiga resultat om Ising-modellen och liknande modeller. I den här avhandlingen studeras den motsvarande grafiska strukturen hos två näraliggande modeller. Den första av dessa är den kvantteoretiska Isingmodellen med transverst fält, vilken är en utveckling av den klassiska Isingmodellen och först studerades av Lieb, Schultz och Mattis på 1960-talet. Den andra modellen är rumtid-perkolation, som är nära besläktad med kontaktmodellen av infektionsspridning. I Kapitel 2 definieras rumtid-fk-modellen, och flera probabilistiska verktyg utforskas för att studera dess grundläggande egenskaper. Vi möter rumtid-Potts-modellen, som uppenbarar sig som en naturlig generalisering av den kvantteoretiska Ising-modellen. De viktigaste egenskaperna hos fasövergången i dessa modeller behandlas i detta kapitel, exempelvis det faktum att det i fk-modellen finns högst en obegränsad komponent, samt den undre gräns för det kritiska värdet som detta innebär. I Kapitel 3 utvecklas en alternativ grafisk framställning av den kvantteoretiska Ising-modellen, den så-kallade slumpparitetsframställningen. Denna är baserad på slumpflödesframställningen av den klassiska Ising-modellen, och är ett verktyg som låter oss studera fasövergången och gränsbeteendet mycket närmare. Huvudsyftet med detta kapitel är att bevisa att fasövergången är skarp—en central egenskap—samt att fastslå olikheter för vissa kritiska exponenter. Metoden består i att använda slumpparitetsframställningen för att härleda vissa differentialolikheter, vilka sedan kan integreras för att lägga fast att gränsen är skarp. I Kapitel 4 utforskas några konsekvenser, samt möjliga vidareutvecklingar, av resultaten i de tidigare kapitlen. Exempelvis bestäms det kritiska värdet hos den kvantteoretiska Ising-modellen på , samt i ‘stjärnliknankde’ geometrier.
QC 20100705
Stelmastchuk, Simão Nicolau 1977. "Martingales no fibrado de bases e seções harmonicas via calculo estocastico." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306326.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-09T00:50:27Z (GMT). No. of bitstreams: 1 Stelmastchuk_SimaoNicolau_D.pdf: 537546 bytes, checksum: f06c81c8cd3b758c84d267af8373abdd (MD5) Previous issue date: 2007
Resumo: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula
Abstract: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula
Doutorado
Geometria Estocastica
Doutor em Matemática
Mora, Marianne. "Sur la geometrie differentielle en statistique : sur la convergence des suites de fonctions variance des familles exponentielles naturelles." Toulouse 3, 1988. http://www.theses.fr/1988TOU30044.
Full textHerzog, David Paul. "Geometry's Fundamental Role in the Stability of Stochastic Differential Equations." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145150.
Full textLagrange, Jean-Michel. "Reconstruction tomographique à partir d'un petit nombre de vues." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0038.
Full textGairing, Jan Martin. "Variational and Ergodic Methods for Stochastic Differential Equations Driven by Lévy Processes." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/18984.
Full textThe present thesis investigates certain aspects of the interplay between the ergodic long time behavior and the smoothing property of dynamical systems generated by stochastic differential equations (SDEs) with jumps, in particular SDEs driven by Lévy processes and the Marcus’ canonical equation. A variational approach to the Malliavin calculus generates an integration-by-parts formula that allows to transfer spatial variation to variation in the probability measure. The strong Feller property of the associated Markov semigroup and the existence of smooth transition densities are deduced from a non-standard ellipticity condition on a combination of the Gaussian and a jump covariance. Similar results on submanifolds are inferred from the ambient Euclidean space. These results are then applied to random dynamical systems generated by linear stochas- tic differential equations. Ruelle’s integrability condition translates into an integrability condition for the Lévy measure and ensures the validity of the multiplicative ergodic theo- rem (MET) of Oseledets. Hence the exponential growth rate is governed by the Lyapunov spectrum. Finally the top Lyapunov exponent is represented by a formula of Furstenberg– Khasminskii–type as an ergodic average of the infinitesimal growth rate over the unit sphere.
Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.
Full textDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
Books on the topic "Stochastic Differential Geometry"
Belopolskaya, Ya I., and Yu L. Dalecky. Stochastic Equations and Differential Geometry. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2215-0.
Full textBelopolskaya, Ya I. Stochastic Equations and Differential Geometry. Dordrecht: Springer Netherlands, 1990.
Find full textL, Dalet͡skiĭ I͡U, ed. Stochastic equations and differential geometry. Dordrecht, Netherlands: Kluwer Academic Publishers, 1990.
Find full textEmery, Michel. Stochastic calculus in manifolds. Berlin: Springer-Verlag, 1989.
Find full textAn introduction to the geometry of stochastic flows. London: Imperial College Press, 2004.
Find full textE, Gliklikh I͡U. Ordinary and stochastic differential geometry as a tool for mathematical physics. Dordrecht: Kluwer Academic Publishers, 1996.
Find full textL, Dalet͡skiĭ I͡U. Stokhasticheskie uravnenii͡a i different͡sialʹnai͡a geometrii͡a. Kiev: Gol. izd-vo izdatelʹskogo obʺedinenii͡a "Vyshcha shkola", 1989.
Find full textDebashish, Goswami, ed. Quantum stochastic processes and noncommutative geometry. Cambridge: Cambridge University Press, 2007.
Find full textE, Gliklikh I͡U. Global analysis in mathematical physics: Geometric and stochastic methods. New York: Springer, 1997.
Find full textStochastic calculus in manifolds. Berlin: Springer-Verlag, 1989.
Find full textBook chapters on the topic "Stochastic Differential Geometry"
Kallenberg, Olav. "Stochastic Differential Geometry." In Foundations of Modern Probability, 801–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61871-1_36.
Full textHsu, Elton. "Basic stochastic differential geometry." In Graduate Studies in Mathematics, 35–69. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/038/03.
Full textKendall, Wilfrid S. "Stochastic Differential Geometry: An Introduction." In Stochastic and Integral Geometry, 29–60. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3921-9_3.
Full textEmery, Michel. "Some vocabulary from differential geometry." In Stochastic Calculus in Manifolds, 9–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75051-9_2.
Full textBelopol’skaya, Ya I., and Yu L. Daletskiǐ. "Stochastic equations and differential geometry." In Lecture Notes in Mathematics, 131–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075963.
Full textHsu, Pei. "Probabilistic Methods in Differential Geometry." In Seminar on Stochastic Processes, 1989, 123–34. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-3458-6_7.
Full textApplebaum, David. "Lévy Processes in Stochastic Differential Geometry." In Lévy Processes, 111–37. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_6.
Full textGliklikh, Yuri E. "Stochastic Differential Equations on Manifolds." In Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics, 75–98. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8634-4_3.
Full textDe Vecchi, Francesco C., and Massimiliano Gubinelli. "A Note on Supersymmetry and Stochastic Differential Equations." In Geometry and Invariance in Stochastic Dynamics, 71–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87432-2_5.
Full textGliklikh, Yuri E. "Elements of Coordinate — Free Differential Geometry." In Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics, 1–44. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8634-4_1.
Full textConference papers on the topic "Stochastic Differential Geometry"
Bhatnagar, Lakshya, Guillermo Paniagua, David G. Cuadrado, Papa Aye N. Aye-Addo, Antonio Castillo Sauca, Francisco Lozano, and Matthew Bloxham. "Uncertainty in High-Pressure Stator Performance Measurement in an Annular Cascade at Engine-Representative Reynolds and Mach." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59702.
Full textZheng, Qian, Weichen Qiu, Noah Ergezinger, Yong Li, Nader Yoosef-Ghodsi, Matt Fowler, and Samer Adeeb. "Development of an Online Calculation Tool for Safety Evaluation of Pipes Subjected to Ground Movements." In 2022 14th International Pipeline Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/ipc2022-86485.
Full textYang, Xuechen, Shan Zhao, and Hongjun Li. "Investment Portfolio Strategy Based on Geometric Brownian Motion and Backward Stochastic Differential Equations." In the 2018 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3180374.3181350.
Full textDevarajan, K., V. Shankaranarayanan, K. Nithishrajan, M. Gaouthaman, and B. Chandraditya. "Probabilistic Response of a Vibration Energy Harvester With Customized Nonlinear Force Driven by Random Excitation." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-68647.
Full textReports on the topic "Stochastic Differential Geometry"
Snyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Full text